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CONSTRUCTIONS OF INTERPOLATION CURVES
FROM GIVEN SUPPORTING ELEMENTS (II)

JoseEr MATUSU, JOSEF NOVAK

(Received January 28, 1985)

Summary. This papers deals with the constructions of interpolation curves which pass through
given supporting points (nodes) and touch supporting tangent vectors given at only some of these
points or, as the case may be, at all these points. The mathematical kernel of these constructions
is based on the Lienhard’s interpolation method. Formulae for the curvature of plane and space
interpolation curves are derived.

Keywords: Interpolation, curves, curvature.

1. LIENHARD'S INTERPOLATION METHOD

Our approach is based on the papers [1], [2], [3]. In [3] the case of a spatial
closed interpolation curve was considered (Example 4) which had a different oscula-
tion plane with respect to the arc P;_,P; than with respect to the arc P;P;. . This
“‘deficiency’” will be removed now.

First we recall the substance of Lienhard’s interpolation method (see [1], [2]).
Further in the text this method will be briefly referred to as method I.

. Let n = 3 be an integer. In the space R™ (m > 1 integer) let n different points
P=x"(i=1,..,n; j=1,...,m) be given. The symbol x” denotes also the
corresponding ordered m-tuple of coordinates, or rather the vector which has these
coordinates. Thus, the elements of the set R™ are either points or vectors, according
to which of the notions corresponds more to our conception in the given context.
As a rule, we use the notion of a point in situations when location in the space R™
is discussed while the notion of a vector indicates that we are interested in the direction.
Also, bold types will be sometimes used to denote vectors.

We shall look for polynomials in the real variable ¢t (of degree at most K, not
determined more precisely at the moment)

K
(1.1) POyr) =kZOa;.;?1" (i=1,..,n—1)
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such that
(12) PO(—1) = 247, Pffi)(]) = XD

(1.3)

20 = £ PT(-D),

d_
d?

(1.4) = PUx1 )_ P(‘“)( -1).
de?

Conditions (1.2) guarantee that the interpolation arc parametrized with the aid
of the functions P")(t) (j = 1, ..., m) passes through the points P;, P;,,. Conditions
(1.3) guarantee ﬂuent transmon from arc to arc. Finally, conditions (1.4) guarantee,
in the planar as well as in the spatial case, that the osculation circle at the point P;
with respect to the arc P,_, P; is the same as the osculation circle at this point with
respect to the arc P,P;, ; (provided P; is not a point of inflection of the interpolation
curve). To satisfy conditions (1.3), (1.4) we have to know the values of the functions
dP{)(1)/dt, d?P{)(1)/dt? at the points Py, P, q:

L5 4 po—1) = px, & poo(—1) = D20
() Zi_t Xj(‘ )_ 'xj ’ b; G\ ): xj ’
(1.6) j PO1) = ij.””, P“) (1) = D2+ D

by convention, Dx{, Dx{* D, D2x!", sz}”” is the notation for these values.
The manner of thelr determination will be discussed later. By (1.2), (1.3), (1.4) six
definite conditions are given for every polynomial (1.1). With their aid each poly-
nomial is then uniquely determined as a polynomial of degree at most K = 5:

(1.7) PO(t) = z alik.
We have
d (i) > (i)k—1
(1.8) d— ij(t) = Z kap )t *,
d2
(1.9) g — “)(t) = Z k(k - 1) a(')t" 2,
t

If we substitute the values t = —1, 1 into (1.8), (1.9), we obtain (taking (1.2), (1.5),
(1.6) into account) the following system of six linear equations for the six unknown
coefficients a{)) of the polynomial (1.7):

5
(1.10) > (-1 aff = 4P,

=0

k
5
¥ (= 1) kaf?

!i

Dx(9 |
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T o

(=1 k(k — 1) afp = D*x(0
5

(i) _ J(i+1)
Zajk = Xj >
=0

k

5 . .

Y ka{ = Dx§i*
k=1

5
— () — P2, (i+1)
kZZk(k 1) af) = D*x{* 1
We introduce the matrices
(1.11) Aj; = (dl), a?, al), aly), al?, a'y),

(1.12) X = (x{?, Dx{?, D?x(P, x(+ D, Dx{i+ D D2+ D) |

The matrix of the coefficients of system (1.10), which is necessarily regular in view
of the uniqueness of the determination of the desired polynomials, is denoted by A.
Then the solution of system (1.10) is expressed in matrix notation by the relation

(1.13) Al = Ao X1,

ij?
where the superscript T denotes transposed matrices to the matrices (1.11), (1.12),
and A ! denotes the inverse matrix to A.

The values of the first and second derivatives at the points P;, P;,, (see (1.5),
(1.6)) are determined as follows (see [3], Section 1). By Fig. 1 the points (2, XY
(=1 £ h £ 1, h integer) determine uniquely a polynomial of at most second degree

2
(1.14) RO(Y) = 3 bjr*
k

with the aid of which we put

i d i i i d? i i
(115 Dxf = S ROO) = b, DA = 15 RO0) = 2542
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Since every coefficient of the polynomial (1.14) is a certain linear combination of the

values x$~ 1, x4, x{i* 1 the same holds for the derivatives Dx{”, Dx{". Therefore
there exists a matrix B of type (2, 3) such that

(1.16) (Dx$, D) = (x4 D, x{?, x{i* D) o BT .

Then we have

0
. . . . o ; 1 BT
(117) (2. D, D2P) = (7, 0P, o), x0#2)o| |
0 0 0
Analogously we obtain
00 0
(118) (x‘(il+1)’ Dx§l+l), D2x§t+l)) — (x‘(,'l_”’ fo”, x-(il+l)’ x§t+2)) ° 1 BT ;
0

in this case we replace the number i in Fig. 1 by the number i + 1. By (1.17), (1.18)
it is then possibie to express the matrix (1.12) in the form

0 0 0 0
i- i i i+2 1 BT 0
(L19) Xy = (s, e | LB O
00 0O
After substituting (1.19) into (1.13) we have
xﬁ.i'—l)
(1'20) Aijzco (i+1) |2
Xj
x§i+2)
where
0 1 0 0]
0
B
(1.21) C=A"1o 0f.
0 0 1 0
0
B
10 .
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By simple computation we find that

I 8 5 1 8§ -5 1
-15 -7-1 15 =7 1
0 -6 -2 0 6 -2
. Al=1
(1 22) 16 10 10 2 —10 10 =2}’
0 1 1 0 -1 1
-3 -3 -1 3 -3 1

-1 01

0 ai[701)

With the aid of (1.21), (1.22), (1.23) it is then possible to express (1.13) in the following
form (see [2], formula (29)):

=2 18 18 —27 ,
3225 25 —3| [x "
2 -2 -2 2f |x

—4 12 =12 4] | x4
0 0 0 0 x§i+2)
1 -3 3 -]

(1.24) AT, =

Grouping of nodes will be carried out in the same manner as in [3], Section 2.

Example 1. In the plane R? let us consider the points P, = (0, 0), P, = (2, 3),
Py = (15, —6), P, = (2, —10), P5 = (10,5) (see Example 1 in [3]). By (1.24) we
then have the following parametric equations for the individual arcs of the unclosed
planar interpolation curve P,P,P;P,P.:

(1.25)
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P(f) = 0:0625 + 0-34375t + 0-9375t* + 0-875¢> — 0-21875¢%,
PiPs ... PU(1) = 1875 + 3-1875¢ — 0-375¢* — 2:256> + 0-5625(°,

PO(t) = 9-4375 + 9:96875t — 0-93751* — 4-625¢ + 1:156251° ,

Pabs... PA(f) = —1:0625 — 6:09375¢t — 0-4375¢* + 2:125¢° — 0-53125¢°,
p.p. PO = 88125 — 10906251 — 0-3125¢* + 5-875t> — 1-468751° ,
e pO1) = —9°5 — 33125t + 1:5¢* + 17563 — 0-43751%,
pop. PG = 56875 + 746875t + 0-31251* — 4625° + [115625¢° ,
4Ps ...

PU1) = —1-8125 4 12:09375t — 0-6875t* — 6:125¢3 + 1-53125¢° .

The interpolation curve is drawn in Fig. 2.

2. COMPUTATION OF THE VECTORS OF THE FIRST AND SECOND
DERIVATIVES (under method I)

Consider the nodes P;, P;,1, P;,, and look for the tangent vector (vector of the
first derivative) at the point P;,; with respect to the interpolation arc P;P;, ,. Since
it is required that condition (1.3) be valid, this vector is equal to the tangent vector
at the point P;, ; with respect to the interpolation arc P, P, ,. By (1.24), from the
relation 32P§,';,)(t) = (1,1,1%, 7, t*, 1°) © 32A7, we obtain, by differentiation,

3 -25 25 -3
4 —4 -4 4| [x
—12 36 =36 12| [x{?
0 0 0 of |+
5 —-15 15 =5 x(i+2)
o o o of '

(i—1)
J

(2.0)  32PL(1) = (1,1, 12,83, %, 1) -

For t = 1, (2.1) yields
x_(,‘i_l)
(. x ‘ .
(2~2) 4ij )(1) = (0, —1,0, 1) ° KU+ = xﬁ'”’ - x}l) =P, - P;,
J

(i+2)
Xj

i.e., the tangent vector at the point P;,; With respect to the interpolation arcs P;P;
and P;, (P, is collinear with the vector P;P,, ,, and its length is four times smaller
than that of the vector PP, ,.

Let us consider the points P;, P, , P;+, once more, and let us look for the vector
of the second derivative at the point P, With respect to the interpolation arc P;P, .
Since we require that condition (1.4) be valid, this vector is equal to the vector of the
second derivative at the point P;,, With respect to the interpolation arc P, P;,,.
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By differentiation of relation (2.1) we obtain

4-4-a 47
-24 72 -72 24| [%
0 0 0 of (x{
20 —60 60 —20| |xti*D
0 0 0 0 $(i+2)
J
0 0 o ol

(23)  32P0(1) = (1,1, 2%, 12, 1%, 1) 0

For t = 1, (2.3) yields

(i—1)-
Xj
(i)
e _ J — () (i+1) (i+2) _
(2'4) 4Px, (1) - (0’ 1’ _2’ ]) ° x(i+1) = X 2xj + Xj -
J
(i+2)
X
J

=(Pi+2—Pi+1)+(Pi"Pi+1)~

3. MODIFICATION OF LIENHARD’S INTERPOLATION METHOD

When constructing interpolation curves in Section 1 the mutual distances of the
nodes were not taken into account. Now we shall consider these distances and intro-
duce a modification of Lienhard’s interpolation method which differs somewhat
from the modification given in [2]. In the text below we shall briefly refer to the
present modification as to method II.

We shall proceed in the same way as in Section 1 with the only difference that
the values —2, 0, 2 (see Fig. 1) of the variable ¢ will be replaced by the values
—24;,-1/4i05 0 29;1/q:,05 here q; _y = IPi—IPil» di = |PiPi+1| (the distances
of the respective points), ¢;o = (¢; -1 + ¢;,)/2. Applying the corresponding
polynomial (1.14) and conditions (1.15) we then have (cf. (1.16))

(3.1 (DxP, D2P) = (<=1, <0, xj) - BT,

where

—2r, 2r; — 2r; ! 2r;!
(3.2) Bi=g[ A " 1]’

Ltr, =@+ 4+ L+0r]

r; = q;1/q: - 1. Thus we have (cf. (1.17))

D Py P2y — (=1 () G+ (i+2)
(3.3 (x$, Dx{?, D2x(7) = (x§7 D, %0 XD x§ o

oS O = O
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and analogously (cf. (1.18))
0 0
(34) (x5_i+ 1)’ ij-i+ l)’ sz_(ii+])) — (X§i_1), x;i), X§i+l)’ x§.i+2)) B BT

i+1

O = OO

By (3.3), (3.4) it is then possible to express the matrix (1.12) in the form

0 00 0
i i i i 1 BiT 0
65 Xe= (g B0
0 0 0 O
After substituting (3.5) into (1.13) we have
x;i—l]
(3:6) Ay =Ciol Gan |
j.
x_(i'+2)
where
10 1 0 0]
0
Bi
0
(3.7) C, = Ao ,
0 0 1 0
0
Bi+1
.-.O -

Thus it is possible to summarize: If in the unmodified case, i.e., when not respect-
ing the mutual distances of the nodes, the matrix B (cf. (1.23)) of formula (1.21) is
constant for all arcs P;P;, ,, then this matrix changes from arc to arcin the modified
case, i.e., when the mutual distances of the nodes are taken into account. Simultane-
ously, the matrix C of formula (1.21) also changes and passes into matrix (3.7).
With the aid of (3.7), (1.22), (3.2) it is then possible to write (1.24) in the following
form:

(3-8) T 11— 9r; 63 + 9r; — 1lr; ' + 1lr,,,

=1+ 13r; —117 — 13r; + 1577 + 151,44

128AT — -2 + 10r; 2 — 10r; + 14r7' — 14r,,,
ij = -1

2 — 18r; 74 + 18r; — 22r] " — 22r;44

1 — 7 -1+ ri—= 37 4 3r,

L—1+5r, =21 — 5r;+ Tri' 4+ Trigy
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63 4+ Lr[' — Ury + 974 1 — 93]
17 — 1577 — 1574 + 137 L= 13rl | pxbiom
2 — 14t 4 1 = 10r =2+ 10r | XD
=74 + 2287 4 22ry — 1817 =24 187 || XETD
=L+ 37" = Br + 1= i “+2)
20— Tt — Trie + 5rY 1 — 5r7

Example 2. In the plane R? let us consider the same nodes P,, P,, P3, P4, Ps
as in Example 1. For the individual arcs of the unclosed planar interpolation curve
P,P,P;P,Ps we have, by (3.8), the following parametric equations:

PO(1) = 018627 + 0-56955t + 0894011 + 0:62745¢°

PP, .. — 0-08028t* — 0:197¢°,
P“\t) = 051373 + 1-29174r + 1278581 + 0472551 —

— 0:29231¢* — 0:264291° ,

PO(1) = 93558 + 10:8846r —0-73258:2 — 6:007071

P,P, ... — 0-12322¢* 4 1:62247¢°,
POy = 018624 — 8020791 — 1:904011> + 487211 +

£ 0-217771% — 1:3513265

PXO(t) = 889481 — 993111t — 0-41973> + 4473261 +

PP, ... + 0:02492¢* — 1-04215¢°,
PO1) = —9-17068 — 2:94243¢ + 1:129231> + 1:22173> +

+ 0-04145¢* — 0-2793¢°

P®(r) = 5:32167 + 7-98606¢ + 0-74119¢* — 5-35665¢°

PP ... — 0-062861* + 1:37059¢° ,
(‘”(t) = —2:14047 +12-546661 — 0-28144t> — 670941

— 0-07809¢* + 173428¢° .

|

The interpolation curve is shown in Fig. 3.

P
5
R

)

«u

Fig. 3. F,
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4. COMPUTATION OF THE VECTORS OF THE FIRST AND SECOND
DERIVATIVES (under method II)

According to (3.8) we have, by simple computation,

xj-i_’)
Ro
7{i) 1 -1 -1 J
(4-1) 4Px(,l (1) =0, =Fis 1> Tivsr — Fivts ri+1) ° K+ D
J
x;i+2)

= ri—+11(Pi+2 - Pi+1) - ri+1(Pi - Pi+1) >
i.e., the tangent vector at the point P;, , with respect to the interpolation arcs P,P;, |,

P;,P;,, is a linear combination of the vectors E’j’iﬂ, P;.,P;.,. For the vector
of the second derivatives at the point P;, ,, with respect to these arcs, we have

l—xg.iwl)

. ~ XD

(42) 8PUO(1) = (0,1 + rivy, =(2+ rigyq + 1) L+ 1334) @ Y(i+1)
)
x(ii+2)

=(1+ ri_+11)(Pi+2 — Piyy) + (1 + riv1) (P — Piyy) -

5. CASES WITH PRESCRIBED SUPPORTING TANGENT VECTORS
(method T)

Below we shall investigate cases for which supporting tangent vectors are prescri-
bed at some supporting points (or at all supporting points as the case may be).

a) To the node P; with supporting tangent vector v; = v{" (or without any support-
ing tangent vector) we assign the number K; = 1 (or K; = 0, respectively). Let
Ki=1, K;i; = 0. According to Fig. 4 the points (2h, x{*") (=1 <h <1, h
integer) and the number v{” determine uniquely a polynomial of at most third degree
S¢)(1) with the aid of which we put (see (1.15)) Dx{? = Si{%(0), D*x{" = 57{)(0).
By simple computation we find out that

[00 17
40 -2
(5.1) (x5, Dx{?, D2x(0) = (k87 0, x(0, 0f?, x{ D, XY e 110 4 0
00 1
00 O
Further, by (1.18), (1.23) we have
(5-2) 0 0 0
0-1 1
({7, Dx(+ D, D2x(i+ D) = (x5, 50, o0, X+ D, 5o 110 0 0.
4 0 -2
0 1 1
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With the aid of (5.1), (5.2) it is possible to express the transposed matrix to the matrix
(1.12) in the form

0 40 007 jxii—ty

J

0 04 00 XD

| =20 10 .

3 T -1 of ptd
(5 ) Xl/ 4 0 00 40 LJ'+1)

(i

0-10 01 Xj
lo 10 —2 1] [xti+>

A LAy —
Substituting (5.3) into (1.13), where A~ " is the matrix (1.22), we obtain
1 36 20 31 —47 |"xj.i‘”“

=1 =50 =28 57 =6} | ®
-2 -4-24 2 4

5.4 G4AT. = o ytd
(54) . i 2 24 40 —34 8 v’“m
1 0 4 — 1 0 Xj

P—1 — 6 —12 9 —2| |x{i*?
b) LetK; = 0, K;,, = 1. By (1.17), (1.23) we have

0 -1 1

4 0 -2
(5_5) (xj-i’, Dx;“, szj-“) - (x;i——l)’ x?’, x;_H—l)’ v}””, x;i+2)) °od10 1 11.

0 0 ©

0 0 o0l

By Fig. 5 the points (2, x{"*'*") (=1 < h < 1, h integer) and the number v(i+"
determine uniquely a polynomial of at most third degree V{*"(r) with the aid
of which we put Dx{i*1 — Vi N(0), szg.” N = V;’j("“)(O). By simple computation
we find that

(5.6) [00 0]
00 1

(x(i-H) DxUtH D2xli+h (i=1) (i) (i+1) (i+1) (i+2)), 1
DX DA < (T, 0, XD D, ) e 140 =2
04 0
00 1

With the aid of (5.5), (5.6) it is possible to express the transposed matrix to the matrix
(1.12) in the form

0 4 000] x4 "7
-1 0 100 NG
1 -2 100 .
5.7 Ty of (Gt D
( ) XU }1 0 0 400 ')‘j' .
0 0 oa4o0f |[W"
0 1 —201] |x§*?

LR ] -
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Substituting (5.7) into (1.13), where A~ ! is the matrix (1.22), we obtain
I 36 =20 1 px{TU
6 —57 50 —28 1| |
4 2 —4 24 —2 A
T of it h
(58) 6443 34 —24 40 —2| [V
(i+1)
0 0 -4 1 Yi
2 6 —12 1 Xt
/Vﬂ
i
XJ(' i XJ-[ 1) (i)
2
Fig. 4.

) Let K; = K;,; = 1. By (5.1), (5.6) it is possible to express the transposed

matrix to the matrix (1.12) in the form

jo 40 0007 [x4 7
0 04 000 |x
T 1 =20 100 [o?
(59) Xi=%lo 00 400| |
0 00 040 [oi*D
0 10 -201] [x{*?]
Substituting (5.9) into (1.13), where A™" is the matrix (1.22),
1 31 20 31 =20 17
—1 —57 =28 57 —28 1
; |-2 2-24 2 24 -2
(5.10) O4A =1 5 34 40 —34 40 —2|°
1 -1 4 -1 -4 1
-1 =9 —12 9 —12 |

we obtain

_(l 1y

(')
Dm
(r+ 1)
XJ-
v(it+ 1)

x'(_i+2)

—J

The individual arcs of the desired interpolation curve which takes into account
the given supporting elements are then constructed with the aid of the formulas

(1.24) (K; = K;,; = 0), (5.4) (K; = 1,
(5'10) (K,- =Ky = 1)-

Kiyy =0), (58) (K; =0, K;;; = 1), and

Example 3. Consider the same nodes P,, P,, P;, P,, Ps as in Example 1. At the

nodes Pj3, P, let us choose the tangent vectors v = (]

, —2), va = (0,3). Let us

construct the unclosed planar interpolation curve P, P,P3P,Ps (see Example 3 in [3]).
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We start with the interpolation arc P, P,. Since K; = K, = 0, we apply formula
(1.24) to the nodes P,, P,, P,, P and obtain the following parametric equations
of the arc P, P, (cf. (1.25)):

PL(1) = 0,0625 + 0-34375¢ + 0-9375¢* + 0-875¢> — 0-21875¢° ,
27T POAt) = 1,875 + 3,1875¢ — 037512 — 2256 + 0-56251° .

We continue with the arc P,P;. Since K, = 0, K5 = 1, we apply formula (5.8)
to the supporting elements P,, P,, P3, v3, P,, which leads to the following parametric
equations of the arc P,P;:

PA(t) = 9,125 + 9-53125t — 0-56251* — 41 —0-06251* +
P,P, ... + 0-96875¢°,
POYt) = —145312 — 6:64062t + 0-03125¢* + 2-90625¢° —
— 0-07813t* — 0-76563¢° .

We continue with the arc P3P,. Since K, = K; = 1, we apply formula (5.10)
to the supporting elements P,, Ps, v3, Py, v4, Ps and obtain the following para-
metric equations of the arc P3P,:

PX(1) = 873438 — 11-89062t — 0-21875¢* + 7-28125¢° —
PP, ... — 0-015631* — 1-89063¢°
PO(t) = —9-1875 — 3-96875t + 1-125¢* + 2:6875¢° +
+ 0-0625t* — 0-71875¢° .

The interpolation arc P,P; remains last. Since K, = 1, K5 = 0, we apply formula
(5.4) to the supporting elements P, P4, V4, Ps, P, and obtain the following parametric
equations of the arc P,Ps:

PM() = 607813 + 6921881 — 0-15625¢> — 3-84375¢% +

P,P; ... + 0-078131* + 0-92188¢°,
P(t) = — 173438 + 11:98437t — 0-78125¢* — 5-96875t* +

+ 0-015631* + 1-48438¢° .

P,P

The interpolation curve is shown in Fig. 6.
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Example 4. In the space R? let the points Py = (0,0, 0), P, = (10, 5, 5), P3 =
= (0, 10, 15), P, = (-5, 3, 8) be given. At the points P;, P; let us consider the
supporting tangent vectors v; = (4,0, 0), v3 = (—2, —2,2). Let us construct the
spatial closed interpolation curve P,P,P;P,P; which takes into account the given
supporting elements (see Example 4 in [3]).

We start with the arc P,P,. Since K; = 1, K, = 0, we apply formula (5.4) to the
supporting elements P,, P, vy, P,, P3, which leads to the following parametric
equations of the arc P, P,:

PO(1) = 601563 + 7-23438: — 1-03125¢> — 2968751 +
+ 0-01562t* + 0-73437¢° ,
(5.11) P,P,... PU(1) = 184375 + 3-46875¢ + 068752 — 1:31251% —
— 0:03125t* + 0-343751%
PU(1) = 1-60937 + 2:921881 + 0-84375¢% — 0-53125¢% +
+ 0-04688¢* + 0-10938¢° .

We continue with the arc P,P;. Since K, = 0, K3 = 1, we apply formula (5.8)
to the supporting elements Py, P,, P;, v3, P, and obtain the following parametric
equations of the arc P,P5:

PXf) = 539062 — 8:10938¢ — 0-28125¢% + 4-218761° —
— 0-10937t* — 1-10938¢°,
P,Ps ... P2(f) = 871875 + 428125t — 1-31251* — 2:4375¢* +
+ 0-09375t* + 0-65625¢° ,
P3)(f) = 10:35938 + 6:51562¢ — 0-28125¢% — 1-96875¢* —
— 0-07813t* 4 0-45313¢° .

We continue with the arc P;P,. Since K5 = 1, K, = 0, we apply formula (5.4)
to the supporting elements P,, P, v, P4, P, which leads to the following parametric
equations of the arc P3P,

PO(1) = —2:89063 — 3-734381 + 0-28125¢> + 1-718761° +
+ 0-10938¢* — 0-48438¢°
PsP, ... PO1) = 653125 — 4:34375t + 006251 + 1-0625¢% —
— 0:09375¢* — 0-21875¢° ,
Pfci’(t) = 13-01562 — 5-54688t — 1-59375¢* + 2-7812613 +
+ 0-07813¢* — 0-73438¢° .

The arc P,P; remains. Since K, = 0, K; = 1, we apply formula (5.8) to the
supporting elements P;, P,, Py, vy, P, and obtain the following parametric equations
of the arc P,P,:

PM(1) = —3-51562 + 2:85937t + 1-03125¢* — 0-468751 —
— 0-001563t* + 0-10938¢° ,
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PP, ... PP(1) = 090625 — 1:65625¢ + 0-5625¢* + 0-1875¢* +
+ 0-03125t* — 0-03125¢15,
Pty = 301563 — 564063t + 1:03125¢* + 22187613 —
‘ — 0-04688t* — 0-57813¢° .
The interpolation curve is shown in axonometric projection in Fig. 7. For the sake
of simplicity, the symbol P; is also used here to denote the axonometric projection
of a node while the symbol P; denotes its axonometric first projection. The similar
holds for supporting vectors.

Fig. 7.

Applying formulas (5.4), (5.8) we easily verify that we have
(5.13) 4P~:5-1)(_1) — 4P;§4)(1) — (X}Z) _ x}l)) + (x}ét) — x§1))
(j = 1, 2, 3). Consequently, these values are equal respectively to the numbers 5, 18,
13. They may be obtained also by applying the polynomials (5.11), (5.12). Then the
_ osculation plane of the interpolation curve at the node P; has the equation 13x, —
— 8x3 =0.

It is easily verified that cases a), b) can computed also according to formula (5.10)

if, in case a), we prescribe the supporting tangent vector v+ = (P,,, — P,)/4
at the node P,Jr1 and if, in case b) we prescribe the supportmg tangent vector u‘” =
= (P4, — P;_,)/4 at the node P; (see (2.2)). For instance, in case a) we then have
(=D i i—-1)5
x(i- 4 00007 [x~D
X 0 4000[ |0
e 0 0400| | .,
(514) xj(ji+1) = % 0 004 O o L’j-'.)
oD 0—1001| |¥"
X+ 0 0004] [x{*®
A — J
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and substitution of (5.14) into (5.10) yields (5.4).

By (5.10) we have 64PU)(1) = (1,1, 1%, 13 t*,1°) ° 64A]. Hence differentiation
yields
(5.15) PUO(=1) = o, PL(1) = o0,

(5.16) 4PY (1) = (Piyy — Piyy) + (Pi — Piyy)

(cf. (2.4)). For i = 4 and the nodes P,, P, = P,, P, = P, we obtain, for j = 1,2,3,
from (5.16) the result 4P;*(1) = (P, — P,) + (P, — P;), which agrees with
(5.13).

Concluding this section we determine the curvature k at a node P;,, which is
not a point of inflection of a planar or spatial interpolation curve and at which
we have the supporting tangent vector P,’(1) = o{"" " (see (5.15)).

In the planar case we have (j = 1, 2)
P'(i)(l) P;(i)(l) 2 U(li+1) U(2i+1) 2

n(:) (1) (i) (i)
(5.17) 2 = P;(1) Py (1) _ 4Py (1) 4P(1)

([P + [POMP 16]vi4[°

By (5.16) we have

i ; i+1
(5.18) AFY(1) = (Piyy = Pigy) + (Pi = Proy) = Wigy = Wi
For the vector w;, ; we construct the perpendicular vector wi, ; = (w51, —y(*D);
since we have
(i+1) (i+1)
wl wh 5
IwH—l[ < O

w(2i+1) w(:+1)

the orientation of the ordered pair of vectors w,,;, Wi, is negative. Then the
: : : i (i i+1 (i)(

dete(lr.rf:nan.Er {rom re1211t10(n+£5 17) is equill to v{i*+ (4P {7(1)) N vy D(4PL1)) =
i + 3 H

Uy )W(zl ) v(l )wl ) = Vitrg - Wiy = lvi+1’ PrOJvH,, Wit1s where pro.]Vi+l :

. wi, , stands for the projection of the vector wi, , onto the vector v, ;. Thus we have

kZ (pro-]v +1 H— 1)2

’

16‘v1+1[
ie.
(5.19) k = |prOJv”+_;iL| ion/SE
4|V,+1l ’V,+1l

From relation (5.19) it is evident that if the length [vis | of the vector v, | increases,
then the curvature k decreases as Cy|v;,;|™%, C, = const. In Fig. 8 (for i = 1) we
have P, = (0, 0), PZ—(3 2), Py =(8,0), vz\(z 0), wz_(P3—P2)+ P, —

— P,) = (2, —4), w; = (=4, =2). Further, |v| = 2, proj,, w; = —4. By (5 19)
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we thus have k = 1/4, i.e. the radius of curvature at the node P, of the interpolation
curve P,P,P; is r = 4. The parametric equations of the individual arcs are:

PO(1) = 1 + 18751 + 052 — 0-5¢> + 0-125°,

PiPy... , ;
PO(t) = 1 + 175t — 13 + 0-25¢°,

PP PO(t) = 6 4 3:625t — 0-5* — 1-5¢ + 0375¢°,
PP = 1 = 1750 + 13 — 0:25¢° . )
PZ v,

A g

Fig. 8.
In the spatial case (j = 1, 2, 3) we have, keeping the notation (see (5.18))

Vier - Vier  Vier Wiy
K2 = Vier - Wivr Wigr Wiy _ IV;'+1|2 |Wi+1|2 - (lvi+1[ projv',“ Wi+1)2 —
16|Vi+1l6 ]6Ivi“l6

_ |Wiii|® = (projy,,, Wis1)® _ [wis o |? sin® (Vie s, Wiy )
16"’:‘+1]4 16lvi+ll4

i
ie.

(5.20) L= | Wiy sin(vig, wiiy) _ const

4|Vi+1]2 |Vi+1|2.

From (5.20) it is obvious that if the length |v;,,| of the vector v, increases, then
the curvature k is decreasing as C2|v,-+1|“2, C, = const.

\  Substituting into formula (5.20) we verify that the interpolation curve of Example 4
has at the node P, radius of curvature r = 4-19278.

6. CASES WITH PRESCRIBED TANGENT VECTORS (method T)

We shall again examine the cases in which supporting tangent vectors are prescribed
at some nodes (or at all nodes as the case may be). While under method 7 the mutual
distances of the nodes are not taken into account, under method J these distances
have their significance.

a) LetK, = 1,K;;{ = 0.In Fig. 4 the values —2, 0, 2 of the variable ¢ are replaced
by the values —24; -1/q; 0,0, 2g;1/q; 0, Where the quantities 4i,-1> 4i0> qi have
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the same meaning as in Section 3. Analogously as in Section 5a) we construct a poly-
nomial of at most third degree S{(1) with the aid of which we put Dx{? = §(7(0),
D2x{? = §1(9(0). The detailed computation of matrix (1.12), which can be expressed
as the product of the matrix (x{~", x{ , 080, XD X+ D) and a certain matrix

of type (5, 6), will not be performed here

b) LetK; = 0,K;;; = 1. InFig .5 the values —2, 0, 2 of the variable ¢ are replaced
by the values —2¢;41,—1/di+1,00 05 2di+1.1/9i+1,0- Analogously as in Section 5b)
we construct a polynomial of at most third degree VL D(1) with the aid of which
we put Dx{*" = P*D(0), D*x{*" = P/*1(0). The detailed computation
of the matrix (1.12), which can be expressed as the product of the matrix (x{'~",
x$D, x{HD D x*2) and a certain matrix of type (5, 6), will again be omitted.

¢) Let K; = K;;; = 1. On the basis of the results of the preceding two cases it is
possible to derive that for the transposed matrix to the matrix (1.12) we have

10 8 0 0 0

I ,(.i—- =

0 x4
0 0 8 0 0 0 X
( )
T _ a; —{a; + b,-) 4c; b, 0 0 RE
(6,1) Xij - 0 0 0 8 0 0 x(ii+1) s
0 0 0 0 8 0 U§i+1)
_0 aivq 0 —(a,~+1 + bi+1) 4ci+1 bi+1‘ __X§i+2)_

where a; = r; + ri, by =r;' +ri%ci=ri—r7 ' r = ‘Ii,1/4i,—1~ If we substitute
(6.1) into (1.13), where A~ is the matrix (1.22), we obtain

| aq; 64 — a,— b, + a;4 40 + 4c;
—a;, —120+ a;+ b, + a;., —56— 4c;
—2a; 2a; + 2b; — 2a; —48 — 8¢;
AT — i i i i+1 i
(6.2) 1284 2a;, 80 — 2a, — 2b, — 2a,,, 80 + 8,
a; — a;— b+ ap, 8 + 4c;
| —a; — 244+ a;+ b+ a;y; —24— 4
64 + b;— a;yq— by —40 + dciyy bie ] XD

120 = by — a;yq — biyy —56 + ey by, x§?
—2b; +2a;,, + 2b;y; 48 —8¢;y; —2b,,, v})
—80 + 2b; + 2a;,, + 2b;4, 80 — 8¢;yy —2b;4, {0
bi — aiyy — biyy — 8+ deyyy biyy ofi* !
24 — by — a;y — by =24+ deyy biy 1 L (“”)
Similarly as in Section 5 it is possible to show that cases a), b) can be computed also

with the aid of formula (6.2) if, in case a), we prescribe the supporting tangent
vector

(6.3) DS-"H) = {ri—+11(Pi+2 - Pi+1) - ”i+1(Pi - Pi—l)}/4

at the node P, (see (4.1)) and if, in case b), we prescribe the supporting tangent
vector ¥} = {r7'(P;xy — P)) — r{P;_y — P;)}[4 at the node P,.
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Example S. Applying method 4 we now construct the spatial closed interpolation
curve P P,P;P,P, of Example 4 which takes into account the tangent vectors
Vi, Vs

We start with the arc P,P,. Since K, = 0, we prescribe the supporting tangent
vector v, = (1-0206; 2:55155; 3-57218) at the node P, and apply formula (6.2)
to the supporting elements P,, P, v,, P,, v,, P5: .

(6.4) P(1) = 5:67502 + 6-80309¢ — 0-60519¢> — 2-36132¢* —
— 0-069831* + 0-55823¢°,
PPy ... PO(1) = 1-80866 + 3433291 + 0-74481* — 1:254461° —
— 0-053461* + 0-32117¢°,
PO(1) = 1-66878 + 2:94959¢ + 0-76939¢* — 0-54225¢> +
+ 0-06183t* + 0-09266¢° .

We continue with the arc P,P;, i.e. we apply formula (6.2) to the elements Py,
P,,v,, Py, vs, Py
PO1) = 564272 — 861629t — 0-530291* + 4-977431° —
— 0-11243t* — 1-36114¢°
P,Py ... PO(1) = 872049 + 427623t — 1:30311% — 2-44034> +
+ 0-08261t* + 0-664111° ,
PO(1) = 10-23352 + 6:56937t — 0-074¢> — 2:031781> —
— 0-15952¢* + 0-46241¢° .

We continue with the arc P3P,. Since K, = 0, we prescribe the supporting tangent
vector v, = (0-28463; —2-4023; —3-80269) at the node P, and apply formula (6.2)
to the supporting elements P,, Ps, v3, Py, v4, P;:

P3(1) = —3:04269 — 3794781 + 0-514221* + 1-76841> +
+ 0-02847t* — 0-47362¢° ,
P3P, ... PXA1) = 649361 — 439677t + 0-113361> + 1-144111> —
— 0-10697t* — 0-24734¢° ,
P3\1) = 12:97153 — 5-49005t — 1492381 + 2-68077¢° +
+ 0-02085t* — 0-69072¢° .

The arc P,P, remains, thus we apply formula (6.2) to the supporting elements
Py, Py, vy, Pi,vy, Py
(6.5) P(t) = —3-44461 + 27159t + 0-960391> — 0-252961° —

— 0-01578t* + 0-03706¢° ,
PP, ... PP(1) = 092505 — 1-69334¢ + 0-549321* + 0-23725¢% +
+ 0-02563t* — 0-04391¢° ,

P®(1) = 301272 — 557722t + 1-02388¢% + 2-10512¢% —
— 0-0366:* — 0-5279¢° .
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The interpolation curve is drawn in axonometric projection in Fig. 9.

=

WU

Fig. 9. Az

By (6.2) we have 128P{)(r) = (1,1, 1%, ¢%, t*, 15) o 128A],. Hence differentiation
yields
(6.6) P(=1) = o, P(1) = o§i*D,

(67)  8PI1) = bivs(Pisz = Pivy) + aiaa(Py — Piyy) + deip 0T

If we substitute the vector (6.3) into relation (6.7), then a simple computation yields
(4.2). For i = 4 and the nodes P,, P; = P, P, = P, (see Example 5) we obtain
from (6.7), for j = 1,2,3, the result 8P;"(1) = by(P, — P,) + a,(P, — P,) +
+ 4¢,0§" = 8P'V(—1). With accuracy to two decimal places these values are equal
to the numbers 7-64; 15-61; 29-45, respectively. These values can be obtained
also by the application of the polynomial (6.4), (6.5). Then the osculation plane
of the interpolation curve P,P,P,P,P; at node P; has the equation 2945x, —
— 1561x; = 0.

Concluding this section we determine the curvature k at a node P;,, which is
not an inflection point of a planar or spatial interpolation curve and at which we have
the supporting tangent vector P()(1) = v{/* " (see (6.6)).

In the planar case (j = 1,2) we have (cf. (5.17))

U(i+ 1) U(i'\" 1) 2
1 2
(63) e - 18PR"(1) 8PEY(1)
64]"1+1|6
By (6.7) we have
(6.9) 8P;§i)(1) = "Wirr + 40 Viig s
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where "W,y = b;yy(Piya — Piyy) + a;4(P; — Piyy). For the vectors “wy,, =

= Wi, vigy = 0" we construct the perpendicular vectors “wi, o= (WEHY,

— Wi v = (05T Y), =" D). Then the determinant of relation (6.8) is equal
(i+ 1) ~(i+1 (i+1 (i+ 1) ~(i+1 (i+1 _ ~ .yl

to o{ WYY + 4oy 0§FY) — WS PWTY + deyy 0T D) = vy (Twi, +
. L _ ~yl . ~yl . ~ L

F A Vie) = Vigr - Wi = I"i+1l proj,,,, ~ Wiy, where proj,, , “wy, | denotes

the projection of the vector ~w;, ; onto the vector v;, ;. Thus

[

2 = Mwil“)j
’

64|, |*
ie.
(6]0) k = _IE_r_(.)_j_lHl Nw%+1| - const )
8!Vi+1]2 |V,-+1|2

From relation (6.10) it is obvious that if the length |v, . ,| of the vector v, ; increases,
then the curvature k decreases as C;|v;,;| %, C; = const. For the interpolation
curve P, P,P;, where P, P,, P; are the nodes from Fig. 8, we have for i = 1: "w, =
= by(Py — P,) + ay(Py — Py) = 11178 . (5, —2) + 372436 . (=3, —2) =

= (—5'58408; —9-68432), “wl = (—9-68432; 5-58408). Further, |v,| = 2, proj,, .
. “wy = —9:68432. Thus, by (6.9), we have k = 0-30264, i.e. the radius of curvature
at the node P, of the interpolation curve P,P,P; is r = 3-30431. The parametric
equations of the individual arcs are as follows:

PU(1) = 097663 + 1-85163t + 0-54674t* — 0-453261° —

PP, ... — 0-02337¢* + 0-10163¢°,
P (1) = 0-98684 + 1736841 + 0-02632t> — 0-973681° —

— 0-01316t* + 0-23684¢° ,

P3)(1) = 597663 + 3-64837t — 0-453261% — 1:54675t> —

P,P, ... — 0-02337t* + 0-39838¢°,
P2)(1) = 0-98684 — 1:736841 + 0-026321* + 0-973681> —

— 0-013161* — 0-236841° .

In the spatial case (j = 1, 2, 3) we have, under the same notation (see (6.9))

Vit1 - Vit Vit -(~Wi+1 + 4Ci+1Vi+1)
K2 — Vier- (Twisy + 4Ci+1"i+1) (Cwipy + 4Ci+1Vi+1) (Cwigg + 4Ci+1vi+l)
- < >
64|Vf+1|°

i.e. (proceeding more rapidly now),

k = |"Wiii|sin (Viey, “Wiiy) _ const

8|Vi+1‘2 - l"i+112.

(6.11)
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From formula (6.11) it follows similarly as in the preceding cases (see (5.19), (5.20),
(6.10)) that if the length |v,,,| of the vector v, increases, then the curvature k
decreases as C,|v;, 4| %, C, = const.

Substituting into formula (6.11) we verify that the interpolation curve of Example 5
has radius of curvature r = 3-84015 at the node P;.
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Souhrn

KONSTRUKCE INTERPOLACNICH KRIVEK Z DANYCH OPERNYCH
ELEMENTU (II)

JosEr MATUSU, JOSEF NOVAK

Pfedmétem &lanku jsou konstrukce interpoladnich kfivek prochazejicich danymi opérnymi
body a dotykajicich se opérnych teénych vektori v n&kterych z té€chto bodd, popf. ve vSech
opérnych bodech. Matematickym jadrem téchto konstrukei je Lienhardova interpolacéni metoda.
Jsou odvozeny vzorce pro k¥ivost rovinnych a prostorovych interpolaénich kiivek.

Pesiome

KOHCTPVKUMM MHTEPITIO/ISIUMOHHBIX KPMBBIX
"3 JAHHBIX OITOPHBIX SJIEMEHTOB (I

TeMoit CTaTbu SBNAOTCS KOHCTPYKLUMU HHTEPMOJSALHOHHBIX KPUBDLIX, ITPOXOMSIIIAX Yepe3 HaHHbIe
OTIOPHbIE TOYKM M CONPUKACAFOIIMXCS ONOPHBIX KacaTeldbHBIX BEKTOPOB B HEKOTOPBIX M3 ITHX
TOYEK MJIM BO BCEX TOYKaxX. MaTeMaTUYECKOM CYILIHOCTBIO 3THX KOHCTPYKUMiIl SBISISTCS WHTEp-
MONAUKOHHBIA MeTOox Jlunrapaa. Brisenensi Takxe GOPMYJIBI J1si KPHBU3HBI IIJIGCKUX M IPOCTPaH-
CTBEHHBIX KPHUBBIX.

Author’s addresses: Prof. RNDr. Josef Matusi, DrSc., CVUT, Karlovo nam. 13, 12135
Praha 2, Doc. RNDr. Josef Novdk, CSc., CVUT, Horska 3, 128 03 Praha 2.
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