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The distance polynomial 4(G) of a graph G has been recently considered in this
journal [1]. The distance spectrum of a complete graph, a complete bipartite graph
K, , and a star have been determined in [1]. Regarding a cycle the following pro-
position has been proved [1]: if G is an even cycle, then at least one root of A(G)
equals zero.

The full treatment of the distance spectrum of a cycle is given in the present paper.

For a graph G with n vertices the distance matrix D = D(G) is a square matrix
of order n whose elements are defined by: d,, = 0 and d,, = the length of the shortest
path between the vertices r and s.

The eigenvalue problem for D reads as follows:
(1) DY, =x;Y;, j=1,2,..,n,

where x; = xj(D) are the eigenvalues and Y ; are the eigenvectors of D. The collection
of x;’s is called the distance spectrum of G and denoted by Sp,(G). The eigenvalues
of D are at the same time the roots of the distance polynomial 4(G) = 4(G, x)
which is defined by det (X1 — D) where I is the unit matrix of order n.

A cycle C, with n vertices is treated in what follows. By using the cyclic properties
of D(C,), the coordinates of the jth eigenvector Y are [2, 3]

1

(2) Y, = o, r=12,...,n,
’ J(2n) !
where
) w; = exp (i0))
and
2 .
(4) j=j~§, j=12 ..., n.
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By means of Egs. (1)—(4) the following expressions for Spy(C,) are obtained:

k
(5a) 2y rcosrl; — k(—1) for n =2k,
r=1
X, =
(5b) ! 2Y rcos rb; for n=2k+ 1.
r=1

Following the procedure of Polansky [4] we obtain the sums of sines and cosines
in the form

(6a) Iy(0) = Y cosr0 = f———l——- [%m (n+4)0 —sin(m — 4)0],
r=m 2 sin 2

(6b)  Jo(0) = Tsinrb = [~ cos(n + 1) 0 + cos (m — 1)0].
r=m 2 sin !;_—0

Accordingly, one derives

(7) 1,(0) = =Y rcosrf =

S [nsin(n + )0 — msin(m — +)0] + ~~~]~—— (cos nf — cos mo) .
2sin 40 4 sin

Case 1. Let us consider C, with an even n, n = 2k. Because of Egs. (5a) and (7),
the eigenvalues of C,, are given by

(8) x;=-———[(k— 1)sin(k — £)0, — sin40;] +

sin 10

s Leos = )0, = cos0] + (-1
J

where 0; = jnfk,j =1,2,...,2k.
In particular, for j = n one has

9) Xy = k2.
Further, for j = k we have 6, = n, and one ecasily derives
0 for k =even,
(10) = {—4 for k = odd.
Note that 6,,_; = 2= — 6; and consequently,
(11) Xok—j = X;
holds.
Let us first consider even j's, j = 2/ & 2k. In this case one easily obtains that
(12) Xop = Xp4-py =0, [ = 1,2,...,[—%(/(— 1]

where [a] denotes the integer part of a.
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In the case of odd j’s, j = 2/ + 1, Eq. (8) reduces to

I
(13)  Xao = Xoeoaiany = — —— 1 1 =0,1,2,..,[5k] — 1.

We summarize Egs. (9)—(13) as follows: The distance spectrum of an even cycle
C, = C,, is given by

L, T ., 3m
(14) Xp = Xgpo; = —Ifsin? o < X3 = Xppo3 = —l/smz~2~k <
L2+ )r
< < Xappg = Xgpo(ar4) = —!/sm2(-A~ <
2k
< <Xy = Xppg = Xg = Xgpg = ... =0 < x, = k7.

In other words, among 2k eigenvalues of D(CZk) there are k negative eigenvalues,
the zcro eigenvalue whose degeneracy equals (k — 1), and only one positive eigen-
value which is equal to k>. Among k negative eigenvalues there are [k/Z] mutually
distinct, doubly degenerate eigenvalues, and in addition, for k being and odd number,
there is also a single negative eigenvalue which is equal to —1.

Case 2. Let us consider C, with an odd n; n = 2k + 1. By applying Egs. (5b)
and (7) the following expression for the eigenvalues of C,,,, is obtained:
1

15) x; =~ ksin(k + )0, —sin40;] + —
(19 sin 40; [ ( 50, ;] 2sin® 40;

(cos kO; — cos 0;),
where: 0; = j2r/(2k + 1), j = 1,2,...,2k + L.
In particular, for j = 2k + 1 one has
(16) Xogsy = k(k + 1)
Because of 0y, ,-; = 0; one obtains
(17) Xj = Xakv1-jo

i.e., now the eigenvalues with even and odd indices go together in pairs. Simple
algebra immediately yields

I .
(‘8) Xy = Xppypog = - ——, =12, k.

4 cos? I
2k + 1

We summarize Eqs. (16)—(18) as follows: The distance spectrum of an odd cycle
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C, = Cyi 4, 1s given by

1 1
(19) xy=xp=——————<X3=Xpy_, = — ———— <
4cos? KT 4 cos? (k=)=
2k + 1 2k + 1
< < X X Lo
20+1 = N2k-1) Yok-1 =
4 cos? (k=1
2k + 1
1
=Xy = — e < Xy = IV(k + 1)
dcos? —
2k + 1

In other words, among 2k + 1 eigenvalues of D(C,, ) there are k mutually distinct,
doubly degenerate negative eigenvalues and only one positive eigenvalue which is
equal to k(k + 1).

Numerical data Spy(C,), n = 3,4, ..., 10, are presented below:

SpD(C3) = { 1., —1., +2. IR
Spp(Cy) ={—2..-2.,0, +4.},
SpD(CS) = { 2.618 0340, —2.618 0340, —0.381 9660, —0.381 966, +6.} ,
Spu(Ce) = {—4., —4.. —1.,0.,0., +9.}
SpD(C7) = { 5.048917 3, —5.048917 3, —0.643 104 1, —0.643 104 1,
—0.307978 5, —0.307978 5, + 12.} S
S[JD(Cs) = {*6‘828 4271, —6.8284271, —1.1715729, —1.171 5729, 0., 0., 0.,

+16.}.

Spp(Ce) = {—8.2908593, —8.2908593, —1., —1., —0.426 0220, —0.426 0220,
—0.283 118 6, —0.283 118 6, +20.},

Spu(Cyo) = {—10.472136 0, —10.472 136 0, —1.527 864 0, —1.527 8640, — 1., 0.,
0., 0., 0., +25.}.
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Souhrn
O DISTANCNIM SPEKTRU CYKLU
ANTE GRAOVAC, GANI JASHARI, MATE STRUNJE

V préci jsou odvozeny analytické vyrazy pro kofeny distancniho polynomu cyklu.
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