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REGIONS OF STABILITY FOR ILL-POSED CONVEX PROGRAMS:
AN ADDENDUM¥)

SANJO ZLOBEC

(Received August 21, 1984)

Summary. The marginal value formula in convex optimization holds in a more restrictive
region of stability than that recently claimed in the literature. This is due to the fact that there
are regions of stability where the Lagrangian multiplier function is discontinuous even for linear
models.

1. INTRODUCTION

Consider the convex mathematical model
(P, ) Min f(x, 6)
)
s.t.
fHx,0) <0, keP=1{1,...,m}

where f': R" x R? - R are continuous functions and f(+, §): R - R are convex
forevery 0 e R?, i € {0} U P. The model is studied at some fixed 0 = 0*.
For every 0, we denote by

F\0) = {xe R": fY{x,0) £ 0, ke P} the feasible set;

%(0) an optimal solution;

F(0) the set of all optimal solutions;

7(0) = £°(%(0), 0) the optimal value.
The model (P, 0) is considered as an input-output system with the input 6 and the
output {F(6), F(0), (6)]}.

*) Research partly supported by The Natural Sciences and Engineering Council of Canada.
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Assume that F(0*) # 0. Then at 6 = 0* there are chunks of space R” where con-
tinuity of the output is preserved. They are termed regions of stability. We recall

(see e.g. [10], [11])
1.1. Definition. Convex model (P, 0) is stable in a region S = R? at 0 = 0% if,
for some neighbourhood N(O*) of 6%, both

(i) 0eN(0*)n S = F(0) + 0 and
(ii) 6 € N(6*) n S and 0 — 6* = F(0) is bounded and all its limit (accumulation)

points are in F(6%). _ -
In order to formulate and construct specific regions of stability we denote, for
a given 0,
P=(0) = {ke P: xe F\0) = fX(x, ) = 0}
P<(0) = P\P~(0)
and

F=(0) = {xe R": fXx,0) =0, ke P~(0)}.
We assume throughout this addendum that
F(0*) # 0 and bounded .

Then we recall (e.g. from [5], [10], [11]) that (P, 6) is stable in the following regions
at 0 = 0*:
M(0%) = {0: F(6%) = F(0)} ;

V(0%) = {0: F=(0%) = F=(0) and f%x,0) <0 VxeF(0%), keP=(0%,
k¢ P=(0)} ;
and in their (occasionally easier to construct) subsets:
2,(6%) = {6: F(0%) < F(O) = F*(0%)}
Z,(0%) = {0: F7(0*) = F~(0) and f¥x,0) <0, VxeF(6%),
ke P=(0)\ P=(0*)} ;
Vy(0%) = {0: F~(0*) =« F7(0) and f*x,0) <0, VxeF~(6%),
ke P=(0)\ P=(0%)} ;
{0: F7(0*) =« F7(0) and P~(0*) = P~(0)} ;
{0: F7(0%) = F7(0) and fYx,0) <0, VxeF~ (0%,
ke P<\0)~ P<(0%)} .

w(6*)
Z(6%)

I

These subsets are needed to describe various properties of the convex model. Thus,
a necessary condition and a sufficient condition for optimality of 6* in input opti-
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mization (see e.g. [6], [7], [8]) are stated over the sets M(0*) and V(6*). For bi-
-convex models these conditions are strengthened, but a necessary condition now
holds over V;(6*) while a sufficient condition holds over Z,(6*) n Z,(0*) (see e.g.
[8]). Continuity of the Lagrangian multiplier function is established in V;(6*) while
the function is generally discontinuous in Z,(6*) n Z,(0%) (see [3]), etc. If Slater’s
condition holds, i.e. if

(L.1) “there exists £ such that /%, 6*) < 0, keP”

then P~(0*) = 0, F~(0*) = R" and some of the above sets coincide. In particular,
when (1.1) holds, one can specify

Vi0%) = V,(0%) = Z(0%) = Z,(0%) = W(0*) = N{0*),

a neighbourhood of 6*. Unfortunately, many real life situations (such as multi-
objective decision making problems) are described by mathematical models (P, 0)
for which Slater’s condition does not or cannot hold. When studying such models
one may have to use one or more regions of stability from the above variety.
Recently, regions of stability M(6*) and V(6*) have been studied in abstract settings
{(e.g. in [4]).

In the next section we will show, by an example, that the marginal value formula
does not generally hold on the region of stability Z,(0*), contrary to the claim made
in [5, Theorem 4.3]. Moreover, the formula does not work even on the smaller set
Z,(0%) n Z,(0*). However, we will prove that the formula does hold on the set Z(6*).

2. THE MARGINAL VALUE FORMULA

For some 0 € R? consider the “reduced” Lagrangian
Lo(x, u; 0) = fO(x,0) + Y wufx,0)
keP=(0)
where P=(0) = P~ P7(0). It is well-known (see e.g. [6]) that X(0) e F~(0) is an opti-
mal solution of (P, 0) if, and only if, there exists U(0) = (u,(0)), u,(6) = 0, k € P=(0)
such that

(2.1) L5(X(0), u; 0) < L=(%(0), U(0); 0) < L=(x, U(); 0)

for every x € F~(0) and every u € R{”. (Here g(0) is the cardinality of the set P<(0)
and R%? is the nonnegative orthant in R.)

The marginal value formula will be formulated at an arbitrary but fixed 0 = 6*.
Since for stable perturbations at 0* we have P<(0*) = P=(6) (see e.g. [5] or [8,
Theorem 3.1]) the Lagrangian multiplier function

(22) U6) = (u(0), ke P(0)
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appearing in (2.1) exists and is well-defined. In what follows we will consider the
function U(6) rather than U(6) = (u,(0)), k € P~(6). By concentrating only on the
terms in L= belonging to the index set P<(0*), we can further reduce the Lagrangian to

Li(x,u; 0) = fOx,0) + Y wuf"x,0).
keP=(0%)

Note that L3, is used in (2.1) to characterize optimality of £(6*) e F ~(0*) for a fixed 0*.

We will need a guarantee that the “slopes” of certain components of U,(0) are
finite as 6 — 0*. This is formalized by requiring a rather weak condition called
“Property Z(6*)”.

2.1. Definition. Consider the convex model (P, 8) at some 0 = 0*. Assume that
F{0%) + 0 and bounded. We say that the model (P 0) satisfies Property Z(0*)
if for every path

(2.3) 0eZ(6%), 0— 6% suchthat @(0)— (0%), ke P<(0%)
the following limits exist:
Sy o
(2.4) lim M, k e P<(0) n P(X(0%), 0%) .
o o 6] ,,

(Here P(%(0%), 0%) = {k € P: f¥(%(0%), 0*) = 0} is the set of active constraints at
%(0*) and 4,(0%) = 0, ke P<(0)\ P~(6%).)

The existence of at least one path with the property (2.3) is guaranteed by c.g.
[3, Theorem 3.1]. Note that Property Z(6%) is somewhat stronger than “Property
U(0*)” used in [8] in that the latter requires that the limits (2.4) exist for at least
one path (2.3).

Finally, for a neighbourhood N(6*) of 6*, denote

B(6*) = W_i“ 0. Z(0%) A N(0¥), 6 + 0*}

and all its limit (accumulation) points, when 0 € Z(0*), 6 — 6*, by B°(0*). Note
that B%(6*) is a subset of the unit sphere (possibly a singleton). When Slater’s con-
dition holds then B(6*) is the unit sphere.

In addition to convexity of f(+, ) for every 0, we also assume below f'\x, +) is
convex for every x, i € {0} U P. Such models are called bi-convex. The marginal
value formula follows.

2.2. Theorem. Consider the bi-convex model (P,0) at 0 = 0*. Let F(0*) + 0
and bounded. Suppose that the saddle point (X(0*), &10*)) in (2.1) is unique for
0 = 0* and that Property Z(0*) holds. Also suppose that the Lagrangian multiplier
Sunction U,(0) is unique for every 0 € Z(0*) n N(6%), where N(0*) is a neighbour-
hood of 0*.If fi(x, +), i € {0} U P=(0*) are differentiable in Z 0%) n N{0*), and if
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the derivatives [f(x, 0)]y, i € {0} U P=<(0*) are continuous functions in x at X(0*)
for 0 = 0%, then for every fixed path 0 € Z(0*), 0 — 0* such that

. 0 — 0*
| =lim ———
0ez(6%) |0 — 0*“
0%
for some I € B%(0%), we have
~ _ ~ * ) ) )
(2.5) tim 7O =T rr< (5(0%), 7.0%): 050 1)

vz [0 — 0%

Proof. The proof has two parts: first we prove the result for the case when the
objective function f 0()2(0*), +) is strictly convex and then we use Tihonov’s regulariza-
tion (e.g. [2], [5]) to prove it for a general convex function. For the strictly convex
case, it is easy to show (see e.g. the proof of [8, Lemma 4.4] that

26) (L0, 2.0%): 0}, 0 — 09) > 710) — J10%) + +(0)
for every 0 € V,(0*), 0 + 0* and sufficiently close to 0*, where
el0) = L5(%,0%), a,0%); 0) — L=(%{0%), @0); 0) .

(Here we have used the fact that, under the assumptions of the theorem, U,(0) is
a continuous function, see [3, Corollary 3.2].)

Since Z(6*) < V,(6%), the formula (2.6) also holds for 0 € Z0*), 0 & 0* and close
to 0*. On the other hand, using Lemma 4.2 from [5], we have

J(0) = J(0%) = 1750, 0) + % wfHE(0).0) — LS, a(0%); 0%)
keP<(0)
for every x e F~(0*) and every u € R{".
Now specify u = (u,) as follows:
e = a4(0%) if keP=(0%)

0 if ke PS(0)\ P=(0%)
and x = ¥(0). (The former is possible since, as noted earlier, P<(6%) = P~(0);
the latter is possible since X(0) € F(0) = F~(0) = F~(0*).) This gives
(2.7) £10) = J10%) = Ly(%(0), #06%); 0) - Ly(X0), &,6%); 0%) >

> ([LL(%(0), & 0%); 0)]p—ge, 0 — 0%)
by strict convexity of Lj = Ly(0) and the gradient inequality. The difference
J10) = J(6*) is thus bounded by (2.6) and (2.7). Now divide by |0 — 0*| > 0 and
set 0 — 0% such that

_ %
lim ——— = le BY0%).
0s2(0%) 0 — 0*” (0%)
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First we note that
U
0]

622(0*)
—g*
by the Property Z{0*), see e.g. [8]. Therefore the limits on the bounds coincide, i.e.
0*
lim ([L3(X(0%), a.0%); 0 ,—~—
(ECRGT TS 9*”)

0eZ(6%)
6-0%

= lim < [L5 (%(0), #(0%); 0)Jo=o+ »7 g:H)

BEZ(G*)

= ([La(x(0%), @(0%); 0)]9:9*, )
by the continuous differentiability of a differentiable convex function and uniqueness
of %(0*). This proves (2.5).
In order to prove the formula for a convex objective function, we consider the
“‘regularized” problem
Min F%(x, 0, &) = f°(x, 0) + ¢]0]>

(TP, 6) 0
s.t.
f4x,0) <0, keP

where ¢ > 0. Now F°(x, -, ¢) is strictly convex and therefore

- e
(2.8) lim MM ) = ([L3(X(0%, &), 2,0%, €); 6; €)]g=ge» 1)
oczioy |0 — 0% | '

with [ as before. Here
L3(X(0%, &), 7,0%, ¢); 0; ¢) =
= JUE0%0).0) + 0 + ¥ a(0% ) 0%, 9), 0).
keP <(6%)

F(0, ¢) is the optimal value of (TP, 0) and (%(6*, ¢), #(0*, ¢)) is a saddle point. Since
the feasible set of (TP, 0) does not depend on ¢, under the assumptions of the theorem
¢ — 0 implies (X(0%, ¢), @ 0%, ¢)) — (X(0*), @#0*)). Therefore (2.8) gives (2.5). -

The example below (adjusted from [3]) shows that the marginal value formula
does not generally work on the region of stability Z(6*) n Z,(6*) even for bi-linear

models.
2.3. Example. Consider the model
Min f° = x
s.t.
fl=-0x<0
fP=—=0—-x<50

Il
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around 0* = 0.
Here

_ f[0,0) if 620
F(g)‘{(b if 0<0.

For 0 = 0 we have the following situation:
FO={ly i 050
while F~(0) = (— 0, o) for every 6§ = 0. Further,
Z,(0%) = Z,(0%) = Z,(0%) n Z,(6%) = [0, 0) .
In order to apply the marginal value formula (2.5) for 8 > 0, 6 — 6*, we find that
Ly(x,u;0) = f%x,0) + Y wf"(x,0) = x + uy(—0 — x).

keP<(6%)
Since X(0*) = 0 and ,(0*) = 1, this gives
L3 (%(0%), a,0%); 0) = —0
and
[L(%0%), @6%); 0)]5—p. = — 1.

On the other hand, since

0—0%

|0 — 0%|
for every 0 > 0, we find that I = 1. Therefore the right-hand side in the marginal
value formula (2.5) is

([L3(%(0%), @6%); 0)]p—ge 1) = — 1.

But %(0) = 0 and f(0) = 0 for every 6 = 0. This implies

limi (0) = 7(0%) =0

0>0 |0 — 0%

6-0
We have obtained a contradiction.

Conclusion. The marginal value formula does not generally work for the set
Z,(0%) 0 Z,(0%). -

Comment. The failure of the marginal value formula on the set Z,(6*) is caused
here by discontinuity of the Lagrange multiplier function. Indeed, in the above
example we find that

| I if 0=0
o) — .
72(0) {0 it 0>0
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Without the continuity one cannot arrive at the relation (2.6). The uniqueness
assumptions in Theorem 2.2 can be omitted; the marginal value formula then
assumes a minimax form (see [1] and [5]). -

The formula (2.5) is an important tool in input optimization. If the inner product
in (2.5) is negative for some path 6 e Z(6*%); 0 — 0* then, locally along this path,
F(0) < fi6%). This generates a new 0 = Oygy that “improves” the model from
(P, 0%) to (P, Oxgw). The paths are chosen in computable subsets of the stable region
Z(0*). This leads to “optimal realizations” of mathematical models (see [8], [9]).
When Slater’s condition is satisfied ,then B%(6*) is the unit sphere, Z(6*) = N(6%),
Property Z{6*) holds for differentiable functions, and the marginal value formula
holds in a neighbourhood of 6* (see [1]).

Acknowledgment. The author is indebted to the referee for his careful reading of
the manuscript and for his comments and also to Mr. J. Semple for his remarks.

References

[1] I. I. Eremin, N. N. Astafiev: Introduction to the Theory of Linear and Convex Programming.
Nauka, Moscow, 1976. (In Russian.)

[2] V. G. Karmanov: Mathematical Programming. Nauka, Moscow, 1975. (In Russian.)

[3] J. Semple, S. Zlobec: Continuity of the Lagrangian multiplier function in input optimization.
Mathematical Programming, (forthcoming).

[4] L. I. Trudzik: Optimization in Abstract Spaces. Ph. D. Thesis, University of Melbourne,
1983.

[5] S. Zlobec: Regions of stability for ill-posed convex programs. Aplikace Matematiky, 27
(1982), 176 —191.

[6] S. Zlobec: Characterizing an optimal input in perturbed convex programming. Mathe-
matical Programming, 25 (1983), 109—121.

[7] S. Zlobec: Characterizing an optimal input in perturbed convex programming: An ad-
dendum. (In preparation.)

[8] S. Zlobec. Input optimization: I. Optimal realizations of mathematical models. Mathematical
Programming 31 (1985).

[9] S. Zlobec: Input optimization: II. A numerical method. (In preparation.)

[10] S. Zlobec, A. Ben-Israel: Perturbed convex programming: Continuity of optimal solutions
and optimal values. Operations Research Verfahren XXXI (1979), 737— 749.
[11] S. Zlobec, R. Gardner, A. Ben-Israel: Regions of stability for arbitrarily perturbed convex

programs, in: Mathematical Programming with Data Perturbations I (A. Fiacco, editor),
M. Dekker, New York (1982), 69— 89-

Souhrn

OBLASTI STABILITY PRO NEKOREKTNE FORMULOVANE PROBLEMY
KONVEXNIHO PROGRAMOVANI: DODATEK

SANJO ZLOBEC

Formule pro marginalni hodnotu v konvexni optimalizaci plati v uZsi oblasti neZ bylo uvedeno
pavodng v literatute. To plyne ze skuteCnosti, Ze existuji oblasti stability, ve kterych Lagrangetv
multiplikator je nespojitou funci i pro linearni modely.
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Pe3ome

OBJIACTU VCTOVIYMBOCTU I HEKOPPEKTHBIX BBIMTVKJIBIX TTPOIPAMM:
JOBABJIEHUE

SANJO ZLOBEC

dopmMyna Ajisi MAPTUHAIEHOTO 3HAYEHHs B BBIIYKIIO ONTHMMM3ALUH BEpHA B 0OJiee OrpaHuveH-
HO¥ 0071aCTH YCTOMYMBOCTH, Y€M HEaBHO YTBEPXKAAJIOCH B uTepatype. [IpUYHHON TOMY sBISETCS
CyLIeCTBOBaHue 00JIaCcTeil YCTOMYMBOCTH, B KOTOPHIX MYJLTHIUTMKATOP JlarpaHxka sBIs€TCs pas-
pbiBHO# yHKUMeNH Aaxe A1 TMHEHHBIX MOOCIIeH.
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