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ON THE SOLUTION OF THE HEAT EQUATION WITH
NONLINEAR UNBOUNDED MEMORY

ALEXANDR DOKTOR

(Received November 1, 1984)

Summary. The paper deals with the question of global solution u, T to boundary-value problem
for the system of semilinear heat equation for u and complementary nonlinear differential equa-
tion for 7 (-~thermal memory”’). Uniqueness of the solution is shown and the method of succesive
approximations is used in the proof of existence of global solution provided that the condition (£)
holds. The condition (£) is verified for some particular cases (e.g.: bounded nonlinearity, homo-
geneous Neumann problem (even for unbounded nonlinearities), apriori estimate of the solution
holds).

1. INTRODUCTION

We shall consider the heat equation
ou .
(1.1) o(x, 1) o div (A(x, t) grad u) + f,
t

where the internal heat sources are

(1.2) f=4q(x)yu, 1),

with the additional equation

(1.3)

for the function 7 = t{x, 7).

Such a type of equations arises in the investigation of heat conduction in concrete
[1]. Then g represents the known speed of the hydration heat of cement at a certain
constant reference temperature ug. If the temperature u increases, the hydration
process accelerates, which is expressed by the factor ¥ in (1.2). The function 7 and
equation (1.3) then represent the “‘thermal memory”: the internal heat sources f
can be written in the form

ot

o V(. 7)

d
f_an(T)’
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where

(1.4) 0(z) := f q(s) ds
0
is the total hydration heat of cement at the constant reference temperature uz. Thus
the function t can be regarded as transformed time which converts the general
thermal behaviour to the constant reference temperature uy.
The function g € C©*!(<0, o)) *) satisfies conditions

(1.5) 0<4g(z)Sguy<o0, z20;
(16) wi= lim 0(2) =rq(s) ds < o0,
zZ— 00 0

while the function y € C")(R x 0, ©)) can be unbounded. In general, we have
only the following conditions on :

(1.7) Y(v,z) 20, veR, z20; %
(1.8) Z—!//(v,z)go, veR, z=0.
v

The case of bounded y is naturally simpler and was solved in a similar form in
[3], [4]- Here we are concerned in particular with unbounded y, a typical form of
function ¥ is ([1], [2])

(1.9) Yu, z) = a0 g > 0,

which has an exponential form Y = a exp (bu).

Unbounded internal sources f in (1.1) can force the solution to tend to infinity
at a finite time (see Remark 4.3 and Examples 4.5, 4.6). However, in our case of f, g
satisfying (1.2), (1.6), the physical reasons lead to the conjecture that the global
solution exists for all ¢ > 0. We shall prove it at least for the particular case of the
homogeneous Neumann boundary condition (Section 4). In the case of general
boundary conditions we shall prove a global existence theorem only under certain
additional conditions on ¥/, g (Section 6); the general case is still open.

2. FORMULATION OF THE PROBLEM

The equations (1.1)—(1.3) are considered for 1€ <0, T), T > 0, and for x € Q,
where @ = RN is a bounded domain with a Lipschitz obundary 09Q. Appropriate
initial and boundary conditions are required:

(2.1) u(x, 0) = ug(x), (x,0)=0, xeQ.

*) Here C(0):1 denotes locally Lipschitz continuous functions — no boundedness is required.
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Let
00 = 30, L 0Qy U 0Qy L 09, ,
where .
0Q,, 00y, 92y, 02
are disjoint parts of the boundary, mes (0Q,) = 0. We require

(2:2) u(x, t) = up(x, 1) for xedQp, t>0;
(23) Ax, 1) % (x ) = ofx, 1) [, 1) — u(x, O] + ux(x, )

for xedQpuoQy, t>0.

The problem to find functions u, 7 satisfying (1.1)—(1.3), (2.1)—(2.3) will be refered
to as the problem ().

From now on we shall deal with the weak solutions.

Let W*?(Q) denote the usual Sobolev spaces (k derivatives p-integrable) and let
us define

V o= {ve W"¥Q); v(x) = 0 for x€dQp},
H := C(0, T); W-}(Q)) n C(0, T); Ly(Q)) n C(<0, T); L,(Q)),
Hy:={veH; vi)eV for te0, T)}.

We shall use the following notations:

(u, v) :=J u(x) v(x)dx, |ulo:= (u,u)"/?;
Q

((u, v)) := (A1) grad u, gradv) ;

{u, vy 1= J‘ u(x) v(x) dS ;
2wuiN

Jull, := sup ess|u(x)| (L,-norm).
xe

Coefficients g, A, « are supposed to be sufficiently smooth, bounded and, further,
to satisfy

(2.4 o(x, 1) Z 00 >0, Ax,8)= 4 >0, (x,0)eQx(0,T);
(2.5) afx,t) 2 09> 0 for xedQy, olx,f)=0 for xedQy, te(0,T).

Let the given data satisty

(2.6) uo e WHA(Q), uo = uy(0) on 02y ;
(27) y, tiy € CO(K0, T, Ly (02 © 02)) 5
(2.8) upe CV(O, T, L, (0Qp) n WH*0Qy)) .
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A weak solution of the problem () on <0, T is a pair of functions

(2.9) ueH, teCY(0, T), L,(Q))

such that

(2.10) u(0) = uy, 7(0)=0;

(2.11) u(t) = up(t) on 0Q,, te{0,T);

(2.12)  {olt) u'(1), v) + ((u't), v)) + <(x{t)ult), vy = forall veV, te(0,T);
(2.13) T(t) = Yu't), (1)), 1e(0,T).

3. UNIQUENESS

Theorem 3.1. The problem (/) has at most one weak solution, i.e., if uy, t, and

Uy, T, are two weak solutions on <0, Ty) and on <0, T,), respectively, with the same
data uy, up, uy, uy, then

(3.9 uy(1) = us(t), (1) = wa(1)

for 0 £t < min(Ty, Ty).

Proof. We can suppose T; < T,. For an arbitrary ¢ > 0 there exists a constant
0 < ¢; < o such that

luiew < crs el S ey =12, 10, Ty &>,
and consequently
(3.2) A(x, 1) 1= Yluy, 1) q(ty) — Yuz, 75) q(15) <
< exffus(x, 1) = ualx, )] + [ra(x, 1) = 7ax, 1)) 5

where the constant ¢, depends on

s 091, [

‘ (v 2)|»

42, |d@); |y Sen 0z < }

Forv:=u; —u, $:=1, — 1, wehave v{t)e ¥, t€<0, T;) and subtracting the
equations (2.12) for u; and u, (with the test function v{f) € V) we obtain

(33) (0.1) v'(1), o) + ((e(), (1)) + <o) w(2), 0(1)) = (A1), v1)) -

From (3.2), (3.3) we obtain
(349) o) 20l = el + 156013} -
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Similarly, the equation (2.13) yields the estimates
[¥(] = ealoin)] + S@))»

(35) S 18013 = eI + 19013} -

IIA

If we define w(z) := ||o(t) v(?)[|5 + [|9(r)]3, we have w(0) = 0 and w'(t) < ¢ w(t) by
(3.4), (3.5). Then w = 0 and (3.1) holds for 1€ <0, T, — &). Taking ¢ —» 0 we com-
plete the proof. g

4. HOMOGENEOUS NEUMANN CONDITIONS

Let us consider the particular case of homogeneous conditions of Neumann type:
(4.1) 02, =0, 0Qp =0, 0Qy=0Q,

(4.2) }t? =0 on 02 x(0,T).
v

Moreover, let the functions g, u, be constant (because of (2.4) we can suppose
0= 1).

Then we can take u, r independent of x and the problem reduces to the following
system of ordinary differential equations:

(4.3) u' = q(t)Yu, 1), u(0) =u,,

(4.4) v = y(u, 1), 7(0) = 0.

Since u’ = g(t) ©" = d/dt (Q\t)), we have u(t) = u, + Q(z(t)) and consequently
(4.5) o S u(t) Sug + p< .

Definition 4.1. We shall call ¢ = Y(u, t) bounded in 7 iff
(4.6) Ve >0 3m(c)>0:|ul < c=y(u,7) < mlc), t20.

If  is bounded in 7, we further obtain
o(f) = f Y(u(s), ©(s)) ds < m(p + po) t .
0

Thus the increasing function u, T remain bounded on bounded intervals and therefore
we have a global solution of the system (4.3), (4.4). This completes the proof of
Theorem 4.2. Let y(u, t) be bounded in t, ¢ = const. Then the problem (/)
has a unique global solution for the case of a constant initial condition and a homo-
geneous Neumann boundary condition.
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Remark 4.3. The assumption that Y is bounded in 7 is essential: Let for example
¥(u, ) = exp (u + 7). Then ¢’ = exp (u, + 7) by (4.4), (4.5) and further (1) = (),
where

9 =exp(up+9), 30)=—¢, ¢>0.

But 9(1) = —In(e* — ¢"1) is defined only for 0 <t < T(e) := exp (¢ — u,) and
lim §(f) = +oo. Therefore 7 is defined only on the interval <0, T\0)) with
t—>T(e
lin(1)'r(l) = +400.
t-T(0)
However, this fact is not too restrictive for practical purposes, since while increasing
temperature u accelerates the hydration process (l// increases), increasing “‘transformed
time” 7 is rather expected to deccelerate hydration ( decreases). In particular, in

many cases we can take y = y(u) independent of 7 ([1]). m

Remark 4.4. Taking into account the physical interpretation of the problem(.#),
homogeneous Neumann boundary conditions represent the case of perfectly insulated
body, when no heat flux across the boundary (no cooling) can cause decrease of
temperature. This fact leads to the conjecture that also the solution of the general
case of boundary conditions should remain bounded with no blow-up to infinity at
finite time (in fact, we expect the general case to be bounded by a solution of an
appropriate insulated case). However, we have no proof of this conjecture and the
following examples show a possibility of blow-up of the solutions of certain equations
similar to the problem (.#) with { bounded in 7. g

Example 4.5. Let us solve the equations of problem (.#) with V(z, t) :=
t=aexp(bt), a >0,b>0,0=1and g(y) = 1 (condition (1.6) is violated). For
u, = 0 and homogeneous Neumann boundary conditions u, t does not depend on x
and u = 7 is a solution of the equation z’' = a exp (bz), z(0) = 0. Then u(t) =
= —In(1 — abt)[b is defined only for t < 1/ab and u(t) > +oo for t > 1/ab. u

Example 4.6. Let y(z) := aexp(b(z + ¢)), ceR, a > 0, b > 0. Let g satisfy
(1.5), (1.6) and let us solve the following heat equation with ¢ = 1, « > 0, u(0) = 0
and the homogeneous Neumann boundary condition:

(47) (@'(1), 2) + (w(2) 2)) = (qlwat) Y(u(1)), 2), ze WH*(Q).

Again u = u(f) is a function of ¢ only and satisfies the ordinary differential equation

(4.8) u' = q(aat) a exp (b(u + c)) , u(0) = 0.
Therefore

1 be
(4.9) u=— Zln [1 - Q(ocat)]

and the solution u is defined only as far as

(4.10) beQ(aat) < a.
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If u < aexp(—bc)/b; inequality (4.10) holds for all ¢t > 0 and we have a global
solution. On the other hand, if 4 > a exp (—bc)/b, then there exists #* > 0 such that
Q(xat*) = aexp (— bc)/b and the solution u is defined only for ¢ < ¢* with lim u(f) =

= +0. x to*
5. LINEAR PROBLEM AND POSITIVITY OF SOLUTIONS

Succesive approximations will be used in the proof of existence of a solution of
the general problem (.#). This method requires the solution of the following linear
problem (3):

(Z): Let ug, up, uy, uy satisfying (2.6)—(2.8) be given and let f = f(x, )€
e C(0, T), Ly(Q)). We seek for a function ue C({0, T), W"}Q)) n
N CW(0, T), Ly(R)) such that u(0) = uy, u(t) = uy(t) on 6Q, and

(5.1) (o(?) (1), z) + ((u(?), 2)) + <alt) u(t), z) =
= (f(1), 2) + <oft) up(t) + up(t) 2>, zeV, 1e(0,T).

Theorem 5.1. The linear problem (&%) has a unique solution. If, moreover, f €
€ C(K0, T, L(Q)), then ue C(K0, T), Lo(Q)) and for uy=up=1uy = uy =0
we have

(52) u(x, 1)] < j 1)) ds

Proof. The linear problem was treated by many anthors (e.g. [5], [6]) and the
first part of the theorem can be proved by the semigroup technique [7].

For f e C(0, T), L,(2)) let ¢, be a common bound for the L,-norms of ug, p,
Uy, uyfoy and let

o(x, 1) 1= ¢; + Jq“f(s)“oo ds — u(x, t).

Then v'(f) = || f(1)]., — #/(¢), grad v = grad u, and for all z € V we have
(e(®) v'(1), 2) + (1), 2)) + <A (1), 2> = ([f(B)]|w = £(1), 2) + <H(2), 2>,

where
t
h(t) := OL(J. [£(s)]|oo ds + €1 — uw) —uy 0.
0
Since v(0) = 0 and v(z) = 0 on 0Qp, Theorem 5.3 below yields v = 0 and the rest

of the theorem holds. &

Remark 5.2. Though we have the estimate (5.2), we can have a function f(x, t) =
= 0 with

T .
Jf(x,s)ds§c< © VxeQ

0
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which generates an unbounded solution u of the problem (&%). For the case of one-
dimensional Cauchy problem

u, — uy, = f(x,1), u(x,0)=0

0 y2
f(x, 1) := ali——exp (4(1 i t)):l’ t<1.

flf(x, s)ds = exp (—x*[4) < 1.

we can take

Then

The solution can be expressed in terms of the Green function ([5]), in particular,

00=[ [ s ym ey

and we can see that lim u(0, f) = +00. m \
t—1

Theorem 5.3. Let uy =0, up, 20, uy 20, uy =0, f = 0. Then the solutions
of problems (&), (.#) are nonnegative:

u(x,1) =0 ae. in Qx(0,T).

Proof. Since g = 0, {y = 0in the problem (./%'), it is sufficient to prove the theorem
for the problem (.%).
Here we can use a technique from [8]:
Let w:=u" := max (0, —u). Then w = 0 on 02, and taking in (5.1) z = w
we obtain
—(ow', w) — ((w, w)) — <aw, wy = oty + ty, Wy + (f, W) 2 0.

Let o(t) := (o(t) w(t), w(t)). Then ¢(0) = 0 and ¢'(z) < max (|¢’|/eo) ¢(t), Which
implies ¢(f) = 0. o
6. EXISTENCE OF SOLUTION

Let ve H be the solution of the linear problem (%) with f = 0. This notation
will be used throughout the whole Section 6.

Let w e Hy, ©e C1(<0, T), L,(%2)) be a solution of the following problem (.4.,)
with zero initial and boundary data:

(6.1) w(0) =0, 1(0) = 0 ;

(6.2) (e(t) W(1): 2) + ((w(1), 2)) + <ot) w(t), 2> =
— () YD) + o) (1) 2), ze Vs

(63) (1) = Y(w(r) + o(2), (1)) -
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Then evidently the functions p:= w + v e H, © are the solution of our problem
(). Thus we can confine ourselves to the “reduced” problem (.#,), to which we
shall apply the method of successive approximations:

Starting from arbitrary uye Hoy, 9 € C(K0, T), L,(Q)) we define for i 2 0
the subsequent approximations v;, 1, 3;+1 as follows:

(6.4) 9i44(1) 1= J;V/(vi(s) + v(s), 9(s)) ds ;

v;+1 € Hy is the solution of the linear problem

(6.5) (0Vis 1, 2) + ((Vi415 2)) + Cowiyq, 2> =
= (4('9,') ‘P(Ui + v, 9;), Z) , zeV,
(6.6) 01+1(0) = 0.

Existence of the function v;,; follows from Theorem 5.1, since for the composite
function

filx, 1) 1= ‘1(9i(>\', f)) ‘/f(vi(X, t) + o(x, 1), 3(x, 1))
we have f; € H (see e.g. [9]). ©

Definition 6.1. We shall say that the condition (2) holds if there exists M < o
such that fori =1,2,...,t€{0,T) and a.a. x € Q we have

(6.7) ]fi+1(x: 1) — filx, t)l + |'//(”i+1 + 0, 9:4q) — Y(v; + v, ‘91')' =
S M(|oiso(x, 1) = v, 1)) + [9i4(x, 1) = 94(x, 1)]) -

From now on we shall suppose that condition (%) holds, since we are concerned
with existence of a global solution on the whole interval {0, T). If the validity of
condition () is not ensured, we can modify our proof in such a way (similarly as
in [9]), that we prove existence of a local solution (on an interval <0, 4) = <0, T
for a sufficiently small 4 > 0).

For i = 1,2,... let us denote

== vy, =9 = 91, oft):= [wiD)]w + |00 -

Subtracting equations (6.4) and (6.5) for i, i + 1 and using Theorem 5.3 and condi-
tion (%) we deduce

(69) o) < ¢ f g9 ds,

0

w

where the constant ¢ is independent of i. Then
(6.9) oft) S max o(t) (ct) (i — 1), i=1,2,....
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Consequently, v;, 9; are Cauchy sequences in C(<0, T, L,(Q)) and there exist
their limits u, 9 € C(<0, T), L,(€2)). Passing to the limit in (6.4) we immediately
obtain

a(1) = f 0 W(u(s) + o(s), 9(s)) ds ,

s0 9 € CH(0, T, L(R)) and the second equation (6.3) of the problem (.#,) holds.
Let ot, h) :=exp (*)(t* — h?)), || <h and w(t,h):=0, |f|=h, denote
% := {o(t, 1) dt and define

Ui,h(‘x’ t) = ;1;1 f Ui(x5 S) Q)(t -, h) ds I’}

where we take v{(s) = 0 for s ¢ <0, T). Then

v € C*((0, T), WH(Q)), (vin) = (v]) 4 .
and
(6.10) (Wi 2) + (Wins 2)) + oW, 2> = ((fim1 = fim2)im 2), z€V.

(For the sake of simplicity we suppose ¢ = 1, 4, « are constant. In the general case
we should add to (6.10) terms of the type {(aw;), — aw;,, z» which conerge to
zero as h — 0; therefore we should obtain the same results.)

We can differentiate (6.10) with respect to ¢:

(6.11) ((win)"s Z) + (_(w;,h’ z)) + aw;y, 2) = ((fi—l - fi»z)'i,m z) .
By virtue of condition (&) we derive
(6.12) ((Fir = Fra) 2)| < % J |2(x)| #(x, 1) dx ,

where

ds.

#0:= | e 9] + 1049 [ 20— 1)

Because w;_; € W"*(Q x (0, T)), the functions |w;_y(x, )|, |@;-4(x, *)| are abso-
lutely continuous for a.a. x € Q. Therefore we can apply integration by parts to
#(x, 1) separately on (0, t) (where dw[0s = 0) and on (¢, T) (where dw[ds < 0).
By means of the inequality | |¢|'| < |¢’| we obtain, after some calculation,

1

(613)

T
H(x, 1) < —-2——hJ‘ {Wi=1(x, 5)| + |@;-1(x, 5)|} (¢ — 5, ) ds <
xNnJo
< 2{(wik o) + (@:'2—1),11}1/2 .
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If we take z = wj ,(1) e Vin (6.11), we derive by means of (6.12), (6.13):
(6.14) —— “W, WD) = ¢ {Hw, (0 + j‘ {WiZ ) + (0214} (x,1) dx} .

Integration of (6.14) with respect to t gives, after h — 0, the inequality

(6.15) nwmm§c£wwm%+w;@m+waq@mws

Making use of the Gronwall lemma we obtain from (6.15)

(6.16) (t)|12 = ‘J. (”w, 1(5)”0 + "@: 1(5)“0) ds.

Since |Oj_q 4| £ M(|w;—5| 4 + |©i-2|4) and (6.9) ho]ds we can show

(6.17) 0;_1 /(D)3 £ exleat) = (i — 1)

Now the convergence of the sequence v; in C(0, T), L,(Q)) follows from (6.16),
(6.17).
Finally, if we take z = w(f) € V in the equation for w;, we can derive

(wi), wi(0) + <o0) wil), wi)> < exlead) (i = 1)1

Therefore {v;} converges in C(<0, T), W"*(2)) and we can pass to the limit i — oo
in (6.5). But the limit is the first equation (6.2) of the problem (.#,). Thus we have
proved the following

Theorem 6.2. Let condition (%) hold. Then there exists a solution of the problem
(J/{).
The following assertion is evident:

Theorem 6.3. Let q, Y be uniformly Lipwchitz continuous and bounded functions.
Then there exists a global solution of the problem (/).

The forthcoming assertions are based on a detailed investigation of the previously
derived iteration process (6.4)—(6.6) under some additional conditions. Therefore
we shall keep the notation v, v;, 3; used in the proof of Theorem 6.2.

Definition 6.4. We shall say that the apriori estimate holds if there exist A > 0,
vo € Hy, 89 € C((0, T). L,(R)) such that the iteration process (6.4), (6.5) satisfies
the estimate

(6.18) o)) = i=0,1,2,.., te<0,T).
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Theorem 6.5. Let Y be bounded in t (Definition 4.1) and let the apriori estimate
hold. Then there exists a global solution of the problem ().

Proof. Since |[v; + v||, £ 4 + |[v],, =: B, we have by (6.4),
(4.6) [9()]| < m(B) T and 9;, i=1,2,...

are bounded, too. The condition (2) then follows from the uniform Lipschitz con-
dition for ¥, g on bounded sets and Theorem 6.3 yields a global solution of (.#). m

Theorem 6.7. Let = y(u), v, := max |[0\1)|,, and let q be nondecreasing on
<0, 24D, zg > 0. Let u(t), (1) satisfy

u' = q(t) Y(u + v,), u(0)=0,
v = y(u + v,), 7(0) = 0,

and let T, be such that 1(T,) = z,. Then the apriori estimate holds on the interval
<0, Ty» and consequently, the problem (.#) has a solution at least for t < T,

Proof. Let v, =0, 9, = 0 and suppose
(6.19) 0 < vx,f) <ut), 0= %(x,f) <1, 1e<0, Ty, i=0,1,2..,n
(this is true for n = 0). Then

a(S(x, 1)) Yloi(x, 1) + olx, 1)) = q(=(?)) Y(u(?) + v.,)

since 9, < 7t =< z, and q is nondecreasing.
Therefore w 1= u — v, satisfies

(ew', 2) + (W, 2)) + <ow, z) 20, zeV,

and by Theorem 5.3 we have w = 0, i.e. v, = u.
Evidently

Srer(as 1) = J' W(ox, 8) + o, 5)) ds < J' “Wuls) + v.) ds = (i),
0 0

and therefore (6.19) holds for n + 1 as well. But u(¢) < u and the apriori estimate
holds. m

Theorem 6.8. Let Y(u) = aexp (bu), a > 0, b > 0, and let q be nonincreasing.
Let
71 :=mino(x, 1), y;:=maxdx, 1), (x,1)eQ x (0,T),

and let T* be such that
Q(ae”“T*) - eb(“"“)/b

(if p < €77 we define T* := +o0).
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Then the apriori estimate holds on {0, T* — &) for all ¢ > 0and consequently,
the problem (M) has a solution at least for t < T*.

Proof. Let v, = 0, 9, = 0 and let u(7) be the solution of the equation (4.7) from
Example 4.6 with o := exp (by,), ¢ := y,; u exists on <0, T*). Suppose

(6.20) 0<v(x,t)<u(t), i=0,1,...,n,

which is true for n = 0. Then
t
9,(x, 1) = '[ Y(ty-1(x, s) + v(x,5)) ds = ae”'t
0

and because of the monotenicity of ¢,

4(9,5(x, D) Y(v,(x, 1) + vx, 1)) < q(eat) Ylulr) + 7).
Making use of Theorem 5.3 we see that (6.20) holds for all n.

Theorem 6.8 ensure global existence for the problem (.#) (for all ¢ = 0) only for
sufficiently small b (T* = + o0). However, numerical experiments for the particular
case Q(z) := arctg(z) show that the solution of the problem remains bounded even
in the case T* < oo. ‘
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Souhrn

O RESENI ROVNICE PRO VEDENI TEPLA
S NELINEARNI NEOMEZENOU PAMETI

ALEXANDR DOKTOR

Préace se zabyvd otdzkou globdlniho feSeni u, T okrajové tilohy pro soustavu semi-
linedrni rovnice vedeni tepla pro u a dopliikovou nelinedrni diferencidlni rovnici
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pro t (,.tepelnd pamét). Je dokdzdna jednoznaénost feSeni a ddle je metodou
postupnych aproximaci dokdzdna existence globdlniho feSeni za predpokladu pod-
minky (2). Podminka (2) je ovéfena pro nékteré specidlni pfipady (napf.: omezené
nelinedrni funkce, homogenni Neumannova tloha (i v pfipadé neomezenych neli-
nearit), plati-li apriorni odhad pro feSeni).
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