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SVAZEK 30 (1985) APLIKACE MATEMATIKY ČÍSLO 4 

SOLVABILITY OF A FIRST ORDER SYSTEM 
IN THREE-DIMENSIONAL NON-SMOOTH DOMAINS 

MlCHAL K R I Z E K , P E K K A NEITTAANMAKI 

(Received September 24, 1984) 

1. INTRODUCTION 

In this article we first deal with the validity of the inequality 

(1.1) ||v||o = C(||div t;||o + | | r o t u | | 0 ) , 

where v is a vector function defined on a bounded and generally non-smooth domain 
Q a R3, and the vanishing normal component n . v on the boundary dQ is assumed. 
Fallowing some preliminary lemmas in the next section, we show that (1.1) holds if 
and only if Q is simply connected (Section 3). The inequality (1.1) was established 
earlier for a smooth domain which is homeomorphic to a ball even for the || • || r n o r m 
on the left-hand side (see [3]). Other proofs are given in [8, 18 — 21]; they are mainly 
based on contradiction arguments. Estimates analogous to (1.1) for plane non-smooth 
domains are treated in [10] and in [11], where also mixed boundary conditions are 
prescribed. We also recall [15] that in the case of vanishing tangential components 
of v on dQ, the inequality (1.1) is valid iff dQ is connected (in R2 and R3). 

In Section 4 we apply (1.1) to the problem of solvability of the first order system 
of four partial differential equations 

(1.2) divu = / in Q, 

rot u = g in Q , 

n . u = 0 on dQ , 

which play an important role in fluid flow and magnetostatic problems [4, 5, 16 — 22], 

2. SOME FUNCTION SPACES 

Throughout the paper, Q c R3 will always be a bounded domain with a Lipschitz 
boundary dQ (see [14], p. 17) and with the outward unit normal n. Notations H\Q), 
k = 0, 1, ... , are used for the (real valued) Sobolev spaces. The usual norm in H\Q) 
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and also in (Hk(Q))3 will be denoted by | • \\k. The scalar product on (L2(Q))m,m = V3, 
will be written as (•, -)0 and we set 

L2
0(Q) = {XeL2(Q)\(X, 1)0 = 0 } . 

Further, Hi/2(dQ) is the space of traces of functions from Hl(Q), and @(Q) is the 
space of infinitely differentiable functions with a compact support in Q. 

We note (see [9], p. 16) that the functional D M H . v\dQ defined on (C°°(.Q))3 can 
be extended by continuity to a linear continuous mapping from the space 

H(div; Q) = {v e (L2(Q))3\ ~F e L2(Q) : (v, grad z)0 + (F, z)0 = 0 Vz e 0(G)} 

into H~ 1/2(d.Q), the latter being the dual space to H1/2(dQ). The function F is called 
the divergence of v (in the sense of distributions) and the Green formula can be 
rewritten as 

(2.1) (div v, z)0 + (v, grad z)0 = </i . v, z)(1Q Vv e H(div; Q), Vz e Hl(&). 

Here <•, -}DQ denotes the duality pairing between H~1/2(dQ) and H1/2(dQ). 

Let dQt, ..., dQT be the components of dQ. For v e H(div; Q) we define the 
functional n . ve H~1/2(dQ^), i e ( l , ..., r], by 

(2.2) (n . v, z}dQi = (div v, z)0 -f (v, grad z)0 , Z e Zt-, 

where 
Z, = {zeHi(Q)\ z = 0 on 5 ^ V je{l, ..., r} - {/}} 

and <•, -}dQ. is the duality pairing between H~1/2(dQt) and H1/2(dQi). 

Let us further introduce the space 

H(rot; Q) = {v e (L2(0))3| 3G e (L2(.Q))3 : (v, rot z)0 = (G, z)0 Vz e (^(^))3} 

endowed with the norm 

11-11 - (11. II2 -4- llrnt .ll2V'2 

|| ||H(rot;iQ) — Vll II0 + | | 1 0 1 ' | |01 

The function G introduced above is called the rotation of v (in the sense of distribu­
tions) and the following Green formula holds: 

(2.3) (rot v, z)0 - (v, rot z)0 = </i x v, z}DQ Vv e H(rot; Q) Vz e (^(Q))3 . 

Here the vector product n x v is from (H~1/2(dQ))3 (see [9], p. 21) and <•, -}CQ 

denotes the duality pairing between (H"1/2(<3:Q))3 and (H1/2{dQ))3. 
Now, we define several subspaces of H(div; Q) and H(rot; Q): 

H0(div; Q) = (v e H(div; Q) \ n . v = 0 on dQ} , 

H(div°; Q) = {v G H(div; O) | div v = 0 in Q} , 

H0(div°; J2) = H0(div; Q) n H(div°; iQ), 

H0(rot; r2) = {v e H(rot; Q) | n x v = 0 on dQ} , 
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H(rot°; Q) = [v e Hirot; Q) | rot v = 0 in Q] , 

H0(rot°; Q) = H0(rot; Q) n H(rot°; Q) , 

^ = H0(div°; Q) n H(rot°; Q) , 

j f* = H(div°; Q) n H0(rot°; G) , 

V = H0(d\\;Q)nH(rot;Q), 

D = {veH(div°;Q)\(n.v,iydQi = 0, / = l , . . . , r } . 

From (2.1) we can easily derive 

(2.4) gradzeH(rot°; .Q) for z e H\Q). 

Henceforth, we shall present some other properties of the above spaces. 

Lemma 2.1. The following inclusions hold: 

(2.5) r o t v e D for v e H^rot; Q), 

and 

(2.6) rot t ;eH 0 (div°;Q) for v e H0(rot; Q) . 

Proof. Let v e H(rot; Q) and z e Q)(Q) be given. Then by (2.3) we obtain 

(2.7) (rot v, grad z)0 = (v, rot grad z)0 + <w x v, grad Z>Ss7 = 0 . 

Hence, (2A) yields 

(2.8) rot veH(div°;0). 

Let us choose i e { 1 , . . . , r) arbitrarily and let n e Cco(Q) be such that n = 1 in a neigh­
bourhood of dQt and n = 0 in some neigbourhoods of the other components dQj9 

j =J= i, that is n e Zf. Thus (2.2), (2.8) and (2.3) imply 

<n . rot v, \}dQi = (rot v, grad n)0 = <n x grad r/, v>(10 = 0 . 

Consequently, (2.5) is valid. The relation (2.7) holds for any ve H0(rot;Q) and 
z e C00^) as well. Therefore, rot v e H0(div°; Q). • 

Lemma 2.2. T/ie identity 

(rot (B-, rot (p)0 = ((/>, rot rot cp)0 

holds for all (p e H0(rot; £2) such that rot cp e H(rot; Q). 

Proof. Let cp e H0(rot; Q) with rot <p e H(rot; Q) be given. As (C*J(Q))3 is dense 
in H(rot; Q) (see [6, 9]), there exists a sequence \j/j e (C°°(.G))3 such that 

(2.9) ||rot <p - ^| | f f ( ro t ; f t) -» 0 as j -> oo . 

Applying the Green formula (2.3), we get 

(rot (p, \l/j)0 - (q>, rot \IJJ)0 = <rc x <p, ^ > M = 0 , 

since <p e H0(rot; .Q). From (2.9) we conclude that 

(rot (p, \l/j)0 -> (rot <jo, rot <p)0 
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and 
((/>, rot il/j)0 -> (cp, rot rot cp)0 

for j ~> oo, which yields the result as required. • 

3. STUDY OF THE INEQUALITY (1.1) 

First, let us recall the definition of a simply connected domain (see e.g. [2, 7, 12. 
14]). 

Definition 3.L A domain Q in Rd is said to be simply connected if it has the fol­
lowing property: Given any simple closed curve y: x = h(t), te [a, b], with range 
in Q, there is a continuous function x = F(s, t) defined for s e [0, 1], te\a, b] 
such that: 

(i) F(0,t) = h(t), te[a,b]; 
(ii) F( i, t) = P, t e [a, b], where P is some point in Q; 

(iii) F(s, /) lies in .Qfor a// s e [0, 1], t e [a, b]. 
(iv) F(s, a) = F(s, b) for O// s e [0, ! ] . 

Defining (closed) curves ys by x = F(s, t), t e [a, b], we say that the family [ys] 
represents a continuous deformation of y. into a point P. 

Domains which are not simply connected are called multiply connected. 

The main task of this section will be to prove the following theorem. 

Theorem 3.2. Let Q c R3 be a bounded domain with a Lipschitz boundary. 
Then 

(3.1) ||v||o g C(||div v||o + || rot v||0) Vv e V = H0(div; Q) n if (rot; Q) 

if and only if Q is simply connected. 

The proof is based on an auxiliary lemma: 

Lemma 3.3. Let Q be a simply connected domain with a Lipschitz boundary 
and let \j/ e H0(div°; Q). Then there exists exactly one stream function cp e D n 
n H0(rot; Q) such that 

ijj = rot (p . 
Moreover, 

(3.2) ||<p||o ^ C||rot(p||0 , 

where C > 0 does not depend on cp (and \j/). 

Proof. For the existence of precisely one divergence-free stream function cp e 
e D n H0(rot; Q) corresponding to if/ e H0(div°; Q) see e.g. [1, 24]. We only prove 
the inequality (3.2). 

From the unicity of cp and (2.6), the linear operator 

(3.3) rot: D n H0(rot; Q) -> H0(div°; Q) 
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is bijective. The space H0(div°; Q) equipped with the | |# |0-norm is a Banach space. 
One can easily find that the space D n H0(rot; Q) with the norm ||" |l»(rot;ii) ls 

a Banach space as well. As the operator (3.3) is continuous, i.e. 

||rot <p||0 g C'||<p||F(rot;n), 

by the closed graph theorem the inverse (closed) operator is continuous as well. 
Thus (3.2) holds. • 

P r o o f of Theorem 3.2. =>: It is known (see e.g. [1], p. 153) that Q c R3 is simply 
connected if and only if the components of R3 — Q are simply connected. Suppose 
that Q is multiply connected. Then there exists a component co o£ R3 — Q which 
is also multiply connected, and we show that (3.1) does not hold. 

In accordance with Definition 3.1 there exists a simple closed curve yaw which 
cannot be continuously deformed into a point without leaving the domain co. 
Clearly, y can be chosen in such a way that it is smooth enough. Let F be a suf­
ficiently smooth orientable surface bounded by y (see Fig. 1) and let 

r = f nQ. 

By a regularization technique (see e.g. [13], p. 58), it is easy to construct a function 
q e C™(Q — F) with bounded derivatives such that q = 1 in an exterior neigh­
bourhood of F (with respect to a given orientation of F), and q = 0 in an interior 
neighbourhood of F. Setting 

/ grad q in Q — F , 
w = < 

\ 0 on F , 

we see that w e (C°°(.Q))3 and that w is not a potential field globally on Q. 

Ғig. 1. 
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Consider the Neumann problem: Find p e H\Q) such that 

(3.4) Ap = div w in Q , 

dnp = n . w on 3Q , 

(3,, being the normal derivative), which is solvable because by (2.1) 

(div w, 1)0 = <w . w, 1 > ^ . 

Now, let us define 

(3.5) v = grad p — w . 

Making use of (2.4) and (3.4), we arrive at 

(v, grad z)0 = (grad p - w, grad z)0 = (dnp - n . w, z>ai2 = 0 Vz e H*(Q), 

that is vGH0(div°;Q). 

Furthermore, vGH(rot°;Q) which follows from (3.5), (2.4) and the fact that 
w G (C°°(Q))3 vanishes in some neighbourhood of F. Consequently, v satisfies (1.2) 
with zero right-hand sides. On the other hand v 4= 0, since it is not a potential field 
by (3.5). So the inequality (3.1) is not valid for multiply connected domains. 

<=: Let Q be simply connected and let v e Vbe given. Consider the problem 

(3.6) Az = div v in Q , 

dnz = 0 on dQ , 

which has exactly one weak solution z in L2
0(Q) n H*(Q), because div v e L0(Q) by 

(2.1), and it holds that 

(3.7) H l̂lx ^ C i | | d i v v | | 0 . 

The relations (2.1), (2.4) and (3.6) give grad z G H0(div; Q) n H(rot°; Q), i.e. again 
by (3.6) 

(3.8) \j/ = v - grad z G H0(<iiv0; Q) n H(rot ;Q). 

In accordance with Lemma 3.3 there exists exactly one stream function cp e D n 
n H0(rot; Q) such that 

(3.9) XJJ = rot <p . 

Applying now Lemma 2.2 and (3.2), we come to 

(3.10) ||rot (p\\l = (rot cp, rot (p)0 = (oj, rot rot cp)0 S 

g \\cp\\0 ||rot rot (B||0 ^ C2||rot <JO||0 |rot rot (/)||0 . 

So by (3.8), (3.9), (3.10), (3.7) and (2.4) we obtain 

||v||o = | |gradz||0 + ||rot<p||0 ^ ||z||i + C2||rot rot (p\\0 = 

^ Cildivvllo + C 2 | | rot^ | | 0 S C(||div v|0 + | | r o t v | 0 ) . D 
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Remark 3.4. The spaces 3tfB and #f® are finite-dimensional (cf. [18, 19, 22, 23]). 
From Theorem 3.2 we see that 2tfQ is trivial iff Q is simply connected; (note that J f % 
is trivial iff dQ is connected [15]). The proof of the inequality (3.1) can be modified 
for v e Vn (<#>

9)
L without any assumptions on the connectivity of Q (the symbol _L 

denotes the orthocomplement in (l}(Q))3). This was proved e.g. in [21] for smooth 
domains. 

4. APPLICATION TO A VARIATIONAL PROBLEM 

In this section we shall deal with a variational formulation of the problem (1.2). 
For / e l}(Q) and g e (L?(Q))3 we define the linear form 

(4.1) b(v) = (/, div v)0 + (g, rot v)0 , v e V, 

and the bilinear form 

(4.2) a(w, v) = (div w, div v)0 + (rot w, rot v)0 , w, v e V. 

Assume that a sufficiently smooth u satisfies (1.2) in the classical sense. Then we 
immediately see that u e V and 

(div u, div v)0 = (/, div v)0 , 

(rot u, rot v)0 = (g, rot v)0 

for all v e V. Consequently, 

(4.3) a(u, v) = b(v) Vv e V, 

and moreover, by (2.1) and (2.5) we have 

(4.4) feL2
0(Q), geD. 

Conversely, let (4.4) hold and let (4.3) be satisfied for a sufficiently smooth u e V. 
Assuming that Q is simply connected, we show that u fulfils (1.2). 

So let x E I4(-^) be arbitrary and let z e Lr3(Q) n H1(Q) be the weak solution of 
the problem 

(4.5) Az = x in Q, 

dnz = 0 on dQ . 

Then v = grad z e H0(di\; Q) n H(rot°; Q) a Vand from (4.5), (4.2),(4.3) and (4.1) 
we get 

(div u, x)o = (div u, div v)0 = a(u, v) = b(v) = (/, div v)0 = (/, x)o • 

Hence, div u = f in L0(-2). 

Furthermore, let i/J e D be arbitrary. Then by [9], p. 28, there exists a divergence-
free stream function v'e H(div0; Q) n (H1(Q))3 (not uniquely determined) such 
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that \\f = rot v'. As <w . v', \}dQ = 0 due to (2.1), the following problem is solvable: 

An = 0 in .Q, 

d„*7 = n . v' on O.2 . 

Then clearly the function v = v'-grad n is from H0(div°; Q) n H(rot; .(2) c V and v 
is also a divergence-free stream function to if/, that is 

j ^ — rot v 

(cf. [1, 15, 24]). Using (4.2), (4.3) and (4.1), we arrive at 

(rot u, i/>)o = (rot u, rot v)0 = a(u, v) = b(v) = (g, rot v)0 = (g, «A)o , 

i.e. rot u = g in D. 

Thus we have justified the following definition. 

Definition 4.1. Let Q be simply connected. The problem of finding u e V which 
satisfies (4.3) is called the variational formulation of the problem (1.2). 

Theorem 4.2. Let Q be simply connected. Then the variational formulation of the 
problem (1.2) has precisely one solution. 

Proof. By Theorem 3.2 the bilinear form (4.2) is a scalar product on V. It is easy 
to show that V is a Hilbert space and that the linear form (4.1) is continuous on V. 
Now the assertion follows from the Riesz theorem. • 

R e m a r k 4.3. When Q is multiply connected the bilinear form (4.2) is a scalar 
product on Vn (^g)1 (cf. Remark 3.4), i.e. the solution of (1.2) exists and is unique 
apart from a function of 2/£ (j:. 
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S o u h r n 

ŘEŠITELNOST JISTÉHO SYSTÉMU PRVNÍHO ŘÁDU 
NA TROJROZMĚRNÝCH NEHLADKÝCH OBLASTECH 

MICHAL KŘÍŽEK, PEKKA NEITTAANMAKI 

Je studován systém parciálních diferenciálních rovnic prvního řádu, který je 
definován pomocí operátorů divergence a rotace na ohraničené oblasti Q c R3 

s nehladkou hranicí. Na hranici dQ je předepsána nulová normálová složka řešení. 
Je podána variační formulace a vyšetřována její řešitelnost. 
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