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RELATIVE CONDITIONAL EXPECTATIONS ON A LOGIC

OrGA NANASIOVA, SYLVIA PULMANNOVA

(Received January 13, 1984)

It is a well-known fact that by a quantum mechanical experiment the set of all
random events is no more a Boolean algebra, but a more general algebraic structure.
To describe a quantum mechanical measurement, a generalization of the classical
probability theory is needed. In the quantum logic approach, the set of random
events is supposed to be a quantum logic.

Conditional expectations play a basic role in the classical probability theory.
Some of the most important areas of the theory such as Markov processes and
martingales rely heavily on this concept. Although there has been much discussion
[16]—[21], conditional expectations have not been satisfactorily generalized to quan-
tum probability.

In this paper, we introduce the notion of a conditional expectation of an observable
x on a logic % with respect to a sublogic £, < % in a state m on &, relative to an
element a € & such that m(a) = 1 and %(x) U &, is partially compatible with
respect to a. This conditional expectation is an analogue of the conditional expectation
of an integrable function f on a probability space (2, &, ) with respect to a sub-o-
-field &, of &, relativized by a massive set A (i.e. u{A) = 1); that is, the conditional
expectation of f with respect to the o-field &, generated by &, and A.

1. BASIC DEFINITIONS

Let £ be a logic (an orthomodular o-lattice), i.e. a partially ordered set with the
first and last elements 0 and 1, respectively, with the orthocomplementation L: ¥ —
— % such that

(i) (a) =a
(ii) a < b implies a* = b*;
(i) a* va=1forall ae ¥&;

(iv) V a; exists in % for any sequence {a;};2, in &;
i=1
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(v) a < b implies b =a v (a* A b).

Two elements a, b from . are orthogonal (a L b) if a < b*, and they are compatible
(aeb)ifa=(a nb)yv(aanb)b=(annb)v(a" A b)If{b}7 isasequence

of elements of & and a € & is such that a & b; for all i = 1,2, ..., then a — V b,,

and a A (V b;) =V (a A b)(Cf.[1])
i=1 i=1

A set M < & is said to be compatible if a < b for any a, be M. A subset %,

i=1

of Lisasublogicif (i) a e £, implies a* € L,; (i) {a;}i2, = &, implies V a; € L.

i=1
A sublogic Z of % is a Boolean sub-c-algebra, if for any there elements a, b, ¢
of # the distributive law a A (b v ¢) = (a A b) v (a A ¢) holds. For any compat-
ible subset M of & there is a Boolean sub-g-algebra # such that M « 4 < &.
(Cr.[1])

A state on & is the map m: ¥ — [0, 1] such that (i) m(1) = 1; (i) m(V «,) =
i=1
= Z m(a;) for any sequence {a,};2; of mutually orthogonal elements of %.

An observable on & is a o-homomorphism from the Borel subsets %(%) of the
real line # to Z; i.e. a map x: %"(J?) — & such that (i) x(#) = 1; (i) x(E€) = x(E)*

for any E € #{%) and (iii) x( U E)= V x(E;) for any sequence {E;}{%, of %(%).

If x is an observable and f. R — R is a Borel measurable function, then the
map f(x) = xof "1 B(R) »> £ is also an observable. It is called the function f
of the observable x. The range of an observable x, #(x) = {x(E);E € B(%)},
is a Boolean sub-g-algebra of .. A Boolean sub-c-algebra of & is the range of an
observable if and only if it is countably generated; and Z(y) < %(x) implies that the
observable y is a function of x, i.e. there is a Borel function f: # - £ such that
y = f(x). (Cf. [1].)

If x is an observable and m is a state on &, then the map m,: Z(%) — [0, 1]
where

m(E) = m(x(E)),

is a probability measure on %(%). It is called the probability distribution of the ob-
servable x in the state m. The expectation of x in the state m is

(1) m(x) = J m ()

if the integral exists. The observable x on & is called integrable in the state m if
m(x) exists and is finite. If f is any Borel function on %, then

2) m(f(x) = f 1(2) m(d4),
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if the integral exists. The observable x is called square integrable in the state m, if

(3) m(x?) = j@lzmx(di)

exists and is finite.

Let ae %, a # 0. The set Lo, = {beL:b < a} is a logic with the partial
ordering inherited from %, with the greatest element a and with the relative ortho-
complementation b’ = b* A a, be Z[, . If x is an observable on £ such that
x < a (i.e. x(E) & a for any E € (%)), then the map x A a: B(R) - Lo,

Er x(E) A a
is an observable on the logic £, ,;. If m is a state on & such that m(a) = 1, then the
restriction of m to Lo 4 is a state on Lpg 4.

Letae %, a + 0and let M = % be any subset. We say that M is partially com-
patible with respect to a (M is p.c. (a)) if (i) M <> a (i.e. b <> a for all b € M) and (ii)
the set M A a = {b A a: be M} is compatible. It can be easily seen that the set
M A ais compatible in £ if and only if it is compatible in the logic &£ -

Let F = {ay, a,,...,a,} be a finite subset of . Let us put D = {0, 1}, d =
= (dy, dy,....,d,)e D", a® = a*, a' = a (a € &£). The element
(4) com(F) =V a* A a2 A ... A air

deD®
is called the commutator of the set F. It was shown ([2], [3]) that F is p.c. (com (F)).

The logic % is called separable if any subset of mutually orthogonal elements
is at most countable. If {aa; aE A} is a subset of a separable logic &, then there is
a countable subset I = A such that V a =V q,, (similarly, A a = A a); see [4].

acAd ael aEA ael

Any Boolean sub-g-algebra of a separable logic is countably generated, so that it is
the range of an observable.

Now let M be a subset of a separable loglc %. For any finite subset F of M let
the commutator com (F) be defined by (4). Then

(5) com(M)= A  com(F)

{F<M; F finite}
is the commutator of the set M. Again it was shown that M is p.c. (com (M)), see [2].
2. CONDITIONAL EXPECTATIONS

Let (2, &, 1) be a probability space. Let f € Z,(u) and let #, be a sub-o-field
of &. The conditional expectation of f with respect to &, is a function g € Z,(y)
such that '

(i) g (B(#)) =« S0 (ie. g is &-measurable),
(i) J (@) W(dw) = Lg(w) i(dw) for any Be &,
We shall write g := Eu(f/%).
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Let x be an observable and m a state on .%. For a € &, we shall define the expression
{4 x dm as follows:

) .[ xam: = J im(x(d3) A a),

if the integral on the right hand side exists. This integral makes sense if (1) v:iE>
— m(x(E) A a), E € B(R) is a measure on B(R); (ii) the function f(2) = 4 is inte-
grable with respect to v.

It can be easily checked that if x is integrable with respect to m and x « a, then
the integral exists. We shall need the following lemma.

Lemma 1. Let x and y be observables on & such that x <y (i.e. x(E) < y(F)
for all E, F € B(R)), and let a € & be such that x < a and y « a. Then

(1) L.\-dm +Ly dm =L(x y)dm.

Proof: By the suppositions, M := %(x) U %(y) U {a} is a compatible subset
of #. This implies that there is a Boolean sub-g-algebra # of % such that M < 4.
Moreover, there are an observable z, Borel functions f, g and a set A € #(%) such
that x = f(z), y = g(z), a = z(A) (see [1]). We have

J(x + y)dm = J‘%Am((x + ¥)(dA) A a) = ‘[ im(z(f + g~ (d2)) A z(A)) =

= J m((f + g)" " (dA) n A) .

Put W(E) = m,(E n A), E € B(#). Clearly, v is a measure on %(%) and we have

j Im(f + 0)"1 (@2) ) = [ (7 + 9) 1 (42)) = j (f + 9) (1) o(ds) =

o
~

= ‘f(t) v(dr) +J g(1) v(dt) =

- M(f1(dA)) + J Av(g™! (dA)) =

2

_( im(f71(d2) n A) + f Am,(g ~}(d2) N A4) =

~

= | im(x(d2) A a) +j Am(y(dA) A a) =

vz 3

= xdm+fydm.
a a
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Let x, m, %,, a be an observable, a state, a sublogic and a non-zero element
of a logic &, respectively, satifying the following conditions:

(i) Z(x)w £, is p.c. (a);

(ii) m(a) = 1;

(iif) x is integrable with respect to m.
Condition (i) implies that (2(x) U £,) <> a and (Z(x) U Z,) A a is a compatible
subset of &, ,;. Let us denote by x A a the map x A a: Er X(E) A a, E € B(R).
Then x A «a is an observable on the logic %}, ,;. There is a Boolean sub-o-algebra
2 such that (#(x) U %) A a € B = L, 1. By the Loomis theorem [1], there is
a measurable space (2, &) and a o-homorphism h of ¥ onto %. Moreover, there is
an Y-measurable function f: Q — Zsuchthatx Aa = hof L. Put L, A a = By;
A, is a Boolean sub-g-algebra of 4, and let &, = {E € ; h(E) € B,}. If we define
W(E) := m(h(E)), Ee &, then (Q, &, p) is a probability space by (ii). Furthermore,

Lf(w) pdo) = Ltu(f-l(dt)) = Ltm(ho SN (dn) = J tm((x A a)(df)) =

= Ltm(x(dz) A a) =Jatl77x{df) = m(x)

by (ii), and by (iii) f is integrable. Hence, there is a conditional expectation g := E,(f/¥)
of f with respect to ¥, and h o g~ ' is an observable on Z[, ,; with the range in %,,.
Let us define

(8) Z(E) = h(g~E)) v w(E) A a*, Ee%B(R),
where
9) . f1if 0eE

WE) =10 ir 0¢E

It can be easily checked that z is an observable on %. Moreover, z <> a and
A(z) A ac £y A a.LetbeZ,, then

(10) Lx dm = L/Zlm(x(dl) A b).

As x & a and b« a, we have x(E) A b« a, so that x(E) A b = (x(E) A b) A
A a v (x(E) A b) A a*, and by (ii), m(x(E) A b) = m(x(E) A b A a) =
= m((x(E) A a) A (b A a)). As x(E) A a<> b A a, the map E— m((x(E) A a) A
A (b A a)) = m(x(E) A b) is a probability measure on %(%), so that the integral
in (10) exists.

Now

(10') dem =Lzm(z(dz) A b).
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Using the fact that z(E) A ae £, A a, so that z(E) A a< b A a for be %,
we show that the integral (10") exists. Further, we have

Lxdm - J nl@) ~ 0 b) = j mi(x ~ a) (@) A (b A @) =

R

= [ Am(h o f7H(d2) A h(A)) = Jf(w) p(dw),

v R

where 4 € &, is such that h(4) = b A a.

But
f f(w) tldo) = [ glw) u(dw) = j g™ (dh)  4) =
a Ja @
= | im((z A a)(dd) A (a A b)) =
R
= | m{z(d2) A a A b) = jzdm.
Ja b
Hence
(11) J‘ xdm = J zdm
b b
forany b € &,,.

This construction enables us to introduce the following definition.
Definition 1. Let x, m, £,, a &= 0 be an observable, a state, a sublogic and an
element of a logic &, respectively, such that the following conditions are satisfied:
(i) the set (2(x) U Z,) is p.c. (a);
(i) m(a) = 1;

(iii) x is integrabe with respect to m.

The conditional expectation of the observable x in the state m with respect to %,
relativized by a, denoted by E,(x/<Z,, a), is any observable z on & such that

(a) zea;

(b) 2(z) A a = &y A a;

(¢) [xdm =szm forany be %,.
b

vb

The above construction shows that the conditional expectation exists. To discuss
the uniqueness, we need some preliminaries.
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For a,be % put a Ab = (a* A b) v (a A b*). For the observables x, y on &
we shall write x ~ y (m) if

(12) m(x(E) Ay(E)) = 0 for any Ee B(Z).

Lemma 2. Let x, y, z be observables on & such than (#(x) v #(y) U %(z)) is p.c.
(a) for some a e &£; and let m(a) = 1. Then x ~ y (m), y ~ z(m) implies x ~ z (m).

Proof. First we prove the lemma in the special case a = 1. If b, ¢, d are compatible
elements of #, then bAd = (b Ac) v (c Ad), so that m(x(E) Ay(E)) = m()(E)
Az(E)) = 0 implies m(x(E) Az(E)) = 0 for all E € B(%).

Let 0 <a < 1. Then x A a, y A a, z A a are mutually compatible observables
on %, . S0 that, by the above part of proof, x & y(m), x & z(m) implies

m((x A a) (E)A(z A a)(E)) =0 forall Ee%(%).
But

m(x(E) Az(E)) = m(x(E) Az(E)) A a) = ((x A a)(E)A(z A a)(E)) = 0.

Lemma 3. (See [5].) Let gy, g, be two Fy-measurable functions on (Q, &, 1),
and let

ngdu=fgzdu forany Be%,.
B B

Then p(g7 '(E) Ags '(E)) = O for any E € B(%).

Proof. Put B, = {we Q;g,(0) > g,(»)}, B, = {weQ; g,(w) < ga(w)}. As
B, UB,e %y, [p(9: — g,)du =0 for any By, = B, UB,, Bye%, hence
H(By U B,) = p{w; g,(w) * go(w)} = 0. As g7 '(E) Ag; '(E) = B, U B,, We obtain
the desired result.

Theorem 1. Let z; and z, be two versions of conditional expectation E,,,(x/go, a)
by Definition 1. Then z, ~ z, (m).

Proof. Wehavez, <> a,z; > aand Z(z,) A a = Lo A a,B(z;) A a © L A g
As %o A a =%, is a Boolean sub-g-algebra of &, ., z; A @23 A a. Let
(Q, %) and h: & "%, @, be given by the Loomis theorem, and let g;: Q — R,
gt Q@ — & be P-measurable functions such that z;, A a = hogi' and z, A g =

= hog;'. Then, as z,(E) Az,(E) < a for any E € B(%),
m(z; A a)(E)A(z, A a) (E) = m(hog7'(E) Ah o g5 '(E)) =

= m(h o (97 '(E) g3 '(E))) = u(g: '(E) Ag; '(E)) = 0
but :
m((zy A a)(E) Az, A a)(E)) = m(z,(E) Az,(E)).
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The last but one equality follows by Lemma 3 if we apply it to the functions g, and
g, on (2, %, ) with p:=mo h.

Corollary 1. Let x, m and &, be an observable, a state and a sublogic of a separ-
able logic &, respectively. If we put a = com (%(x) U Z,), and m(a) = 1, then
the conditional expectation E,(x|%,, a) exists, provided x is integrable with
respect 1o m.

Proof follows by the fact that (%(x) U Z,) is p.c. (a).

We note that, owing to the separability of ., we can replace the abstract space
(Q, #, n) by the space (%, B(%#), m,), where v is an observable on %, ,;, When
constructing conditional expectations.

We shall write

(13) E,(x|%,) := E,(x] %, com (%(x) U ZL,)) .

Lemma 4. Let y = E,(x|%,, a) and let #(x) A a = £, A a, where &, = &,.
Then #(y) A a € £, A a.

Proof. The lemma can be proved by repeating the construction of conditional
expectations preceding Definition 1.

Theorem 4. Let &, < &, be two sublogics of a separable logic &- Let x be an
observable and let a; := com (#(x) U &), a,:= com (R(x) U ;). Let m be
a state on & such that x is integrable with respect to m and m(a,) = m(a,) = 1.
Then

E(En(x] 21, a1))| L2, a5) = E (x| £, a5) =

R E(En(X| 25 a3)| %1, a3) (m)
and

E(x|Z1, a3) A ay & Ey(x|Z1, a,) A ay(m).

Proof. Clearly, a; = a,. Let us denote y, := E,(x/Z, a), y, := En(x[Z2, a3),
y = E,(x| £, a,). We have Z(x) U £, < R(x) U £,, so that (#(x) © Z,) is p.c.
(a3), and y exists. As a, «» £, and a, < a,, we get that a, < Z(y,). Indeed, Z(y,) A
ANayc Py Aagc &y Aay, so that %(yy) A a; <> a, and H(y;) A at <
< af < a3, which implies that y, <> a,. Moreover, (%(y;) U &,) i p.c. (a,) as
R(y)) Aay=Ry)Aa,Aayc Ly Aa,c Ly Aay, and £, 18 pe. (ag).
Hence y; := E,(y;/ %>, a,) exists. By Lemma 4, #(y}) A a, = % A a, and for

ae ¥,
jxdm: [y1d171 = [y}dm.
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However, Z(y) A a, © £ A a, as well, and for a€ <,

jxd;n=jydm.

Hence we obtain that y; and y, are two versions of E.{x| %1, a,), so that
Em(Em(x/gls (11)/22, a2) x Em(x/gl’ az) (”1) *

Now let y) = E,(y2]Z1, ay). It is defined because Z(y,)u £y < R(y,) 0 2L,
is p.c. (a,). Then 2(y5) A ay = £y A a, = £, A ay, and for ae £, we have

jy2d111=jy;dm.

a a
jyzdn1=de171=jydn7,
a a a

so that E,(E,(x/%,, a,)[ %y, ay) = E, (x| £, a) (m).
Now Z(y,) A ay = (y,) A ay A ay © Ly Aag Ady =%y Aay, and

jxdm:j‘yldm="\ydm

for any ae%,. Finally, y,y, < a,, a < a,, m{a,) =1 imply m(y(E) A a) =
= m{y(E) A ay A a), m(y,(E) A a) = m{y,(E) A a, A a), so that

j‘yxdmzj V1 /\azdm-—-J‘ydmzj Yy A aydm
a anay a anaz

for any a € &, which implies that

However, for a € &4,

E(x|Z1, a3) A ay = E(x[ Ly, a;) A ay(m).

3. CONDITIONAL EXPECTATIONS ON SUM LOGICS

Let % be a logic and M a set of states on £. M is said to be quite full for £ if
(14) {meM;m(a) =1} = {meM;m{b) =1} implies a<b, a,be?;
and the set M is said to be full for & if
(15) m(a) £ m(b) forall meM implies a <b, a,beZ.
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Let M be a quite full set of states. For an observable x we put D(x) = {m e M;
m{x*) < c}. We say that the observables x,, x,, ..., x, are summable if the set
{(x,) n D(x;) ... D(x,) is full for &#. An observable z is called the sum of

n
Xgs X35 ..y X, il D(z) 2 D(x;) 0 D(x;) ...~ D(x,) and m(z) = Y m(x;) for all
i=1
me D{x;)n...n D{x,). We write z = x; + x; + ... + x,. Let & be a logic and
M a o-convex quite full set of states. The couple (2’, M) is called a sum logic if for
any finite set x,, ..., x, of summable observables there is a unique sum. For the
details on sum logics see [6], [9]. If summable observables x, x,, ..., X, are compat-
ible, then their sum according to the above definition agrees with their sum defined
by the functional calculus for compatible observables.
In the sequel we shall suppose that (£, M) is a sum logic and the following condi-
tions are satisfied:
(oc) a <> x, a <>y implies a <> x + y for any summable observables x, );
(B) if 2(x) U #(y) is p.c. (a), where a € &, a =+ 0, then

xAa+yArna=(x+y)Aa.

For example, the logic #(#’) of all closed subspaces of a Hibert space # satisfies
(o) and (B).

Lemma 5. Let x, y be summable observables and let z = x + y. Let a + 0 be
such that (#(x) v %(y)) is p.c. (a). Then the set (#(x) U #(y) v %#(z)) is p.c. (a).

Proof. By (a), a < %(x) U Z(y) implies a <> %(x + y), and by (B), z A a = x A
Ada+y Aa But x A aey A a,so that there is a Boolean sub-c-algebra 4 of
Lyo.a1 such that (#(x) U Z(y)) A a = #. This implies that Z(x + y) A a = 4,
i.e. (%(x) v 2%(y) v %(z)) is p.c. (a).

Theorem 3. Let x, y be summable observables on a sum logic (3, M) and let
z=x+y Letac¥, meM and £, = £ be such that m e D(x) n D(y), (Lo L
U A(x) v A(y)) is p.c. (a) and m(a) = 1. Then

(i) fE,,,(x/.,?o, a)dm + J E,(y| %, a)dm = jEn,(z/EO, a)dm for any be Z,;
b b

b

(i) if & is separable and a = com (%(x) L #(y) U L), then

j E,(x|%,, a,)dm +f
b

E(y|%0, ay) dm = f E(z] %, as)dm,
b

b
where a; = com (%(x) U Z,); a, = com (R(y) UZL,), a; = com (%(z) U &L,), or
with respect to (13),

j E,(x| %) dm + j
b

b

En(y]%0) dm = j En(z|%0) dm.
b
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Proof. Similarly as in the proof of Lemma 5. we show that (%(x) U #(y) U
U A(z) U L) is p.c. (a), so that E,(z|Z,, a) exists. Let us define v, := E,(x/Z,, a),
v, 1= E,(y[%,, a), V3 := E,(z|%,, a); the inclusions #(v;) A a = Ly A a, i=
= 1,2,3, imply that v; A a, i = 1, 2, 3, are mutually compatible. Let # = (2(x) U
UAY) U Lo) A a, Bo= Lo A a, and let (Q, F) and h: S "> # be defined
by the Loomis theorem. Let x = hof™ 1, y = hog™!, where g,/ Q > % are
measurable functions. Let h™(#,) = Fo. Thenvy A a = ho E(f[%0) ", v, A a =
=hoE(g]%0)" " vs A a=hoE(f + g/Fo)""; pis defined by u(B) = m(h(B)),
B e &. Hence we obtain that

ViAa+ Vv, Aax vy Aa(m),
which implies that

J.v1 dm +j v,dm =J‘v3 dm forany be %,.
b b b

This shows (i). We note that as follows from the construction preceding Definition 1,
there are compatible versions of v, = E,(x/%,, a) and v, = E,(y/%,, a), so that
v, + v, exists and we can write v, + v, & v (m).

(i) Clearly, a <a; for i=1,2,3. By Theorem 3, E,(x/%y a)A a~x
~ E,(x|%,, ay) Aa(m),E,(y| L, as) A a = E,(y| Ly, a) na(m),E,(z] %o, a3) A
A a R E,(z[%,, a) A a(m), which together with (i) implies (ii).

4. MEASURABLE SUBSPACES

Let (%, M) be a sum logic with the properties (o) and (B). 4 sublogic %, of ¥
will be called a sum sublogic if #(x{) L %(x,) U ...0 A(x,) = £, implies
R(xy + x3 + ... + x,) = L, for any sumable observables x,, x,,...,x, on Z.

For m e M, we denote by X,(%) the set of all square integrable observables, i.e.

(16) X,(Z) = {x; m(x?) <0} .

By the definition of the sums, D(x; + ... + x,) = D(x;) n D(x,) N ... " D(x,),
so that x; + x, + ... x,€ X,(¥) provided xy,x,,...,x,€X,(%) and they are
sumable. We shall call X,,(#) a measurable space.

Let £, = £ be a sum sublogic. We put

(17) X (ZLo) = {xeX,(&); A(x) <= Lo}

and we shall call X,(%,) a measurable subspace of X,(%).
For sumable observables x, y we put

(18) M(x, y) = Hx + y) + 3|x — y|,
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where by |x| we denote the function f(x) of x with f(t) = |i|, te®. If x>y
and x = g(z), y = h(z) for an observable z, then M(x, y)=zo(3h +g) +
+ 3|h — g|)™' = zo(max (h, g))”'. It can be easily seen that M(x, y) exists for any
sumable x, y. We recall that a sequence {x,},-; of observables converges to an
observable x everywhere if
(19) lim sup (x, — x)([—¢&,¢]) =0

n-»o0

for any & > 0(see [7]).

Lemma 6. Let {x,,}ff’:,, X be mutually compatible. If x, — x everywhere, then
for any functional representation x,, = f,(z),x = f(2), f,(t) = f({) Vt ¢ M, z(M) = 0.
On the other hand, if f, — f everywhere for some representation, then x, — x
everywhere. If x,— x and x, -y everywhere and {x,} ., x,y are mutually
compatible, then x = y.

The proof of this lemma is straightforward.

For a € &, let x, denote the simple observable such that x,{1} = a, x,{0} = a*.

The following theorem gives a characterization of measurable subspaces analogous
to the characterization of measurable subspaces in the probability theory (see [8],
Theorem 3).

Theorem 4. A system Y < Xm(g) is a measurable subspace if and only if the
following conditions hold:

(i) If xy, x3,..., X, € Y are summable, then
Xy + dpxy + ... +a,x,€Y forany oy, ...,0,€X%.
(ii) The unit observable x4 € Y. .

(iii) If {x,}2, = Y are mutually compatible, %(z) is generated by U %(x;),
i=1

and x, = f(z), n = 1.2,... for measurable functions f, such that f, - f in
LR, B(R), m,) (i.e. [4(f, — ) (A) m(z(dR)) — 0), then f(z) € Y.
(iv) If x, y € Y are summable, then M(x, y)€ Y.

Proof. I. Let Y be a measurable subspace, i.e. Y = X, (%) for a sum sublogic
Zo of &£. Then (i), (ii) and (iv) follow immediately. To prove (iii), observe that
©
U 2(x,) = &, implies %(z) = &L, hence f(z) € Y.
n=1

IL Let Y satisfy the above conditions (i)—(iv). We denote by &, the system
of all elements a € & such that x,e Y. If x,e€ Y, then x,, = x; — x,€ Y,ie.ae &,
implies a* e Z,. Let a L b, a, be . It can be easily seen that x, + X, = Xsvp
so that a v be %, Now let {a,}7, = %, be a sequence of mutually orthogonal
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k
elements. We haveV a;e %y, k=1,2,.... As x
i=1
compatible, their ranges generate a Boolean sub-g-algebra 4 < &. Let # = .%(z),
and let A4,, n =1,2,... be Borel sets such that x, = x,(z), n =1,2,.... The
observables x, =y, (z)areinY. Asy, >y pointwise and theyare majorized
i!lai iglAi ililAi iEiAi

by 1, they convergealso in & ,(2, %(2), m,). This implies by (iii) that x (Z)

n=172. .., are mutually

ay,’

n<2,

€Y, ie Va, e, 2 ‘
i=1
Let us consider an arbitrary x € Y and denote by a the element a = x([0, c0)).
The observable M(x, x,) = g(x), where g(f) = max (1, 0), is also an element of Y.
Furthermore, for each n = 1, 2, ... we define the functions

g(i) = n . min <g(t),%> .

From the conditions assumed it follows that with two summable observables x, y,
Y contains also the observable u(x, y) = 1/2(x + y) — 1/2|x — y|, therefore g,(x) =
=n.pug(x),(1/n) x,)e Y. It is easily seen that g,(1) - y(r) pointwise, where
A = [0, ). As 0 < g,(1) < 1 for all 1 € %, they converge also in &,( %, B(#), m,),
ie. m{(g,(x) — x4(x))*) = 0 (n > o0).

Now let z be the observable such that %(z) is generated by U Q(g,,(x)) and let

measurable functions f, be such that g,(x) = f(z), n = 1,2, ..., By Lemma 6, {f,}
converges pointwise to some function f, (with a possible exception of a set B such
that z(B) = 0) and f(z) = y,(x). This implies that f, — fin &,(2, # %), m.), so
that (iii) yields f(z) € Y, i.e. z4(x) = x, € Y. Hence a € &,,.

If ¢ is an arbitrary real number, we denote f(t) = t — ¢, 1€ #. Then f(x) =
= x — cx, € Y provided x € Y, and b = x([¢, 0)) = x(f; '[0, 0)) = f.{x) ([0, o0)).
From the previous part of the proof, we conclude that b e %,

By [9], on the sum logic (x, + x,) {2} = a A b. Let a,be %,. Then a A b =
= (x, + x) ({2}) = (x4 + %) ([2, 0)) € £,. Summing up, we have proved that
Z, is a sublogic of . The fact that x([¢, o)) e &, for all c€Z provided xe Y
implies that %(x) = Z,. Hence Y = X,(&,). The theorem will be proved if we show
that Y = X,(%,). For each simple observable x € X,(%,) we have xe Y. Any
observable x can be written as x = f(x), where f(f) = t or 0 if 1€ o(x) or t ¢ o{x)
and o(x) is the spectrum of x. Using the fact that a characteristic function y(x),
A € B(2), of the observable x is a simple observable, we show step by step that
simple functions, non-negative functions and eventually the functions of
Lo(R, B(Z%), m,) of the observable x are elements of Y provided x € X,,(%,). Then
also x = f(x) e Y.

In what follows we shall need some lemmas.
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Lemma 7. Let x, y be such observables that #(x) U A\y) is p.c. (a) and m(a) = 1.
Thenx ~ y(m)iff m{(x A a — y A a)?) = 0.If, in addition, x and y are summable,
then x ~ y (m) iff m{(x — y)*) = 0.

Proof. Let x &~ y (m). This means that m(x(E) Ay(E)) = 0 for all E € ##). Then
0 = m(x(E) Ay(E)) = m{(x(E) Ay(E)) A a) = m(h(f~Y(E) Ag~(E))) for any Ee
€ B(R), where (Q, &), h: & — 2 exist by the Loomis theorem, 4 is a Boolean sub-o-
algebra of %, ,; which contains the ranges of x A a and y A a, and x A a =
=hof 'y Aa=hog ', f,g:Q — % are measurable functions. But m’h(f~'(E)
Ag~YE))) = 0 for all Ec % %) implies that m’h{w; f(w) + g(w)}) = 0, and this
means that

m((x A a—y A a)?) :f Zm((x A a—y A a)(dd) =

R

- J 22m(h(f — )™t (d2) =J (f = 9)> m(h(dw)) = 0.

2]

The converse statement can be proved similarly. If x and y are summable, then

m((x — »)?) = f 22m{(x — ) (d2)) = J 2m{(x — y) (d2) A a) =

2 R

:Jalzm((x Aa—ynAa)(di)=mxAa—ynAa)’.

Lemma 8. Let %, be a sum sublogic of &, which is p.c. (a), and m(a) =l
Let x,,...,x, and y,, ..., y, be two n-tuples of summable observables in X,(Z,).
If ;2 y; (m), i=1,..,n, then x; + x, + ... + X, ® yy + y, + ... + y, (m).

Proof. As x; ~ y;(m), i = 1, ..., n, we have by Lemma 7 that m((x; A a — y; A
A a)?) = 0. The statement can be proved by using the functional representation for
x; Aaand y; A a,i=1,...,n, asin Lemma 7.

Lemma 9. Let x ~ y (m) and let f: # — & be a Borel function. Then f(x) ~
~ f(y) (m).

Proof. From x &~ y(m) we have m(x(E) Ay(E)) = 0 for any E € %(%). This
implies that m(f(x) (E) Af(y) (E)) = m'x{f~Y(E)) Ay(f~*(E))) = Oforany E € Z(Z),
ie. f(x) = f(y) (m).

Let £, be a sum sublogic of a sum logic (£, M), which is p.c. (a) for some a € &,
and let me M be such that m(a) = 1. (We may put a = com (&,) if it exists).
Lemma 2 implies that the relation x &~ y (m) is an equivalence relation on X,,(%,).
We shall denote by )?m(.,ipo) the set of all equivalence classes, i.e.

(20) XA(ZLo) = {X;xeX, (L)} .
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We define the sum on X,,(#,) as follows: we shall say that elements X, ..., %, €
€ )7,,,(,?0) are summable if there are summable representants xy, ..., x, of X5, ..., X,,
respectively; and we put
(21) [+ 5L+ . FHX =8,

where x = x; + ... + x,. Lemma 8 implies that the sums are well defined.
For % € X,(%,) we put m(%(E)) = m(x(E)), E € #(%), where x is any representant
of X.

Lemma 10. The map E — m(X(E)), E € #(%), does not depend on the choice
of the representant x € X.

Proof. Let x, y € X. Then for any E € #(%), 0 = m(x(E) Ay(E)) = m((x(E) A a)
A(Y(E) A a)). As x(E) A a <> y(E) A a, this implies that m(x(E) A a) = m(y(E) A
A a) ie. m(x(E)) = m(y(E)).

The map E — m(x(E)) is a probability measure on %(2). It can be treated as
the probability distribution of the element X e)?,,,(go). For any Borel function f
we have m(f(x) (E)) = m(f(x) (E)) = m(x(f"*(E))) = m(%(f~*(E))), where f(x)e

€ f(x) is any representant. By Lemma 9, we may put
(22) f(x) = 1(5).

The following theorem gives the characterization of conditional expectations as
transformations of measurable subspaces (see [8], Theorem 6).

Theorem 5. Let (£, M) be a sum logic. Let Q be a sum sublogic of &, let ae Q
be such that Q is p.c. (a) and m € M such that m(a) = 1. A transformation T of
)?,,,(Q) into-itself is a relative conditional expectation (with respect to a sum sublogic
Lo < Q such that a e £,) if and only if it satisfies the following conditions:

(i) T is idempotent (i.e. T> = T);
(il) TX, = %, and TX, = X,;
(iii) if Xy, ..., X, € X,,(Q) are summable, then
T(oy %y + oo + 0,%,) = 0, T%y + ... + 0, TX, forany oy, ...,0,€R;

(iv) if %, 7 € X,(Q) are summable, then T(M(TZ, Ty)) = M(TZ%, T§);
(v) if {Z )1, X € X,(Q) and m((%, — X)) - 0 (X,, X are supposed to be summ-
able), then m((T%, — TX)?) — 0.

Proof. 1. Let us consider the conditional expectation E,(x/Z,, a) for x € X,(Q),
where ¥, = Q is a sum sublogic such that a € &#,. It is easily seen that there is
a version of E,(x/ %, a) with the range in £, thus we can suppose that E,(x/ %, a) €
€X,(Z,). (Using the functional representation we can show that the conditional
expectation of a square integrable observable is square integrable.) We shall show
that x, ~ x, (m) implies E,(x,/ %, a) & E,(x5/Zo, a) (m). Let y, = E,(x,/Z,, a),
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V2 = E,(x3]/ %0, a). x; & x, (m) implies that [, x, dm = j, x, dm for any be Z,.
Hence we obtain that [, v, dm = [, y, dm for any be Z,, ie. yy ~ y,(m). If
S ———

we put TX = E,(x/%,, a), then Tis the map from X,(Q) into X,(Z,). Now we shall
prove that T has the properties (i)—(v):

(i) If x € X,,(Z,), then clearly E,(x/%,, a) ~ x(m). Thisimplies that the map T
is onto and it is idempotent.

(if) This follows from the fact that x,, x, € X,,(%,) and from (i).

(iii) It can be easily checked that E,(ax/%,, a) = oE, (x| %o, a), o€ Z. If x,, ...
..., X, are summable elements of X,(Q), then there are summable versions of
E, .(x]%o a), i =1,...,n. (i) follows by Theorem 3 (the generalization of
this theorem to any finite set of observables is straightforward) and Lemma 8.

(iv) Let x, y be summable observables from X,,(Q). As E, (x| %, a) and E,(y[Z o, a)
have the ranges in %, M(E,(x]%,, a), E,(y|Z,, a)) also has the range in .
This implies that E,(M(E,(x/%,, a), E,(y[Z,, a))|ZL,, a)) ~ M(E,(x| %, a),
E,(y|%,, a)) (m). Lemmas 8 and 9 imply that for x, &~ x, (m) and y, ~ y, (m)
we have M(x,, y,) & M(x,, y,)(m). Hence T(M(TZ, Ty)) = M(TX, T7).

(v) To prove (v) we shall use the functional representation. The set Z = Q A a
is a Boolean sub-c-algebra of %, . Let %, = £, A a = #. By the Loomis
theorem, there is a measurable space (£, ,V) and a g-homomorphism h: &% — 4.
Furthermore, for any observable x € X ,,,(Q) there is a measurable function f.: Q - 2
suchthat x A a = hof7'. Let #, = h™'(%,) and p = m o h. Let {x,}, x = X,,(Q)
and let x,, x be summable for n = 1, .... Then

m((x, — x)*) = L’lzm((x,, — x)(da)) = 'L(fx" — f)?dpu - 0(n > )

implies that
J(Eu(fx"/yo) — E(/190))* du = m((E(x,/ %0, a) = Eu(x]Z0a))?) = 0

(n — o). Lemma 10 then shows that m((T%, — T%)?) - 0 (n — ).

II. Let T be a transformation of X,(Q) into itself with the properties (i)—(v).
Let us put ¥ = {x € X,,(Q): TX = %}.

We shall show that Y is a measurable subspace. We have to show the properties
(i)—(iv) from Theorem 4.

If x,,...,x,€Y and they are summable, then by (iii), T(o;%; + ... + 2,%,) =
=o,T% + ... + ¢,TX, = 0, %; + ... + o,%X,, so that o;x, + ... + a,x,€Y for
any oy, ..., o, € 4. (ii) implies that x; € Y.

If {x,};>; = Yand m((x, — y)*) - 0 for some y € X,,(Q) then m((%, — §)*) - 0
by Lemma 10. This implies by (v) that m((T%, — T7)*) — 0.1t can be easily checked
by that § = TJ, i.e. ye Y.If x, y e Y are summable, (iv) implies that M(x, y)e Y.
This shows that Y is a measurable subspace, i.e. there is a sum sublogic &, = Q
such that Y = X,,(Z,). x, € Y implies that a € Z,,.
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To show that Tis the conditional expectation, we use the functional representation
introduced in part 1 of this proof. For %€ X,(Q) we put Tf; = frz Thus we get
a transformation of Z,(Q, &, u) into itself. It can be easily checked that this trans-
formation has the properties (0), (1), (2) from Theorem 6 in [8]; hence fr; is the
conditional expectation of f;. This implies that T is the conditional expectation.

5. CONCLUDING REMARKS

[. In [11] and [12], another approach to the characterization of conditional
expectations on probability spaces is given. In these papers, the operation of multiply-
ing two functions is used. For the observables on the quantum logic no product
is defined unless the observables are compatible. On the sum logics, the Segal [9]
product could be used, i.e. the operation defined by

®) xoy =3(x + ) = (=),

where x, y are observables on #. But this operation is well defined only for bounded
observables and, moreover, it may be non-distributive with respect to the addition
of observables. For these reasons, the approach in [8] is much more suitable for
our purposes.

2. The observables x and y are said to have a joint distribution of type 1 in a state
m if there is a measure on the Borel subsets 2(%?) of %7 such that

(24) W(E x F) = m(x(E) A y(F))

for any rectangle set E x F € Z(#”) (see [13], [14], [15]). The following theorem
gives a relation between joint distributions and conditional expectations.

Theorem 6. Let x and y be observables on a separable logic . Let a state m
on & be such that x is integrable with respect to m. Then E,,,(x/gf(y)) exists iff x and y
have a joint distribution in m.

Proof. By [2] and [15], a joint distribution of x and y in the state m exists iff
m(com (#(x) U #(y)) = 1. This implies the statement of our theorem.
3. If %, is a discrete Boolean sub-g-algebra of % generated by mutually ortho-

gonal elements {b;} ., then the conditional expectation of an observable x in a state
m, if it exists, is of the form

(25) Ex|#) = Y — (L:cdm)xbi,

{i;m(b) #0) m{bi)

as can be easily checked. In the Hilbert space formulation this gives, for a bounded
s.a. operator A and mutually orthogonal projectors B,, B,, ... generating %,

(26) E,.(A|%,) = m{B;AB;) B; .

tizm(8n %03 m(B;)
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This agrees, in our special case, with the conditional expectation considered in [16],

4. There are several definitions of conditional expectations in the non-commut-
ative probability theory, see e.g. [16]—[21]. It is resonable to expect that, if y is
a conditional expectation of an observable x with respect to a sublogic &£, of ¥
in a state m by any definition, which for the compatible case agrees with the usual
form of conditional expectations in the probability theory, then y & E,(x/%,) (m)
provided m(com (#(x) U Z,) = 1. In this sense, our definition of conditional
expectations on a logic % has a ‘““general character”.
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Stuhrn
RELATIVE CONDITIONAL EXPECTATIONS ON A LOGIC
OrGA NANASIOVA, SYLVIA PULMANNOVA

V praci bol zavedeny pojem relativizovanej podmienenej strednej hodnoty na logike
vzhladom k podlogike a prvku a z logiky, pre ktory plati m(a) = 1, kde m je stav
na logike. Obor hodnot pozorovatelnej a dana podlogika s Ciastocne kompatibilné
vzhladom k a. Tento pojem podmienenej strednej hodnoty je analogicky k relativizo-
vanej podmienenej strednej hodnote integrovatelnej funkcie na pravdepodobnostnom
priestore. Bolo ukazané, Ze relativizovana podmienena strednd hodnota na logike
splna vSetky zakladné vlastnosti podmienenej strednej hodnoty na pravdepodobnost-
nom priestore.
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