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SVAZEK 30 (1985) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

ON THE OPTIMAL CONTROL PROBLEM GOVERNED 
BY THE EQUATIONS OF VON KARMAN 

II. MIXED BOUNDARY CONDITIONS 

I G O R B O C K , IVAN HLAVACEK, J AN LOVISEK 

(Received November 22, 1984) 

We consider a control problem for the system of nonlinear Karman's equations 
for a thin elastic plate. In contrast to [2] we shall deal with mixed boundary conditions 
Chapters 1, 2 and 3 are devoted to a formulation and solution of the state problem. 

Further, we prove the existence of an optimal control for the problem with a control 
variable on the right-hand side of the state equation, i.e. we control the transversal 
loading. Using the differentiability in the sense of Frechet of the state function with 
respect to the control variable, we derive conditions for the uniqueness of the optimal 
control. In the last chapter the problem with a stress function as a control variable 
is considered. The previous results can be extended to this problem. 

1. F O R M U L A T I O N O F T H E STATE P R O B L E M 

Let O be a bounded, simply connected region with Lipschitz boundary dQ = 
i 

= r = U Sj, where Sj are simple smooth arcs and the angles of the tangents at the 
1 = i 

corners (if any) between the adjacent arcs are positive. We define the following 
problem. 

Problem I: to find function y, # which are solutions of the system of Karman's 
equations 

(1.1) A2y = [&, y] + v in Q, 

(1.2) A2<£= -[y,y] in Q, 

where 

[<P> <A] = ^ 1 1 ^ 2 2 + 9 2 2 ^ 1 1 - 2<p12iAi2 > 

d2<P . . . . 
<Ptj = T — — > hJ = 1 , 2 . 

OX- OXj 
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Here y = y(xu x2) represents the (reduced) deflection of the plate, while <P = 
= <P(xl9 x2) is the (reduced) Airy stress function. 

Let 

(1.3) F = F1uF2uF3, FeuFJ = 0 , i+j, 

where each I\ (i = 1, 2, 3) is either empty, or possesses a positive measure (length) 
and does not contain isolated points. We consider the following boundary conditions 
for y: 

(1.4) y = y„ = 0 on F1? 

y = 0 , M(y) + k2yn = 0 on F2 , 

M(y) + k31yn = 0 , T(y) + k32yn = 0 on F3 , 

where 

dy 
yn ==—, 

O« 

M(y ) = [X Ay + (1 - ll)(yll"T + 2 y l 2^1^2 + y22^2) > 

T(y) = ~ — ^ + (! - / 0 ~ [y l l"lw2 - yl2(«l - "I) - y22^l"2] + * y l + ?y2 • 

on cs 
Here n = (n1? n2) is the unit outward normal vector with respect to F, \x e [0, ^) 
is the Poisson constant, X, Yare prescribed functions and the functions k2, k31, k32 

satisfy the following conditions 

k2 e LP(F2), k2 ^ 0 a.e. on F2 , 

fc31el?(r3), fc32eIT(F3), k3j^0 a.e. on F3 (j = 1,2), 

1 < p < 00 . 

In the presence of corners sf, i = 1 , . . . , r in the interior of F3, we have to add 
the conditions 

(1.5) H(s+)-H(sf) = 0 , i = l , . . . , r . 

where 

(1.6) H(s) = (1 - /i) [y11n1n2 - y12(n\ - n2
2) - y^n^] , 

H(s+) = lim H(s) for s -> s+ , 

H(sf) = lim H(s) for s -> s~ .. 

Finally, we prescribe the boundary conditions for the function 4>: 

(1.7) <P = <p0 , <Pn = (pt o n F, 

(1.8) 022^! - <1>12n2 = X , <Pxln2 - ^ 1 2 n x = Y on F3 . 
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Following the article [4] we obtain 

(1.9) <f> = A + Bxx + Cx2 + dt n2 Ydu + nx \ X du , 

0n = Bnx + Cn2 - nx Ydu + n2\ X du, 

where A, B, C are arbitrary constants. Hence the functions <p0, <Pi from (1.7) depend 
on the given functions X, 7 according to (1.9). 

Note that the case F2 u F3 = 0 has been analyzed in [2], 

2. FORMULATION OF A WEAK SOLUTION 

We denote by L?(Q) (1 = p < oo) the space of all real measurable functions which 
are integrable with power p on Q in the Lebesgue sense. In particular, l}(Q) is a Hil-
bert space with the scalar product 

(2.1) (u, v)0 = uv dx 
J Q 

and the associated norm 

(2.2) Mo = ("» ")o/2 • 

For any integer m = 1 we define the space 

WW>P(Q) = {u | u e IF(Q), D«u e U(Q) for |a| = m} 

where the derivatives 

Dau = , |a| = at + a2 , 
dxV dxa

2
2 M 

are to be understood in the sense of distributions. In particular, we denote by H2(Q) = 
= W2,2(Q) the Hilbert space with the scalar product 

(2.3) (u, v)2 = f (tit? + £ DauDV) dx 
JQ M=2 

and the norm 

(2.4) H | 2 = ( u , « ) 2 / 2 . 

Let C00(O) be the space of all infinitely continuously differentiable functions in Q 
which together with all their derivatives can be continuously extended onto Q. 
We set 

r = {u | u e C°°(0), u = un = 0 on Fl5 u = 0 on F2} 
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and denote 
V= T 

its closure in H2(Q). Further, we introduce two bilinear forms on V x V: 

A(u, v) = [u i i ^u + 2(1 - /x) ui2t;12 + u22v22 + fi(ulxv22 + w2 2vu)] dx , 
Jo 

a(u, v) = k2unvnds + (k31unvn + k32uv)ds. 
J r2 J r3 

If the boundary decomposition F = r1 u F2 u F3 satisfies some suitable conditions 
(see [4], Lemma 3.1), the bilinear form 

((u, v)) = A(u, v) + a(u, v) , u,veV 

determines a scalar product on V. (For instance, the latter conditions are satisfied 
if(i)measFi > 0 o r ( i i ) F = F2.)In this case, the corresponding norm ||u|| = ((u, u))1/2 

is equivalent to the original norm ||u||2- Hence Vis a Hilbert space with the scalar 
product ((u, v)) and the norm ||u||. 

In the end we recall the space 

Hl(Q) = {u | u e H2(Q), u = un = 0 on F in the sense of traces} . 

It is well known that Hl(0) is a Hilbert space with the scalar product 

((u, v))0 = Au Av dx 

and the norm 

Ho = ((u>u)Yo2 -
Next we define the following trilinear form on [H2(:Q)]3: 

(2.5) B(u, v, w) = \u12{v2w1 + ^iW2) — u22v1w1 — unv2w2] dx . 
J D 

If at least one function of the triple u, v, w belongs to H^(Q), then B(u, v, w) can be 
expressed (see [3], Lemma 2.2.2) in the form 

(2.6) B(u, v, w) = \u, v] w dx . 

Let us assume that the data of Problem I with the boundary conditions (1.4), (1.5), 
(1.7), (1.8) satisfy the conditions 

(2.7) v e L2(Q) , 

(2.8) X, YeU(r3), l < p < c o . 
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Definition 2.1. A couple (y, #) is a weak solution of Problem I, if 

1° yeV, 

2° <Pe H2(Q), 0 = (p0, <Pn = <pl on F, 

3° the following equations hold: 

(2.9) ((y, (p)) = B{0, y, q>) + (v, (p)0 for all (p e V, 

(2.10) ((*, i/t))0 - ~£(y , y, ̂ ) for all i/t e H2
0(Q) . 

It is convenient to introduce another definition of a weak solution with homo­
geneous boundary conditions. If the functions (p0, <px satisfy some smoothness 
conditions (see [4] — eqs. (4.1)), then there exists a function g e W2'2(Q) such that 

(2.11) g = (p0 , gn = <px on F (in the sense of traces). 

Moreover, there exists a function F e H2(Q) which fulfils the relations 

(2.12) F-geH2
0(Q), 

(2.13) ((F, i/>))0 = 0 for all i/t e Ho(O) . 

It is readily seen that F satisfies the conditions 

(2.14) F = (p0, Fn = <pt on F. 

Putting <P = f + F, where fe Hl(Q), we arrive at a new definition of a weak solution. 

Definition 2.2. The couple [ v , / ] e K x H^(Q) is an excess weak solution of 
Problem I if 

(2.15) ((y, (p)) = B(f, y, <p) + B(F, y, <p) + (v, (p)0 holds for all (p e V and 

(2.16) ((/, </0)o = ~^(y 5 y? IF*) *^WS for a// i/t e tf2(^2). 

3. EXISTENCE AND UNIQUENESS OF A WEAK SOLUTION 

By the method of Berger ( [ l ] , [3], [4]) the existence and the uniqueness of a weak 
solution can be verified. We transform the system (2.15), (2.16) into the form of an 
operator equation in the space V. 

We first introduce some auxiliary operators. 
The operator M : L2(Q) -> Vis defined by 

(3.1) ((Mv, <p)) = (v, (p)0 for all cp e V, 

CX:H2
0(Q) x V-> Vby 

(3.2) ((C1(u,y),(p)) = B(u,y,(p) for all (peV 
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and C2: Vx V-+ H2
0(Q) by 

(3-3) ((C2(y,w),^))0 = B(y,w,ik) for all xfr e H2(Q) . 

The operators M, C1; C2 are uniquely determined by virtue of the Riesz theorem. 
In fact, we have 

(3.4) \(v, cp)0\ ^ c0\v\0 \\<p\\ Vt> e L2(Q), cp e H2
0(Q), 

(3.5) \B(u, y, <p)\ ^ Ci\\u\\0 \\y\\ \\q>\ W e H2(Q), y, cp e V, 

(3.6) |B(y, w, ij/)\ ^ c2\y\ \w\ | ^ | | 0 Vy, w e V, j , e H2(Q) 

(see [4] — (5.5), (5.9) and the theorem on continuous imbedding H2(Q) Q W1A(Q) — 

- [5])-
The last inequalities imply that the linear operator M and the bilinear forms 

Cl9 C2 are bounded and their norms can be estimated as follows: 

(3.7) ||M|| = S u p M ^ 0 , 
veLHQ) \v\0 

v*0 ' ' 

M K.I- -P i f ; h i i 1 s^ 
u + O.y + O " " " " 

( 3 9̂ 1 IIC II - S U D l l ^ ^ U 0 , 
\D'y) !IC2| | — S U P i, i, „ „ = «-2 

yeV,weV y V 
y + O.w + O " " " 

ûc. 

Finally, we define the operator L : V -» V by the relation 

(3.10) ((Ly, cp)) = £(F, y, p) VcpeV, VyeV . 

Lemma 3.1. The operator L: V-> V, defined by (3A0), is linear, self adjoint and 
compact. 

Proof. The Riesz theorem assures the existence of L. The linearity and selfadjoint-
ness of Lare direct consequences of the definition (2.5) of the form B(F, y, cp). 

It remains to verify the compactness. We have (see [4], formula (5.3)) the estimate 

C3-11) \B(F> y> <P)\ = c 4 F h \\y\\wi.<w II9II> 

and making use of (3.10) we obtain 

(3.12) \\Ly\\ g c3\\F\\ \\y\\wl.HSi) for all yeV. 

Let {y„} be a bounded sequence in V. As the imbedding H2(Q) Q W1A(Q) is compact 
(see [5]), there exists a subsequence {y„J such that y„k -> yo in W1>4(fi). Then the 
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sequence {Ly„k} is convergent in Vas a consequence of (3.12) and the compactness 
of L follows. 

We proceed now to the existence and uniqueness theorem for a weak solution 
of Problem I. 

Theorem 3.L Let there exist a constant y such that 

(3.13) ((Ly, y)) < y\\y\\2 for all y e V, 

(3.14) 0 < y < 1 - (31|Cx|| ||C2|| | |Mv | |2)1/3 , 

or 

(3.13') ( (Ly ,y ) )^y | |y | | 2 for all y e H2
0(Q), 

(3.14') 0 < y < 1 - ( I d | | ||Mv||)2/3 

in the case F = F1? V = H0(Q), d = C2; then there exists a unique weak solution 
y = y(v) e V of Problem I. Moreover, the estimate 

(3-15) 11X̂)11 ^ ( l - T Y M W 
holds. 

R e m a r k 3.1. In Section 8 (see Theorem 8A) some possibilities of satisfying the 
assumptions (3.13), (3.14) will be shown. Another example has been presented 
in [2] — Section 2 for the case dQ = T1. 

Proof. Using the expression (3.1) —(3.3) we can replace the system (2.15), (2.16) 
by the operator equation in the space V: 

(3.16) y-Ly + C(y) = Mv, yeV, 

where C : V -» V is defined by 

(3.17) C(y) = d ( C 2 ( y , y), y) , yeV. 

Hence the couple [y, <£] is a weak solution of Problem I if and only if y is a solution 
of the equation (3.16) and & = C2(y, y) + F. 

We shall investigate only the equation (3.16). 

1° Existence. We can replace the equation (3.16) by 

(3.18) y + C0(y) = Mv, yeV, 

where 

(3.19) C0(y)= -Ly + C(y), yeV. 

On the basis of the existence theorem for the equation (3.18) ([4], Ch. 5) it suffices 
to verify that the operator C0 is completely continuous and the operator I + C0 

is coercive, i.e. 

(3.20) lim •& + ffi-i-fl = + oo . 
Hvii-oo \\y\\ 
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The first property was verified in the paper ([4], Ch. 5.). We proceed to the proof 
of (3.20). Using the symmetry of the form B we obtain 

((C(y), y)) = ((C^C^y, y), y), y)) = B(C2(y, y), y, y) = 

= B(y, y, C2(y, y)) = \\C2(y, y\\2
0 = 0 for all yeV. 

Then the assumptions (3.13), (3.14) imply 

(3.21) ((y + C0(y), y)) :> (1 - y) \\y\\2 for all yeV, 

where 

(3.22) l-y>(3\\C1\\\\C2\\\\Mv\W>0 

and the condition (3.20) is verified. Hence there exists a weak solution y e V of 
Problem I. Moreover, the estimate (3A5) follows from (3.18), (3.21). 

2° Uniqueness. Let yl9 y2 be two solutions of (3.16). Then we have 

(I-L)(y1-y2) = C(y2)-C(y1) 

and from (3.13), (3.17), 

(i - y) II* - y2\\ = \\c(yi) - c(y2)\\ = 
= |Ci(C2(>'i, yi - y2\ yi) + Ct(C2(y2, yt - y2), y2) + C^C^y^ y2), y\ - y2\ g 

^illCillllc.lKIKP + lWl2)!^-^!!. 
Using the estimate (3.15) we arrive at the inequality 

\\yi - y2\£ (1 - y)"3 (SIC,! ||C2|| \\Mvf) \\yi - y2\\ , 

which can be satisfied only for yx = y2, as follows from (3.22). 

In the case F = F1 it suffices to consider the conditions (3.13'), (3A4'), because 
V = H2

0(Q), C! = C2 : Ho(^) x #o(&) -* #o 0°) a n d w e c a n use the estimate 

((C(yi) - C(y2),yi - y2)) ^ WC.fm^iWy.f, \\y2\\
2} \\yx - j ; 2 | | 2 

(see [3], Lemma 2.2.5). 

4. PROBLEM OF THE OPTIMAL CONTROL BY TRANSVERSAL LOAD 

Henceforth we shall assume that there exists a constant y e (0, 1) such that the 
estimate (3.13) or (3.13') holds. We shall consider the following admissible set of 
controls 

(4-1) Uad = L\ veL\Q) , Ho g iL(3||c.|| | |Ca | |)--'a (1 - y)3'2} , 
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or 

(4.10 U'ad = L\ve L\Q), |v|o S f flcj-1 (1 - y)3/2J , 

if r = Fl5 

where a e (0, 1) is an arbitrary constant and c0 is the constant from (3.4), (3.7), i.e. 

(4.2) Mo^olMI fora11 (PeV' 
If v e Uad, then thete exists a unique weak solution of Problem I. Indeed, we have 
from the definition of M: 

||Mv||2 = (v, Mv)0 S Ho \Mv\0 rg c0\v\o \\Mv\\ 

and hence 

(4.3) ||Mi?I = c0\v\0 for all v e L2(Q) 

and 

(4.4) \\Mv\\ ^ a(3\\C1\\\\C2\\)-112 (I ~ yf'2 • 

Consequently, the condition (3.14) from Theorem 3.1 is satisfied. In the same 
way we obtain the inequality (3.14') for v e Uad, F = Fx. 

Next we can introduce a cost functional 

(4.5) J(v)=f(y(v))+j(v), veUad, 

where y = j!(v) is a solution of the equation (3A6) and f : V-> K, j : L2(.Q) -> R 
are any functionals. The definition of J is correct due to the unique solvability of 
(3A6) for every v e Uad. 

We define the following optimal control problem: 

Optimal Control Problem P: to find u e Uad such that 

(4.6) J(u) = min J(v) , 
veUad 

(4.7) y(u) - L(y(u)) + C(y(u)) = Mu . 

Theorem 4.1. If the functionals JJ', j are weakly lower semicontinuous on V and 
I?(Q) respectively, then there exists a solution u e Uad of Optimal Control Problem P. 

Proof. There exists a minimizing sequence {un} <= Uad, 

(4.8) limJ(un) = infJ(v) . 
n-»oo veil ad 

Since the admissible set Uad is bounded in l}(Q), it is weakly closed. Then there exists 
a subsequence {um} such that 

(4.9) um -» u (weakly) in L2(Q) , ueUad. 
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The set (y(t?)}, v e Uad, is bounded in V. In fact, the es:imates (3.15), (4,4) imply 

(4.10) ||Xf)|| S «(1 - }')1/2 (3||C.|| | |C 2 | | ) - 1 / 2 for all veUad. 

Then there exists a subsequence {yk}, yk = y(uk), of {y(um)} such that 

(4.11) yk -+ y0 (weakly) in V, y/0 e V 

and (cf. (3A9)) 

(4.12) yh= - C0(yk) + Mufe , fc = 1, 2, .... 

The operator C0 is completely continuous (see [4], Ch. 5) and M : L2(Q) -> V is 
linear bounded. Passing to the weak limit, (4.9), (4.11), (4A2) imply 

(4.13) y0 = -C0(y0) + Mu . 

We have verified in the third part that there exists a unique solution y(u) of the equa­
tion (4.7). Hence y0 = y(u) and yk -» y(u) (weakly in V). Since the functional f, j 
are weakly lower semicontinuous, we obtain 

J(u) = f(y(u)) + j(u) <z lim inf f(y(uk)) + lim Mj(uk) ^ 
A: —> oo A -*• oo 

g lim inf J(ufc) = inf J(v) 
k-*oo veil ad 

and hence u is a solution of Optimal Control Problem P. 

R e m a r k 4.1. Instead of the set Uad defined in (4.1), its arbitrary convex non-empty 
closed subset can be chosen for Uad in Theorem 4.L 

5. DIFFERENTIABILITY OF THE STATE FUNCTION 

We shall use the differential form of (4.6) in order to secure the uniqueness of the 
optimal control u e Uad. First we show that the mapping v i—> y(v) e V, v e Uad, 
defined by the state equation 

(5.1) y(v) - Ly(v) + C(y(v)) = Mv , veUad, 

is Frechet-differentiable with respect to v e Uad and the derivative y'(v) : L2(Q) -> V 
is determined by the solution of the problem 

(5.2) [/ - L + C'(y(v))] y'(v) h = Mh, he L2(Q) , 

where 

(5.3) C(y) n = 2C,(C2(y, rj), y) + Cx(C2(y, y), rj), y,neV, 

is the Frechet differential of the operator C at the point y e V. The following lemma 
presents some properties of the operator on the left-hand side of (5.2). 
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Lemma 5.1. The operator A(y(vj) = I — L + C'(y(v)) is a linear, symmetric 
and positive definite mapping of V into Vfor every v e Uad. 

Proof. The linearity follows from the expression (5.3) and from the linearity 
of / , L. The symmetry results from the symmetry of the operators /, L (see Lemma 
3.1) and from the relations 

((C(y) w, z)) = 2((C,(C2(y, w), y), z) + ((C,(C2(y, y), w), -)) = 

= 2B(C2(y, w), y, z) + B(C2(y, y), w, z) = 2B(y, z, C2(y, w)) + 

+ B(C2(y, y), z, w) = 2((c2(>, z), C2(y, w)))0 + ((Cx(C2(y, v), z), w)) = 

= 2((C1(C2(>>, z), y), w)) + ((Cx(C2(y, y), z), w)) = ((C'(y) z, w)), 

which hold for all y, w, z eV. 
It remains to verify the positive defmiteness. Let v e Uaa, w e V. Using the defini­

tions of C1, C2 and the estimates (3.13), (3.15), (4.4), we obtain 

(5.4) ((A(y(v)) w, w)) = ||w||2 - ((Lw, w)) + 2((Ct(C2(y(v), w), y(v)), w)) + 

+ ((Ct(C2(y(v), y(v)), w), w)) = \\w\\2 - ((Lw, w)) + 

+ 2||Ca(j<»), w)\\2
0 + ((Ct(C2(y(v), y(v)), w), w)) ^ 

^ ( l - y - l Q l l l l C . l l l ^ l ^ l w f ^ K l - ^ l w f , 

where 1 — y > 0 by assumption. 
By virtue of Lemma 5.1 there exists a unique solution z(h) e V of the equation 

(5.5) A(y(v)) z(h) = [I - L + C'(y(v))] z(h) = Mh , Vh e L2(Q). 

Let 

(5.6) w = w(h) = y(v + h) - y(v) - z(h) ; v, v + h e Uad. 

If we verify ||vv|| = o(h), then z(h) = y'(v) h is the differential of y in the sense 
of Frechet. 

Using (3.16), (5.5), (5.6) we have 

A(y(v)) w = C'(y(v)) (y(v + h) - y(v)) - [C(y(v + h) - C(y(v))] = 
I 

[C'(y(v)) - C'(y(v) + sn)] n ds , 
) 

where rj = y(v + h) — y(v). 
As \\y(v)\\, \\y(v + ft)|| are bounded for all v, v + ft e Uad (see (4.10)), the positive 

defmiteness of 4̂(y(*>)) and the form (5.3) of C'(y) rj yield the estimate 

where Kx is a constant. 
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The function ^ = y(v + h) - y(v) e V fulfils the equation 

(5.8) n - m + C(y(v + f?) - C(y(v)) = Mh . 

We have 

((C(y(v + h)- C(y(v)), n)) = ( ((C'(y(v) + «,) n, r,)) ds = 

= 2J" \\C2(y(v) + s^^\\2
0ds + 

+ J ({Ci{C2(y(v) + sti, y{v) + aj), if), if)) ds ^ 

^ -HCJ «C2|| max {«(1 - s)y(v) + s y(v + h)||2} ||if||2 Z 
S6<0,1> 

£ -ia2(l - y) ||»f||2 , 

after having used the estimate (4.10). Using the last estimate we arrive at 

((if -Ln + C(y(v + h)) - C(y(v)), if)) £ (1 - y) (1 - i«2) ||if ||2 

and (5.8), (3.7) imply 

(5.9) ||ij|| ^ K2|h|0 , K2 = C0[(l - y) (1 - -Ja2)]"1 

and comparing with (5.7) we obtain 

Ml = h(v + h ) ~ y(v) - zW)\ = °(h) • 
Thus we have proved the following theorem. 

Theorem 5.1. The mapping y(*) : Uad -> V determined by the equation y(v) — 
— Ly(v) + C(y(v)) = Mv, v e Uad, is Frechet differentiate for all functions v e Uad. 
The differential y'(v) h satisfies the equation 

(5.10) [I - L+ C(y(v))] y'(v) h = Mh 

for all h e l}(Q) such that v + he Uad, where Cf(y(v)) is defined in (53). 

6. UNIQUENESS OF THE OPTIMAL CONTROL 

Let us assume, moreover, that the functional f, j are Frechet differentiable, 
satisfying the conditions 

(6.1) </'(3>i) - /'(y2)f yt - y2> = m\\yi - y2f , m > 0 

for all yl9 y2 e V, 
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(6.2) (j'(Vi) - j'(v2), vt - v2)0 > N|». - v2\
2

0 , N > 0 for all vu v2 e L2(Q) 

and ,/' satisfies the growth condition 

(6.3) | |/ '(y)l* _ d0\\y\\ + dt for all y e V, 

where d0 and d± are some constants. 
If u e Uad is the optimal control, i.e. a solution of Problem P, then <J'(w), 

v - w>o _ 0 for all v e Uad. Let ul9 u2 be two optimal controls. Then 

(6.4) <Ј'(" j ) , V - И!>0 = </ ' (X" i ) ) , / ( « i ) (ľ - "l)> + 

+ (/(«.), - - и.)0 ^ 0, 

<J'(u2), v - u2y0 = </'(y(u2)), y'(u2) (v - u2)y + 

+ (/(w2), t; - w2)0 _ 0 

for all v e Uad-. 
Inserting u2, uj into (6.4) and adding we obtain 

(6.5) 0 ѓ </'(X«i)) - /'CK"a))> K"a) - X«i)> + 

+ (j'(«i) - / ( " г ) , "2 - "i)o ~ 

- </'CK"i))> K"a) - X"i) ~ Z("i) ("2 ~ "i)> -

- </'(X"a)), X"i) - X"a) - / ( " 2 ) ( " i - иa)> • 

Let us denote 

(6.6) Wi - y(u2) - y(ux) - y'(ut) (u2 - ut) , 

W2 - y(ui) " y(w2) - / ( t t 2 ) ( u ! - u2) , 

n = y(w2) - y(wx). 

We derive an estimate for wv Using (4.7) and (5A0) we have 

[I - L+ C'(X«i))] * i = C(X«i)) - C(y(u2)) + C'(y(u1))(y(u2) - y(uj) 

= f [C(_v("i)) - C'(X«i + sf)] »7 ds = ^ . 

The mean value theorem implies 

(6.8) — sup 
11*11-1 

( ( f C'(y(u1) + x(s)r,)(n,r,)SdS,h\) , т(s) є (0, s) , 

where the second derivative has the form 

(6.9) C"(y)(ri,n) = 2Cx(C2(n,ri),y) + AC1(C2(y,n),n) for all y,r,eV. 
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Using the estimate (4.10) we have 

(6-10) l ^ l l ^ a ^ i - ^ i i C j i i i C , ! ! ] 1 / 2 ! ^ ! 2 . 

Taking into account the positive definiteness (5.4) of the operator A(y(ut)) = I — L + 
+ C'(y(w,)), i = 1, 2, and (6.7), (6.10) we obtain the estimate 

(6-n) IN^K3(1-y)'1 l c i l l l l c2| |]1 / 2 | | ' . | |a . 
From (6.5), (6.6), (4.10), (6.1), (6.2), (6.3), (6.11) we derive the inequality 

(6.12) 0 <: {-m + [d0 a(l - y)1/2 (3||C.|| \\C2\\)-
1/2 + dj . 

. 3a[3(l - y)"1 ||C.|| \\C2\\Y'2} |M|2 - N\ut - u2\l . 

Setting h = MX — u2 in (5.9) we obtain 

(6.13) fl>-|| S c0[(l - y)(l - K G " 1 |«i - «2|o • 

It is now easy to deduce sufficient conditions for the uniqueness of the optimal 
control combining (6A3) with (6A2): 

Theorem 6.1. Let the functionals f, j be weakly lower semicontinuous with 
Frechet derivatives satisfying the conditions (6.1), (6.2), (6.3). If 

m > [d0a(l - y)1/2(3||C1|| \\C2\Y^ + dx] 3a[3(l - y)"1 flc.fl j |C2 | | ]"2 

or 

JV > {-m + [d0a(l - y)1/2(3||C.|| ||C2||)-1/2 + <f,] . 

. 3a[3(l - y)-1 flc.fl flc^]1/2} c2[(l - y)(l - -}a2)]-2 > 0. 

where 0 < a < 1, y is defined in (3.13), (3.14) and c0 in (4.2), then there exists 
a unique solution u e Uad of Optimal Control Problem P. 

7. NECESSARY CONDITIONS OF OPTIMALITY 

We assume that the functionals f, j are Frechet differentiate. As we have men­
tioned above (cf. (6.4)), if u e Uad is the optimal control, then the following relations 
hold: 

(7.1) <f(y(u)), y'(u) (v - u)> + (j'(u), v-u)0^0 Vv e Uad, 

(7.2) [I - L + C'(y(u))_] y'(u) h = Mh Mhe L2(Q). 

We recall that the operator A(y(u)) = I — L+ C(y(u)) is symmetric. Then the 
system (7.1), (7.2) can be rewritten in the form 

(7.3) (p + f(u),v - u)0 = 0 VveUa,, 

(7.4) [/ - L + C'(y(u))] p = 0tf(y(u)), 
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where 01 : V* -> Vis the Riesz representative operator and we have used the relations 

(f(y(u)), y'(u) (v - u)> = ((^/ '(y("))> / ( « ) (f> - u))) = 

= ((/4(y(u)) P, / ( M ) (» ~ «))) = ((P> A(y(u)) y'(u) (v - u))) = 

= ((p, M(v - «))) = (p,v- U)0 . 

If we add the state equation 

(7.5) y(u) - Ly(u) + C(y(u)) = Mu 

we obtain the optimality system (7.3), (7.4), (7.5) for Optimal Control Problem P. 
The equation (7.4) is the adjoint equation to (7.5), p e V is the adjoint state and 
(p + f(u)) represents the gradient J'(u). 

8. OPTIMAL CONTROL WITH RESPECT TO THE STRESS FUNCTION 

Let us rewrite the equation (3.16) in the form 

(8.1) y-L(F)y + C(y) = Mv, 

where L(F): V-> Vis the operator defined by (cf. (3.10)) 

(8.2) ((L(F) y, <p)) = B(F, y, <p) for all y, cpeV 

with a function F e H2(Q) and the trilinear form B defined by (cf. (2.5)) 

(8.3) B(F, y, <p) = [F12(y2<p1 + yxcp2) - F22yi<Pi - ^ i iy2^ 2 ] dx . 
J Q 

In Lemma 3.1 it was shown that L(F) : V-> Vis for every F e H2(Q) linear, self-
adjoint and compact, its norm being estimated by 

(8-4) IW-OIUK.TO = C4F||2 , 

where c4 depends only on the domain Q. 
Setting y = c4||E|]2 in Theorem 3.1 and using (3.7), we obtain 

Theorem 8.1. / / v e L2(Q), \v\0 < Co^flCjH | |C2 | | ) -1 / 2 and 

(8-5) | | E | | 2 < c 4 - 1 [ l - ( 3 c 2 | C 1 | | | C 2 | | H ^ 3 , 

then there exists a unique solution y = y(F) of the equation (8.1). Moreover, the 

estimate 

(8-6) \\y(F)\\S(l-c4F\\2)->Co\v\0 

holds. 
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Henceforth we shall assume that |v | 0 < c~ 1 (3 | |C 1 | | | | C 2 | | ) ~ 1 / 2 and v e L2(Q) is 
fixed. 

Let us consider the set of admissible stress functions 

(8.7) 0ad = {F \FeH2(Q), \\F\\2 ^ ac^[l - (3cS||C..|| | |C 2 | \v\2
0)

l/i]} , 

where 0 < a < 1 and c0, cA are defined in (4.2) and (8.4). 
We introduce the cost functional 

(8.8) 3(F) = f(y(F)) + ](F) , FeOad 

with functional ^ : V-> R, j : H2(Q) -> R. Now we can define: 

Optimal Control Problem P. To find a function F0 e Uad such that 

(8.9) J(F0) = min J(F). 
FeVad 

(8.10) y(F0) - L(F0) y(F0) + C(y(F0)) = Mv . 

Theorem 8.2. If the functionals f, j are weakly lower semicontinuous on V and 
H2(Q), respectively, then there exists a solution F0 e Uad of Optimal Control 
Problem P. 

Proof. We proceed in a similar way as in the proof of Theorem 4.1. 
Let {F„} c= Uad be a minimizing sequence for J: 

(8.11) limJ(F„) = inf J(F). 
E6vť 

Since the set Uad is a closed bounded ball in H2(Q), there exists a subsequence |FW} 
such that 

(8.12) i ^ - ^ o (weakly) in H2(Q), F0eUad. 

The set {y(F)} is bounded by 

(8.13) \\y(F)\\ g {1 - a [ l - (3cgfC.ll | | C 2 | | H o ) 1 ' 3 ] } " 1 c 0 |» | 0 VE e 0ai, 

as follows from (8.6), (8.7). 
Denoting 

(8A4) ym = y(Fm), m = l,2,..., 

we can find a subsequence {yk} such that 

(8.15) yk-*yo (weakly) in V, y0eV, 

(8A6) yk - L(Fk) yk + C(yk) = Mv . 
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As the imbedding Fez W1A(Q) is compact ([5]), we have 

(8.17) y*-+yo (strongly) in W1A(Q). 

Combining (8.17) with (8.12) and using (3.11) we obtain B(Ffc, yk, cp) -> B(F0> yo> <?)• 
Consequently, 

(8.18) L(Fk)yk-L(F0)y0 (weakly) in V 

holds by virtue of the relation (8.2). 
The operator C : V~> Vis completely continuous (see e.g. [4] — (5.13)). Then 

C(yk) -> C(y0) in V follows from (8.15). Passing to the weak limit with k -> oo in 
(8.16), we arrive at the equation 

(8.19) y0 - L(F0) y0 + C(y0) = Mv . 

From the uniqueness of the solution of (8.1) for F0 e Uad we conclude that y0 = y(F0) 
and yk -* y(F0) (weakly) in V. The rest of the proof is the same as that of Theorem 
4.1. 

It is possible to obtain similar results as in Chapters 5 — 7. The mapping y(m) : 
: Uad -> V, determined by the equation (8.1), is Frechet differentiable and 

(8.20) [I - L(F) + C(y(F))] y'(F) h = L(h) y(F) Vfe e H2(Q) 

holds, where C is defined by (5.3). 
If the functional f : V-> R satisfies the assumptions (6.1), (6.3) and the functional 

j : H2(Q) -> R is Frechet differentiable with a strongly monotone derivative, then 
a uniqueness theorem parallel to Theorem 6.1 holds for Optimal Control Problem P., 

In the end we introduce necessary conditions of optimality for Problem P. They 
have the form of the optimality system 

(8.21) B(F - F0, y(F0), p) + <r(F0), F - F0>2 ^ 0 for all F e Uad, 

(8.22) [I - L(F0) + C(y(F0))] p = ®f(y(F0)), 

(8.23) j;(F0) - L(F0) y(F0) + C(y(F0)) = Mv , 

where M : V* -> Vis the Riesz representative operator and < v > 2 denotes the duality 
between (H2(&))* and H2(Q). 
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Souhrn 

O PROBLÉMU OPTIMÁLNÍHO ŘÍZENÍ 
PRO KÁRMÁNOVY ROVNICE. 

II. KOMBINOVANÉ OKRAJOVÉ PODMÍNKY 

IGOR BOCK, IVAN HLAVÁČEK, JÁN LOVÍŠEK 

Je studována úloha řízení systému Kármánových rovnic pro rovnováhu tenké 
pružné desky, uložené různým způsobem na okrajích. 

Dokazuje se existence optimálního příčného, resp. bočního zatížení. Množina 
přípustných funkcí je zvolena tak, že stavová úloha má jediné řešení. Je podán důkaz 
diferencovatelnosti řešení stavové úlohy vzhledem k řídící proměnné, důkaz jedno­
značnosti za určitých podmínek a odvozují se nutné podmínky optimality. 
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