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ON THE OPTIMAL CONTROL PROBLEM GOVERNED
BY THE EQUATIONS OF VON KARMAN
II. MIXED BOUNDARY CONDITIONS

IGor Bock, IVAN HLAVACEK, JAN LoViSEK

(Received November 22, 1984)

We consider a control problem for the system of nonlinear Kdarmédn’s equations
for a thin elastic plate. In contrast to [ 2] we shall deal with mixed boundary conditions
Chapters 1, 2 and 3 are devoted to a formulation and solution of the state problem.

Further, we prove the existence of an optimal control for the problem with a control
variable on the right-hand side of the state equation, i.e. we control the transversal
loading. Using the differentiability in the sense of Fréchet of the state function with
respect to the control variable, we derive conditions for the uniqueness of the optimal
control. In the last chapter the problem with a stress function as a control variable
is considered. The previous results can be extended to this problem.

1. FORMULATION OF THE STATE PROBLEM

Let Q@ be a bounded, simply connected region with Lipschitz boundary 0Q =

1
=T = U S§;, where S; are simple smooth arcs and the angles of the tangents at the
ji=1
corners (if any) between the adjacent arcs are positive. We define the following
problem.

Problem I: to find function y, @ which are solutions of the system of Kdrmdn’s
equations

(1.1) A’y = [&,y]+v in @Q,
(1.2) AP = —[y, y] in Q,
where
[‘Pa ‘p] = QY22 + 022011 — 20,12
= o o1,
0x; Ox;

375



Here y = y(x,, X,) represents the (reduced) deflection of the plate, while & =
= &(xy, x,) is the (reduced) Airy stress function.
Let

(1.3) r=ry,ur,urly, Iuorlr;=90, i+j,

where each I'; (i = 1, 2, 3) is either empty, or possesses a positive measure (length)
and does not contain isolated points. We consider the following boundary conditions
for y:

(1.4) y=y,=0 on I,
y=0, M)+ ky,=0 on TI,,
M(y)+k3lyn:0: T(y)+k32y,,=0 on F3,

where
dy
Yn = ana
M(y) = pAy + (1 = p) (J’u"i + 2y1anhy + Yaan3),
0 0
T(J’) = - 6—nAy + (1 - 'u)_o’_s [J’11"1"2 - hz("f - "%) - Y22n1”2] + Xy, + Yy,.

Here n = (ny, n,) is the unit outward normal vector with respect to I', pe[0, 1)
is the Poisson constant, X, Y are prescribed functions and the functions k,, k31, k3,
satisfy the following conditions

k,eIXI';), k, 20 ae on I,,
ky, € IX(I's), ki, eL(I3), k;; 20 ae.on I's (j=12),

l<p< w.

In the presence of corners s;, i = 1,...,r in the interior of I';, we have to add
the conditions

(1.5) H(s{)— H(sy) =0, i=1,..,r.
where
(1-6) H(S) = (1 - #) [J’11n1"2 - .V12("f - ";) - )’22"1752] ’

H(s{) = lim H(s) for s—sf

H(s;) = lim H(s) for s — s

i

Finally, we prescribe the boundary conditions for the function @:

(1.7) ¢ =¢,, P,=¢, on I,
(1.8) Dyn; — Pon, =X, bn, —®d,m; =Y on Iy.

376



Following the article [4] we obtain

N t t
(1.9) ¢=A+Bx1+Cx2+Jdt[izzjYdu+n1J‘Xdu},

0 0 0

S s
¢n=Bn1+Cn2~n1j Ydu+;12JXdu,

0 0

where A, B, C are arbitrary constants. Hence the functions ¢, ¢ from (1.7) depend
on the given functions X, Y according to (1.9).

Note that the case I', U I'y = () has been analyzed in [2].

2. FORMULATION OF A WEAK SOLUTION

We denote by I7(2) (1 < p < o) the space of all real measurable functions which
are integrable with power p on Q in the Lebesgue sense. In particular, I*(Q) is a Hil-
bert space with the scalar product

(2.1) (u, v)o = j uv dx
and the associated norm !
(2.2) [ulo = (u, u)o/?.
For any integer m = 1 we define the space
W™ Q) = {u | ueIXQ), Du € I2(Q) for |o| £ m}

where the derivatives

are to be understood in the sense of distributions. In particular, we denote by H*(Q) =
= W>*Q) the Hilbert space with the scalar product

(2.3) (u, v), = J (wv + Y, D*uD™)dx
Q la] =2
and the norm

(2.4 Jull = )4

Let C*(2) be the space of all infinitely continuously differentiable functions in Q

which together with all their derivatives can be continuously extended onto Q.
We set

¥V ={u|lueC®Q), u=u,=0o0n Ty, u=0onTI,}

371



and denote

V=9
its closure in H*(Q). Further, we introduce two bilinear forms on ¥ x V-

A(”: U) = j [“11’)11 + 2('1 - #) UgaVip + Uzalsp + ﬂ(“11022 + uzz”n)] dx,
o

a(u, v) = f kyu,w, ds + J. (k3yu,v, + ksyuv)ds.
r; Ir;

If the boundary decomposition I' = I'y U I', U I'y satisfies some suitable conditions
(see [4], Lemma 3.1), the bilinear form
((u, v)) = A(u, v) + a(u,v), u,veV

determines a scalar product on V. (For instance, the latter conditions are satisfied
if (i) meas I'y > O or (i) I' = I',.)In this case, the corresponding norm [[u| = ((u, u))'/?
is equivalent to the original norm [ul|,. Hence V is a Hilbert space with the scalar
product ((u, v)) and the norm |Ju.
In the end we recall the space
H}(Q) = {u|ue H¥Q), u = u, =0 on I in the sense of traces} .

It is well known that Hj(€) is a Hilbert space with the scalar product

((u, v))o = j Au Av dx
Q
and the norm

[ullo = ((u, w))o" -

Next we define the following trilinear form on [H*(Q)]:

(2.5) B(u, v, w) = [' [t12(vawy + V1W2) — Uzo0wy — Uy 0,w,] dx .

JQo

If at least one function of the triple u, v, w belongs to Hg(2Q), then B(u, v, w) can be
expressed (see [3], Lemma 2.2.2) in the form

(2.6) Blu, v, w) = [ [w ],

Let us assume that the data of Problem I with the boundary conditions (1.4), (1.5),
(1.7), (1.8) satisfy the conditions

(2.7) ve IXQ),
(2.8) X,YeI(I's), 1<p<o.
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Definition 2.1. 4 couple (y, @) is a weak solution of Problem I, if
1° yeV,
20 ¢EH2(Q)’ ¢=(100’ (pl::(pl on Fy
3° the following equations hold:
(2.9) (v, 0)) = B®, y, ) + (v, 9), forall geV,
(2.10) ((@, )0 = =By, y,¥) forall yeH;Q).

It is convenient to introduce another definition of a weak solution with homo-
geneous boundary conditions. If the functions ¢,, ¢, satisfy some smoothness
conditions (see [4] — eqgs. (4.1)), then there exists a function g € W>*(Q) such that

(2.11) g=¢o, g,=®; on I (inthe sense of traces).
Moreover, there exists a function F € H*(Q) which fulfils the relations
(2.12) F — ge HYQ),
(2.13) ((F,¢))o =0 forall yeH}Q).
It is readily seen that F satisfies the conditions
(2.14) F=¢y, F,=¢, on I.
Putting @ = f + F, where f e H(z,(Q), we arrive at a new definition of a weak solution.
Definition 2.2. The couple [y,f]eV x H}(Q) is an excess weak solution of
Problem I if
(2.15) (v, 9)) = B(f, y, ) + B(F, y, ¢) + (v, 9)o holds for all ¢eV and

(2.16) (£, )0 = —B(y, y,¥) holds for all e HY(<Q).

3..EXISTENCE AND UNIQUENESS OF A WEAK SOLUTION

By the method of Berger ([ 1], [3], [4]) the existence and the uniqueness of a weak
solution can be verified. We transform the system (2.15), (2.16) into the form of an
operator equation in the space V.

We first introduce some auxiliary operators.

The operator M : I*(Q) — Vis defined by

(3.1) (Mv, 9)) = (v, ¢), forall peV,
C,: H)(Q) x V- Vby
(3.2) ((Ci(u, ¥), @) = B(u, y, @) forall peV
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and C,: V x V- Hy(Q) by
(33) ((Cay, W), ¥))o = B(y, w, ) forall e H3(Q).

The operators M, C,, C, are uniquely determined by virtue of the Riesz theorem.
In fact, we have

(3-4) (0 0)o| = cololo o]l VveLX(Q), ¢eHo(2),
(3:5) |B(u, v, 0)| = erlulo [¥] o] VueH(D). r.oeV,
(3.6) By wo )| < cally] Iw] [¥lo Vy,wev. veHi(Q)

(seT: [:T)] — (5.5),(5.9) and the theorem on continuous imbedding H*(Q) & W'*(Q) —
—[5)).

The last inequalities imply that the linear operator M and the bilinear forms
C,, C, are bounded and their norms can be estimated as follows:

(37) i = sup Il <, *
I (N0l

(3.9) 1€ "E.f,lizo(.g?éygv luflo ] =¢,
= su ”32(_))’*@“2 <ec

(3.9) I, yy:K;‘;%Vo DIl =<

Finally, we define the operator L: V' — V by the relation
(3.10) ((Ly, 9)) = B(F, y,9) VoeV, VYyeV.

Lemma 3.1. The operator L: V — V, defined by (3.10), is linear, selfadjoint and
compact.

Proof. The Riesz theorem assures the existence of L. The linearity and selfadjoint-
ness of Lare direct consequences of the definition (2.5) of the form B(F, ¥, q,),
It remains to verify the compactness. We have (see [4], formula (5.3)) the estimate

(3.11) |B(F, v, )| = 5| F||2

Vw0 H@H )
and making use of (3.10) we obtain
(.12 L] = Pl ¥l forall yev.

Let {y,,} be a bounded sequence in V. As the imbedding HZ(Q) Qwt »4(9) is compact
(see [5]), there exists a subsequence {y,,} such that y, — y, in W**4(Q). Then the
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sequence {Ly, } is convergent in V as a consequence of (3.12) and the compactness
of L follows.

We proceed now to the existence and uniqueness theorem for a weak solution
of Problem I.

Theorem 3.1. Let there exist a constant y such that

(3.13) ((Ly, »)) < 7|y|* forall yeV,
(3.14) 0<y<1=0C][C M%),
(3.13) (Ly,y)) = y|v]ls for all yeHF(Q),
(3.14) 0 <y <b—=([C [mo])>

in the case I = I'y, V = Hy(Q), C, = C,; then there exists a unique weak solution
y = y(v) e V of Problem I. Moreover, the estimate

(3.15) )] = (1 =)7" [md]
holds.

Remark 3.1. In Section 8 (see Theorem 8.1) some possibilities of satisfying the
assumptions (3.13), (3.14) will be shown. Another example has been presented
in [2] — Section 2 for the case 0Q = I';.

Proof. Using the expression (3.1)—(3.3) we can replace the system (2.15), (2.16)
by the operator equation in the space V:

(3.16) y—Ly+Cy)=Mv, yeV,
where C : V — Vis defined by
(3.17) C(y) = C(Caly, ), ¥), veV.

Hence the couple [ y, @] is a weak solution of Problem 1 if and only if y is a solution
of the equation (3.16) and @ = Cy(y, y) + F.
We shall investigate only the equation (3.16).

1° Existence. We can replace the equation (3.16) by

(3.18) v+ Co(y) =Mv, yeV,
where
(3.19) Co(y) = =Ly + C(y), yeV.

On the basis of the existence theorem for the equation (3.18) ([4], Ch. 5) it suffices

to verify that the operator C, is completely continuous and the operator I + C,

is coercive, i.e.

(3.20) im @+ C0LY) _
e Iyl

Q.
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The first property was verified in the paper ([4], Ch. 5.). We proceed to the proof
of (3.20). Using the symmetry of the form B we obtain

((C(y)’ y)) = ((Cl(CZ(y> y)! y)a y)) = B(Cz(y, y)a Y, y) =
= B(y, 5, Ca(»,»)) = [|Co(y, ¥|5 = 0 forall yeV.
Then the assumptions (3.13), (3.14) imply

(3.21) (v + Co»), y)) =2 (1 =p) |y|* forall yeV,
where
(3.22) 1= > Gle.] ] [mefy e = 0

and the condition (3.20) is verified. Hence there exists a weak solution y e V of
Problem I. Moreover, the estimate (3.15) follows from (3.18), (3.21).

2° Uniqueness. Let y;, y, be two solutions of (3.16). Then we have

(I = L)(y1 = »2) = C(y2) = C(y1) '
and from (3.13), (3.17),

(L =) [y = 2| = [Cy) = C2)]| =
= llcl(CZ(yb Vi — J’2)a J’1) + C1(C2(J’2s.V1 - J’2)> J’Z) + Cx(cz(hs yz)ah - J’2” =
< 3l o]l Clyal® + [20) [ys = v2] -
Using the estimate (3.15) we arrive at the inequality
lys = v = (0 =072 GlCa| |G [M]?) 91 = ya]

which can be satisfied only for y, = y,, as follows from (3.22).
In the case I' = I, it suffices to consider the conditions (3.13"), (3.14), because
V= HyQ), C; =C,:HyQ) x H)Q) » H}(Q) and we can use the estimate

((Cry) =€) y1 = v2)) = [Co* max {wi ] [v2%} [y4 = va?
(see [3], Lemma 2.2.5).

4. PROBLEM OF THE OPTIMAL CONTROL BY TRANSVERSAL LOAD

Henceforth we shall assume that there exists a constant y e (0, ) such that the

estimate (3.13) or (3.13") holds. We shall consider the following admissible set of
controls

(4.1) U = {UIUELZ(Q)’ lelo = %(3Ilclll lcalh== (1 - 3’)3”} ,
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or

(1) U= {oloer@, blos 2 e 00,

0
if T=r,,
where o € (0, 1) is an arbitrary constant and ¢, is the constant from (3.4), (3.7), i.e.
(4.2) lolo £ coll@]| forall peV.

If ve U,, then thete exists a unique weak solution of Problem I. Indeed, we have
from the definition of M:

[Mo* = (0. Mo)o = Jelo [Mtlo = cofolo [Mv]

and hence

(4.3) [Mv|| < colv|o forall veI*Q)
and
(4.4) [Mo] £ a3Cy] C]) 7 (1= 9.

Consequently, the condition (3.14) from Theorem 3.1 is satisfied. In the same
way we obtain the inequality (3.14") for ve Uy, I' = T'y.
Next we can introduce a cost functional

(4.5) J(v) = £((v)) + j(v), veEUq,

where y = y(v) is a solution of the equation (3.16) and # : V> R, j : I}(Q) - R
are any functionals. The definition of J is correct due to the unique solvability of
(3.16) for every ve U,

We define the following optimal control problem:

Optimal Control Problem P: to find u € U,; such that

(4.6) J(u) = :?51](0) ,
(4.7) y(u) — L{y(u)) + C(y(u)) = Mu..

Theorem 4.1. If the functionals ¢, j are weakly lower semicontinuous on V and
LZ(Q) respectively, then there exists a selution u € U, of Optimal Control Problem P.

Proof. There exists a minimizing sequence {u,} < U,,,

(4.8) lim J(u,) = inf J(v).

n-oo veUaa

Since the admissible set U, is bounded in I(Q), it is weakly closed. Then there exists
a subsequence {u,,} such that

(4.9) u, - u (weakly)in IXQ), ueU,.
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The set {y(v)}, v e Uy, is bounded in V. In fact, the es:imates (3.15), (4.4) imply
@) OIS - )P Ol G forall vev,.

Then there exists a subsequence {y,}, y, = »{uy), of {y(u,,)} such that

(4.11) Vi = Yo (weakly)in V, poeV
and (cf. (3.19))
(4.12) Vo= —Coly)) + Mu,, k=1,2,...

The operator C, is completely continuous (see [4], Ch. 5) and M : I(Q) —» V is
linear bounded. Passing to the weak limit, (4.9), (4.11), (4.12) imply

(4.13) Vo = —Co(yo) + Mu..

We have verified in the third part that there exists a unique solution y(u) of the equa-
tion (4.7). Hence y, = y(u) and y, — y(u) (weakly in V). Since the functionals ¢, j
are weakly lower semicontinuous, we obtain

J(u) = #(y(u)) + j(u) = liminf #(y(u,)) + lim inf j{u,) <
k=0 k— o

< lim inf J(u,) = inf J(v)

k=0 veUgaa
and hence u is a solution of Optimal Control Problem P.

Remark 4.1. Instead of the set U, defined in (4.1), its arbitrary convex non-empty
closed subset can be chosen for U,; in Theorem 4.1.

5. DIFFERENTIABILITY OF THE STATE FUNCTION

We shall use the differential form of (4.6) in order to secure the uniqueness of the
optimal control u € U,,. First we show that the mapping v y(v)eV, ve Uy,
defined by the state equation

(5.1) y(v) = Ly(v) + C(y(v)) = Mv, veU,,

is Fréchet-differentiable with respect to ve U, and the derivative y'(v) : [(Q) » V
is determined by the solution of the problem

(5.2) [I =L+ C(y()]y(v)h=Mh, helXQ),
where
(53) C'(y)n = 2C(Ca(y, 1), ¥) + Co(Caly, ) m), yvmeV,

is the Fréchet differential of the operator C at the point y € V. The following lemma
presents some properties of the operator on the left-hand side of (5.2).
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Lemma 5.1. The operator A(y(v)) =1 — L+ C'(y(v)) is a linear, symmetric
and positive definite mapping of Vinto V for every v e U,,.

Proof. The linearity follows from the expression (5.3) and from the linearity
of I, L. The symmetry results from the symmetry of the operators I, L(see Lemma
3.1) and from the relations

(C () w. 2)) = 2(CACaly, w), 7). 2) + ((CoCaly, ¥), ), 2)) =
= ZB(CZ(}', w), ¥, :) + B(Cz(y, y), w, :) = 2B{y, z, C,ly, w)) +
+ B(Cy(y, »), 2, w) = 2(Caly, 2), Coy, wh)o + ((CoCaly, »), 2) ) =
= 2(C4(Caly, 2), ), w)) + ((CLColy ), 2), w)) = ((C'(y) 2, w))
which hold for all y, w, zc V.

It remains to verify the positive definiteness. Let v e U, w e V. Using the defini-
tions of Cy, C, and the estimates (3.13), (3.15), (4.4), we obtain

(54 ((A(@) w, w) = [w][* = (Lw, w)) + 2(Co(Ca(y(p), w), y(v)), W) +
+ ((Co(Calyiv), (0)) ), w)) = [[w]* = ((Lw. w)) +
+ 2 Caly(v), W[5 + (Co(Caliv), ¥(v)), w), W) =
z (L—y = &l [P vl® =z 300 -7 w]*

where 1 — y > 0 by assumption.
By virtue of Lemma 5.1 there exists a unique solution z(h) € ¥ of the equation

(5.5) A(y(v)) z(h) = [I — L+ C'(y(v))] z(h) = Mh, VheI*Q).
Let
(5.6) w=wh) = y(v+h)— yv) = z(h); v,o+heUy,.

If we verify |w|| = o(h), then z(h) = y'(v) h is the differential of y in the sense
of Fréchet.
Using (3.16), (5.5), (5.6) we have

ABE) w = COE) (0 + 1) 36) = [COo + h) = COE)] =
- f [CO) ~ CO() + sn)]n ds,

0

where n = y(v + h) — y{v).
As | yv)[, [¥(v + h)| are bounded for all v, v + h e U, (see (4.10)), the positive
definiteness of A(y(v)) and the form (5.3) of C’(y) 1 yield the estimate

(5.7) Iwl = Kin]*,
where K, is a constant.
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The function n = y(v + h) — y(v) € V fulfils the equation

(5.8) n — Ln + C(y(v + n) — C(¥(v)) = Mh.
We have

(Cy(v + h) = C(¥(v)), m) = fl((C’(Y(v) + sn) 1, 1)) ds

[

= 2J~1HC2(y(u) + s, )¢ ds +

0

1
[ (00 + 9150 + ) ds 2
0
2 e sl max (101 =9 30) + 5560+ DI
z —4o(1 = y) [n]?,
after having used the estimate (4.10). Using the last estimate we arrive at

((n = Ln + C(y(v + h)) = C(¥(v)), m)) = (1 = y) (1 = 3o?) [}n|?
and (5.8), (3.7) imply

%

(5'9) “'7" = Kzlhlo, K, = Co[(l - 7) (1 - %“2)]_1
and comparing with (5.7) we obtain
Wl = ly(v + k) = y(v) = 2(R)]| = ofh).

Thus we have proved the following theorem.

Theorem 5.1. The mapping y(*): U, — V determined by the equation y(v) —
— Ly(v) + C(y(v)) = Mv, v e Uy, is Fréchet differentiable for all functions v € U .
The differential y'(v) h satisfies the equation

(5.10) [I =L+ C(yv)]y(v)h = Mh

for all h e I(Q) such that v + h € Uy, where C'(y(v)) is defined in (5.3).

6. UNIQUENESS OF 'THE OPTIMAL CONTROL

Let us assume, moreover, that the functionals #, j are Fréchet differentiable,
satisfying the conditions

(6-1) <f’(y'1) - f’(h), Vi — Yy 2 m“yl - Y2“2 , m>0
forall y,,y,eV,
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(6'2) (j’(vl) - j'(Uz), vy — vz)o = N|U1 - Uz[?) » N>0 forall v, eLZ(Q)

and ¢’ satisfies the growth condition

(6.3) |2« < do|y|| + dy forall yev,

where d, and d; are some constants.
If ueU, is the optimal control, i.e. a solution of Problem P, then (J "(u),
v —uyy = 0forallveU,. Let uy, u, be two optimal controls. Then

(6.4) J'(ug)s v = upde = I (W(w), y'(ug) (v — uy)y +
+ (]"(‘41), v = “1)0 =0,

J'(uz), v = uyde = (I (¥(uy)), Y'(uy) (v — uy)> +
+ (j(us), v — uy)e 2 0

for allve U,,.
Inserting u,, u, into (6.4) and adding we obtain

(6.5) 0 = (I (¥(ur)) = £ (W(u2)), ¥(u) — y(uy)y +
+ (7' (uy) = J'(uz), uy — uy)o —
= (I (W), ¥(uz) = y(u) = ¥'(uy) (uy — uy)> —
- <f,(J’(”2))a Y(u1) - J’(uz) - y'(uz) (ul - “2)> .
Let us denote
(6.6) Wy = 3() = () = () (w3 = u,),
W, = J’(“1) - .V(uz) - yl(uz) (“1 - “z) s
n = J’(uz) - J’(ux) .

We derive an estimate for wy. Using (4.7) and (5.10) we have
[I = L+ C(y()]wi = Clp(uy)) = C(¥(u2)) + C'(¥(ur)) (¥(u2) — ¥(uy)) =
= fo[c’(y(ul)) — C'(y(uy + sn)]nds=y.

The mean value theorem implies

((Llc”(y(“l) + 7(s) n) (n, m) s ds, h))’ . 1s)€(0,5),

(68) vl = sup

where the second derivative has the form
(6.9)  C"(y)(n,n) = 2C4(Cs(n, m), ¥) + 4C(Cy(y,n),m) forall y,neV.
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Using the estimate (4.10) we have

(6.10) [l = o3t =) [ €] [Ca]17 [n]>-

Taking into account the positive definiteness (5.4) of the operator A(y(u;)) = I — L+
+ C'(y(uy)), i = 1,2,and (6.7), (6.10) we obtain the estimate

(6.11) Iwill = 3e[3(1 =)~ [T [C2[172 [n]? -
From (6.5), (6.6), (4.10), (6.1), (6.2), (6.3), (6.11) we derive the inequality
(6.12) 0<{—m+ [doofl —y)"23|C,| |Co])™"* + dy].

3300 = )7 [Cl [ Co 12} n]* = NJuy = uas -
Setting h = u, — u, in (5.9) we obtain
(613) Il < eaf(t = M) (1 = 1221 s — o
It is now easy to deduce sufficient conditions for the uniqueness of the optimal
control combining (6.13) with (6.12):
Theorem 6.1. Let the functionals ¢, j be weakly lower semicontinuous with
Fréchet derivatives satisfying the conditions (6.1), (6.2), (6.3). If
m z [doa{l = 9)"2 B[ Cu [Caf)7% + di] 3a[3(1 — )~ " [Cu] |C2[]2
or
N> {=m+ [doofl — )2 3 Cy|| [Cof)7* + 1]
3301 = )7 G €217 e3[(1 = 9) (1 = 303)] 72 > 0.

where 0 < o < 1, y is defined in (3.13), (3.14) and ¢, in (4.2), then there exists
a unique solution u € U,; of Optimal Control Problem P.

7. NECESSARY CONDITIONS OF OPTIMALITY

We assume that the functionals #, j are Fréchet differentiable. As we have men-
tioned above {cf. (6.4)), if u € U,, is the optimal control, then the following relations
hold:

(7.1) <I'(w), y(u) (v —u)) + (j'(u),v —u)g =0 VoeUy,,
(7.2) [ — L+ C(y(w)] y'(u) h = Mh VheI¥Q).

We recall that the operator A(y(u)) =1 — L+ C'(y(u)) is symmetric. Then the
system (7.1), (7.2) can be rewritten in the form

(7.3) (p+j(u)yv—u)=20 YoeU,,
(74) [ =L+ COw)]p =25 (x(u),
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where Z : V* — Vis the Riesz representative operator and we have used the relations
p p

),y (u) (0 = w))y = (27" (p()), y'(u) (0 = w)) =
= ((A(y{)) p. y'(u) (v = w))) = ((p. A(y(u) y'(u) (v — u))) =
= ((p. M(v = u))) = (p, v — u), .
If we add the state equation
(7.5) wu) = Ly(u) + C(y(u)) = Mu

we obtain the optimality system (7.3), (7.4), (7.5) for Optimal Control Problem P.
The equation (7.4) is the adjoint equation to (7.5),pe V is the adjoint state and
(p + j'(u)) represents the gradient J'(u).

8. OPTIMAL CONTROL WITH RESPECT TO THE STRESS FUNCTION

Let us rewrite the equation (3.16) in the form
(8.1) y — LF)y + C(y) = Mv,
where L(F): ¥V — V is the operator defined by (cf. (3.10))
(82) ((L'F) y, ¢)) = B(F, y, ) forall y,@eV

with a function F e H*(Q) and the trilinear form B defined by (cf. (2.5))

(8'3) B(F’ Ys (P) =J‘ [F12(}’2(P1 + yl(/’z) = Fpp10y — F11Y2€92] dx .
Q

In Lemma 3.1 it was shown that L(F) : V — Vs for every F € H*(Q) linear, self-
adjoint and compact, its norm being estimated by

(84) L) 2y = eal F2 s
where ¢4 depends only on the domain Q.
Setting y = ¢4||F|, in Theorem 3.1 and using (3.7), we obtain
Theorem 8.1. If ve IXQ), |v]o < ¢5 '(3]Cy| [|C2])~""* and
(8.5) [Fll2 < e '[1 = Geg]lCil €] [elo)

then there exists a unique solution y = y(F) of the equation (8.1). Moreover, the
estimate

(8.6) IYF)] = (1 = cal Fll2) ™" eolvlo
holds.
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Henceforth we shall assume that |v|, < cg '(3]Cy] [C.[)~"/* and ve I*¥(Q) is
fixed.
Let us consider the set of admissible stress functions

(87)  Uu={F|FeH¥Q),|F|, £ acg'[1 — (33| Cs| [Ca|l |05)""*T}

where 0 < o < 1 and ¢, ¢, are defined in (4.2) and (8.4).
We introduce the cost functional

(8.8) J(F) = #(W(F)) + (F), FeU,

with functionals # : ¥ — R, j : H¥(Q) - R. Now we can define:

Optimal Control Problem P. To find a function F, € U, such that

(8.9) J(Fo) = min J(F).
(8.10) WFo) = L(Fo) ¥(Fo) + C(¥(Fo)) = Mv. \

Theorem 8.2. If the functionals ¢, j are weakly lower semicontinuous on V and
H?*(Q), respectively, then there exists a solution F,e U, of Optimal Control
Problem P.

Proof. We proceed in a similar way as in the proof of Theorem 4.1.
Let {F,} = U, be a minimizing sequence for J:

(8.11) lim J(F,) = inf J(F).

n— o FeUgaa

Since the set U, is a closed bounded ball in H*(Q), there exists a subsequence {F,,}
such that

(8.12) F, = F, (weakly)in H*Q), FoeU,.
The set {y(F)} is bounded by
(3813 B = {1 = oft = Beg|Cu]l [Co] [6[6)"* ™" colelo  VF e Uy

as follows from (8.6), (8.7).
Denoting

(8.14) m=V(Fn), m=12,..,
we can find a subsequence {y,} such that

(8.15) Vi = Yo (weakly)in V, y,eV,
(8-16) Vi = LF) e + C(31) = M.
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As the imbedding V = W'%(Q) is compact ([5]), we have
(8.17) Ve = Yo (strongly)in W'4(Q).

Combining (8.17) with (8.12) and using (3.11) we obtain B(F, vy, ¢) = B(Fo, yo, ¢)-
Consequently,

(8.18) L(F,) y = L(Fy) yo (weakly) in V

holds by virtue of the relation (8.2).

The operator C:V — V is completely continuous (see e.g. [4] — (5.13)). Then
C(y) = C(yo) in V follows from (8.15). Passing to the weak limit with k — oo in
(8.16), we arrive at the equation

(8.19) yo — L(Fo) yo + C(yo) = Mv.

From the uniqueness of the solution of (8.1) for F, e U .4 we conclude that yo = y(F,)
and y, — y(F,) (weakly) in V. The rest of the proof is the same as that of Theorem
4.1.

It is possible to obtain similar results as in Chapters 5—7. The mapping y(*):
:U,q - V, determined by the equation (8.1), is Fréchet differentiable and

(8.20) [I — L(F) + C'(y(F))] Y'(F) h = L(h) y(F) Vhe HQ)

holds, where C’ is defined by (5.3).
If the functional # : ¥ — R satisfies the assumptions (6.1), (6.3) and the functional
j 1 H*Q) > R is Fréchet differentiable with a strongly monotone derivative, then
a uniqueness theorem parallel to Theorem 6.1 holds for Optimal Control Problem P.,
In the end we introduce necessary conditions of optimality for Problem P. They
have the form of the optimality system

(8.21)  B(F — Fo, y(Fo), p) + <(J'(Fo), F — Fo», =0 forall FeU,,
(8.22) [1 = L(Fo) + C'()(Fo)] p = 25" (y(Fo)) »
(8.23) Y(Fo) — L(F,) y(Fo) + C(¥(Fo)) = Mv,

where & : V* — Vis the Riesz representative operator and {,*), denotes the duality
between (H?(2))* and H*(Q).
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Souhrn

O PROBLEMU OPTIMALNIHO RiZENIi
PRO KARMANOVY ROVNICE.
1I. KOMBINOVANE OKRAJOVE PODMINKY

IGor Bock, IVAN HLAVACEK, JAN LOVISEK

Je studovadna uloha fizeni systému Karmanovych rovnic pro rovnovahu tenké
pruzné desky, uloZené riiznym zplsobem na okrajich.

Dokazuje se existence optimalniho pfi¢ného, resp. bo¢niho zatiZeni. MnoZina
piipustnych funkei je zvolena tak, Ze stavova uloha ma jediné feSeni. Je podan dukaz
diferencovatelnosti feseni stavové tlohy vzhledem k fidici proménné, ditkaz jedno-
znacnosti za ur€itych podminek a odvozuji se nutné podminky optimality.
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