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SVAZEK 30 (1985) A P L I K A C E M A T E M A T I K Y ČÍSLO 4 

FUZZY SETS IN PATTERN RECOGNITION, IMAGE ANALYSIS 
AND AUTOMATIC SPEECH RECOGNITION 

D. DUTTA MAJUMDER 

(Received October 18, 1982) 
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Fuzzy set theory, a recent generalization of classical set theory, has attracted the 
attention of researchers working in various areas including pattern recognition, 
which has had a seminal influence in the development of this new theory. This 
paper attempts to discuss some of the methodologies that have been suggested for 
pattern recognition, and techniques for image processing and speech recognition. 

INTRODUCTION 

Recently propounded [1] theory of fuzzy sets has attracted the attention of rese­
archers in various disciplines because this theory is apparently a generalisation of the 
classical set theory. Since 1965, a great deal of work has been done on the develop­
ment of this theory and on its applications [32], Pattern recognition has had a se­
minal influence [2] on the development of this theory, and this paper discusses 
some of various techniques and methodologies suggested. In some cases, the techni­
ques are equivalent to conventional ones, in others, the approach is refreshingly new. 
Interestingly enough, Tamuta et ah [35] suggested a classification method based 
on fuzzy relations, which was found to provide a mathematical basis for a hierarchical 
clustering scheme known since long. 

The first section deals with methodologies suggested in pattern recognition. The 
second takes up a central problem in applications — the determination of a member­
ship function in real-life cases. 

Next two sections deal with image processing and speech recognition — two 
important areas of pattern recognition in practice. An incomplete bibliography 
of the work done by the present author and his colleagues [21], [23], [24], [28], 
[29], and [36] to [68] in the field of fuzzy mathematics and its application in pattern 
recognition, image analysis, and automatic speech recognition is included in the 
reference list. 
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I. FUZZY SETS IN PATTERN RECOGNITION 

Pattern recognition is said to be supervised when a machine is given a set of 

objects with known classifications and is asked to classify an unknown object based 

on the information acquired by it during its training. Supervised pattern recognition 

in all its various forms has been treated in a unified way [3] using the framework 

of fuzzy set theory. Supervised pattern recognition is dissected into two basic opera­

tions "abstraction" and "generalization". Let the objects be completely described 

by a set of measurements written as a vector x. A training set (a collection of samples 

or observations) from a fuzzy class A of objects is given by 

{(xuf1)9(x2if2)9...9(xH9fH)} 

where f e [0, 1] is the grade of membership of the ith object whose measurements 

are written as xr 

Abstraction on this collection means, in informal terms, the identification of those 

properties of the samples which they have in common and which, in aggregate, 

define the set A. More formally, abstraction on this collection means the estimation 

of the membership function / o n A from the samples. Having obtained the estimate/ 

off generalization is performed when this estimate is used to compute the values 

of/ at points other than xl, x2, ..., xn. 

Thus, given two fuzzy sets A, B in Q with the corresponding two unknown member­

ship functions fA, fB and also given a training-set 

{(*!, fl, ff),(*2,fbf!), :;(*» ft, jf)>-.(x„, fnJ*)}, 

abstraction involves the estimation of fA,fB, generalization involves the use of the 

obtained fA,fB for an unknown object x not contained in the training set. 

This can easily be extended to the case of m{m > 2) classes. 

It is evident that the problem of nonfuzzy classes is included as a special case 

where the membership function is a m a p / : Q ~> {0, 1}. 

Zadeh [4] has suggested that features be linguistically valued, e.g., the feature 

"size" can have values "small", "very small", etc. If there are r such features, there 

is a fuzzy relation on the universe Xx x X2 x ... x Xr, where Xj is the universe 

of the jth feature mi (which takes linquistic values). A fuzzy pattern class is a fuzzy 

relation o n l j x X2 x . . . x Xr x [0, 1], i.e., a type 2 fuzzy class. Thus we can 

visualize a table of the form: 

Ш j TПj mr 

p\ . . . pi .. .. p\ k+1 

p\ . . • PІ .. • Pi "fГ 

- 1,. 

k •• • k • • • k k+i 

where for i - 1,. . . , « , ; = i , . . . , r, 
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p{ represents the linguistic value of the j th feature corresponding to the ith pattern, 
p'+1 represents a linguistic truth value: a fuzzy set on [0, 1]. 

One can interpret the table as answers for r questions. The ith row of this table 
is a fuzzy rule that says: if for a pattern ph the first feature has linguistic value p\, 
the second has p\, ..., the Ith has p{, etc., then the membership of that pattern is 

P:+1. 
Then the fuzzy pattern class is given by the relation 

n r+1 

.•=1 j=i 

Given an unknown object x, whose feature values are m ^ x ) , . . . . mr(x), its member­
ship to the pattern class is obtained by max —min composition with R. 

When there are m pattern classes, there would be m such relational tables. 
A somewhat analogous approach is that of Chang and Pavlidis [5]. They look 

at each column of the relation table as a set of possible answers to a question con­
cerning feature j and thus arrive at a fuzzy decision tree for a given pattern. A fuzzy 
decision tree is a tree such that each nonleaf node i has a k-tuple decision function 

ft : Q - [0, \f 

and k ordered sons. Each non-leaf son corresponds to possible answer to a previous 
question and the son is also associated with a question determined by the previous 
answer. To each branch in the tree there is associated a value in the interval [0, I ] . 
Each leaf corresponds to a pattern class. Each path from the root to a leaf repre­
sents a decision assignment of the sample to the class corresponding to the leaf. 
Each decision is valued by the minimum (or product) of the values corresponding 
to the branches composing the path. The object is usually assigned to the class 
corresponding to the leaf ending the best-valued path. Figure 1 shows such a tree. 

It has been pointed out in [6] that owing to some inherent structure, sometimes 
a set of objects possesses to some degree the same property that the individual 
objects possess. Such a set is called a property-system. For example, consider 

Fig. 1. Fuzzy decision tree. 
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a team of acrobats each of whom depends on the others for his balance, so that the 
degree of balance is a property that both the team as a whole and the individuals 
possess. The property values of the system is given by AND (or OR) of the values 
of the individual elements if these values are boolean, i.e., the values 0 or 1 (consider 
a set of switches in series or parallel); and, in a more general case it is given by MIN 
(or MAX) if the individual values are formal, i.e., numbers from [0, 1]. Another 
example of such a system is called a "Collective", where the property value of the 
set as a whole is given by a measure such as arithmetic average of the formal property 
values of the individual elements. In such a case the property value of the set 
increases with increasing number of elements and with increasing property values. 

In some cases, where a number of prototypes for a class are given, it may be 
meaningful to compute the collective property of the prototypes and consider that 
as the reference for the class. Such use of fuzzy sets and property sets have been 
suggested in [30] and is also one of the motives behind [28]. 

The syntactic approach to pattern recognition involves the representation of 
a pattern by a string of concatenated subpatterns called primitives. These primitives 
are considered to be the terminal alphabets of a formal grammar whose language 
is the set of patterns belonging to the same class. Recognition therefore involves 
a parsing of the string. 

The syntactic approach has incorporated fuzzy sets at two levels. Firstly, the pattern 
primitives are themselves considered to be labels of fuzzy sets, i.e., such subpatterns 
as "almost circular arcs" are considered. Secondly, the structural relations among 
the subpatterns may be fuzzy, so that the formal grammar has weighted production 
rules and the grade of membership of a string is obtained by min —max composition 
of the grades of the productions used in the derivations. 

A practical application of a fuzzy syntactic approach has been made in [7] where 
the goal is the recognition of handwritten capitals. High variability in handwrittings 
motivated the use of fuzzy set concepts. A nonfuzzy context-free grammar with 
eleven production rules is used with six fuzzy primitives. The membership of the 
entire pattern is given by the minimum of the grades of memberships of the pattern 
segments to the respective fuzzy classes of primitives. Thus dubious assumptions 
about the existence and shape of probability density functions are avoided. 

This approach was criticized by Stallings in [8] who developed a Bayesian hypo­
thesis testing scheme for the same problem. Given a pattern Sr the hypothesis Hk 

is that the writer intended the letter Hlr Associated with each decision is a cost C{j 

which is the cost of choosing Ht when Hj is true. The parsing of the pattern is per­
formed as before. Only a probability is associated with each segment for a given 
letter. Regarding unknown densities the author suggests the use of maximum likeli­
hood tests. 

Since both membership functions and probability density functions are maps 
into the interal [0, 1], the only difference is the use of min/max operators, where, 
the author argues, the "min" operator loses a lot of information and is drastically 
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affected by one low value. The author argues that though frequentistic probability 
is not appropriate in dealing with pattern variability, subjective probability is per­
fectly suitable and more intuitively obvious than "grade of membership". 

In a rejoinder [9], it is argued that fuzzy set theory is more flexible than it is 
assumed in [8], where all arguments are directed against a particular case treated 
in [7]. Recalling the idea of collectives (from property sets), where the arithmetic 
average replaces "min", there remains little difference between the schemes of [7] 
and of [8]. 

In a reply, Stallings insisted that the Bayesian approach is superior since it offers 
a convenient way for assignment of costs to errors and gains to correct answers. 

Inference of a fuzzy grammar is an interesting problem. The problem is to infer 
from a specified fuzzy language, the productions as well as the weights of these rules. 

One algorithm [10] is a reinforcement algorithm where a learning process consists 
of decreasing the weights of some productions while leaving those of others unchanged. 
The ones whose weights are unchanged are those that yield the patterns given as 
samples. In the case of ambiguity, only one of the possible derivations is taken. 

Non-supervised pattern classification as well as problems in various disciplines 
may be solved by a method of data analysis known as clustering. The aim of clustering 
is to partition a set of data points into a number of neutral and homogeneous clusters. 
The term homogeneous is used in the sense that all data points contained in the same 
cluster are more similar to each other than they are to data points in other clusters. 
However, there is rarely a unique non-trivial solution to the clustering problem. 
Further, clusters are rarely compact and well-separated. So an object may be assigned 
to a cluster with a degree of cluster membership. Thus non-uniqueness, when it 
exists, may be identified as such, while the corresponding classical partition still 
remains meaningful. 

Gitman and Levine [11] presented a method of converting multimodal fuzzy sets 
into unimodal ones and thereby deriving clusters. Each data point is associated with 
a membership value. The algorithm makes use of the order of the points according 
to the distance as well as the order of the points according to the grade of member­
ship. Given a finite set X of vectors (|X| = n), and a metric d, let 

Cie = {xeX | d(xh x) g 9} , 

where & is a chosen threshold e R+ for every xt e X, i = 1 , . . . , n. Let A be a fuzzy 
set on X where the membership function is given by 

l£sl 
ЏЛ(XІ) = 

X 

The maxima of jnA are the'centers'of the clusters existing in X. This multimodal 

membership function is decomposed into unimodal fuzzy sets and maximum separa­

tion between these is obtained. The number of clusters is equal to the number of the 

local maxima of \iA. In the experiment, a reasonable guess is to be made of 9. 
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The notion of a fuzzy partition has been introduced in [12]. A fuzy partition is 
defined as a family of fuzzy sets Sl9 S2, ..., Sm on X such that for every xeX, 

m 

i=i 

The problem is to find Sl9 ..., Sm for known m, and a given metric a7 so that 
elements which do not have very large mutual distances belong to the same cluster. 

The problem of classification is then for a given x to find the classification vector 
C[x] = [fiSl(x),...,fiSm(x)]. 

Let v be a function from [0, IV" x [0, l ] m to R+ such that v(a, a) = 0, v(a, b) = 
= v(b, a). Usually this is the Euclidean distance. Letf be a positive nondecreasing, 
not identically zero real function of one real variable such that f(0) = 0. Then C 
should satisfy 

v(C(x), C(y)) = f(d(x, y)) for every x, y e X . 

It is usually relaxed into the following minimization problem: minimize 

I w(x) w(y) \v(C(x), C(y)) - f(d(x, y))]2 

x,yeX 

where w is a weighting function. 
A clustering algorithm which also gives the cluster centers (most representative 

elements) is the ISODATA algorithm [13]. This algorithm has been improved by 
allowing fuzzy clusters to be generated [14], [15]. 

An elaborate algorithm has been developed by Backer [16]. The goal is to de­
compose the original set of objects 

into m disjoint subsets 

C = {«,}, r=l,...,N, 

C = {C ř}, i = 1, ...,m, 

in such a way that the data points assigned to one subset be as similar as possible 
to each other and as dissimilar as possible to points assigned to other subsets. These 
subsets are the clusters. It is assumed that there exists an underlying structural 
property of the samples expressed by a set of so-called point-to-subset affinity values 
representing some sort of relationship between an element and a group of elements. 
The affinity may be expressed by a distance function, or by some neighbourhood 
relations. Using a certain measure of affinity, the set-membership of a certain point 
is decomposed into degrees of memberships of thai point to m subsets given by the 
m-partition. 

The algorithm starts with an initial guess of m disjoint subsets 

C = {C.}<°\ i = l , . . . , m . 
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For all u e C, a membership value is determined representing an m-collection of 

induced fuzzy sets 

{(fh u) | fi e [0- 1]} f ° r every ue C , i = 1,..., m . 

Then relocation takes place in attempt to optimize some criterion function. Thus 

we obtain the next partition 

C = {C.} (1). 

This is continued until no further move causes an improvement. 

Tamura et al. [35] have developed a hierarchical clustering scheme from the 

standpoint of a fuzzy similarity relation, by invoking a theorem that such a relation 

can be resolved into a nested sequence of equivalence relations, i.e., nonfuzzy parti­

tions. 

II. EVALUATION OF MEMBERSHIP VALUES IN FUZZY SETS 

One of the main difficulties in the application of the theory of fuzzy sets to real-

life problems in the hard sciences, such as engineering, is that of finding a unique and 

correct membership function that characterizes an "intuitively obvious" fuzzy set. 

One common hypothesis is that there is an ideal prototype for each fuzzy set, 

and thus the membership value for any element is related to its similarity to the ideal 

prototype. 

Bremermann [31] has suggested that the degree of dissimilarity between an object 

and the ideal prototype may be given by the energy necessary to deform the latter 

so as to match it with the former. This dissimilarity normalized to [0, 1] directly 

yields the degree of membership. 

The conceptually simplest approach is to reconstruct the membership function 

from the knowledge of a finite number of its samples. This is the method of exemplifica­

tions as suggested by Zadeh [33]. 

An analytical justification of the S-shape of the membership curve suggested by 

Zadeh has been given by Kochen and Badre [17]. Consider a fuzzy variable A = 

= large. The marginal increase rate of the strength of belief in "x is A" is assumed 

proportional to the strength of this belief. This argument is repeated for the com­

plement. 

Then if the membership function is assumed to be continuous and differentiable, 

we must have 

(x) oo џA(x) [1 - џл(x)] , 
áx 

whose solution is 

VA(X) = 

where a and b are constants. 
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For small sets, a comparison of subsets [18] yields a system of inequalities from 
which the membership function may be obtained. Given a fuzzy set A of X with 
membership function \iA, a fuzzy set A on P(X) is induced as an average member­
ship value of the elements, i.e. 

1 k 

Ha(S) = i*a[{xi, ..•, **}] = 7 Z /<A(*.) 
/c i = l 

where S is any subset of X, S e P(X). 
Data is obtained in the form of comparison of subsets through a preference 

relation g: defined in P(X), 

S, £ S2 iff ^-(S,) £ ^ ( s 2 ) 

for any pair of subsets Sl9 S2. Namely, Sl _• S2 means informally that Sx matches 
A better than S2. Thus from this preference data, a system of inequalities is obtained 
relating fiA(xi) for all i. 

Saaty (19) has suggested a relative preference method for a discrete universe 
by comparing every pair of elements as a matrix. This becomes difficult for large sets. 

Recently, Dishkant [20] has discussed the derivation of the membership of a fuzzy 
variable which is the sum of many fuzzy variables with known memberships under 
some conditions. 

More recently, Chaudhuri and Dutta Majumder [21] discussing the problem 
of learning the membership of a fuzzy set from the knowledge of a subset of training 
samples, have subdivided it into two cases — m one a mathematical expression 
for the membership function being available, and in the other, not available. 

In cases where a mathematical expression may be assumed, those involving a dis­
tance or dissimilarity measure have been found to be popular. Two simple forms 
of such functions are 

1 -f- D(x, c) 

(2) ^ ( x ) = exp [ -1 ) ( x , c ) ] , 

where x = the measurement vector of the sample, D = the distance of x from c, 
c = the core point, i.e., nA(c) = 1. 

If D denotes a weighted distance, its explicit form may be 

D(x, c) = [x - c] ' W[x - c] , 

where W = the weight matrix. Thus, from a set of M prototypes, it Is necessary 
to estimate W and c. Fisrtly, when M is large, a statistical approach may be used, 
such as 

c = £(y) , 

I l/<rf(y), i = j , 

0 i +j. 
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Secondly, when M is not large, a non-statistical approach is suggested. If the member­
ship values of the prototypes are known, then the equation (i) or (2) are used to get 
consistent (if any) solution for W, c from M equations. If the numerical membership 
values for the prototypes are known up to a tolerance interval, then certain inequalities 
have to be solved. Five cases are considered depending on the nature of W and 
whether c is known or not. Thirdly, when the prototypes are only rank-ordered, e.g. 

PA(YI) £ ^A(YI) S . . . -S /<A(y»>)> 

c and W are to be estimated within some range. 
A mathematical expression for the membership is however not available in most 

cases. Here three cases are treated. In the first case, the feature vectors of the proto­
types are accurately measurable, and their grades of membership are known. In the 
second case, the prototypes are measurable but their membership values are un­
known. In the third case, for each feature, the prototypes are rank-ordered, but the 
rank ordering considering the aggregation of the features is not known. 

III. FUZZY SETS AND IMAGE PROCESSING 

Although the shape is a very important cue in the analysis of images, it has no 
unique mathematical definition. Conventional methods often give rise to a large 
number of Fourier descriptor coefficients, or force a fit with an n-degree polynomial. 
However, human analysis of shapes often makes use of imprecise concepts: for 
example, we are often quite satisfied with a description "almost symmetric". A fuzzy 
approach to the shape analysis accommodating imprecise concepts therefore merits 
consideration. 

The use of fuzzy sets has been suggested for image enhancement. However, the 
application of the fuzzy operator "INT" is equivalent to the well-known technique 
of nonlinear gray-scale transformation. The "min" and "max" operators have been 
used in the neighborhood of a pixel in a gray-scale picture to remove salt-and-pepper 
noise. 

/ 
Ңo ps 

PS ^ 
^ p , 

H fPt І V 
- f"> pз ң 

closed discrete continuous 
planar object polygonal approximation 

Fig. 2. A closed discrete planar object and a continuous polygonal approximation to it. 

245 



A. Shape analysis 

Lee [34] has used the fuzzy set theory for classification of chromosomes through 
shape. Vanderheydt [22] considers the problem of decomposing a polygonal shape 
into its meaningful parts using the fuzzy set theory. In particular, they examine an 
object which is actually two touching chromosomes. 

Consider Figure 2. It is necessary to decompose the polygonal approximation 
meaningfully by a line joining a pair of vertices ph p}. Human beings assign a greater 
grade of membership to the decomposition generated by p6, p9 than to p1? p9. 
Apparently, this is because humans optimize a double aim in the decomposition 
strategy. Firstly, the degree of fit of the line ptpj to the concept "decomposition 
line" is checked, and secondly, the "meaningfulness" of the generated subparts are 
examined. Fuzzy sets are used to model this decision process. For a pair of vertices, 
a measure of intrusion is given by the largest Euclidean distance from the boundary 
to the line joining the pair. Normalizing this distance, we have the grade of member­
ship for the given pair of vertices. This defines a fuzzy relation and thus a symmetric 
fuzzy graph. The exactness of the decomposition by ph p^ creating a subobject 
Os, is given by 

PE*(0S) = P>Gc(Pi) • ^ G c ( P i ) • ^SD(PiPj) • t*nc(°s) • / % L ( 0 S ) -

where fiGc(Pi) = the grade of membership of curvature at pt to the description 
"great concavity", HSD(PIPJ) ~ the grade of membership of ptpj to the description 
"smaJJ distance", juNC(Os) = the grade of membership of Os to the description 
"nearJy chromosome", juRL(Os) = the grade of membership of Os to the description 
"relatively Jarge", the first two fuzzy sets GC being defined using curvature, and the 
Jast two NC, RL being defined using the fuzzy relation defined earlier. 

Chaudhuri and Dutta Majumder [23] have suggested that the shape be described 
using fuzzy properties such as "sidedness", "cornerity", "symmetry", by a linguistic 
description such as "many-sided", "sharp-cornered", "very symmetric", and by 
grades of membership 

/Lfig = max {min (/xsid(i)), min (jHCOr(0)> ^ y m } -
i i 

Hough transform is taken, and if for any set of successive points the tolerance is 0, 
then they belong to one side with membership 

fed = ( i 1 IVsi -

where Fdsi, FCjSi are normalizing constants. Since in the Hough transform plane 
all information regarding cornerity is lost, another fuzzy set "sharp corner" is used, 
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and membership for a segment ABC (Fig. 3) is given by 

min {curve length AB, AC + BC} 
/W = 1 

Fd c o r max {curve length AB,AC + BC 

where AC means the linear distance between A and C. 

C 

A/ \B 

Fig. 3. A man-made triangle and its hough transform approximation. 

Similarly the membership of the figure to the fuzzy set "symmetric" is give by 

/ 4 m a x R J % „ / 2 + A 
Hsym I x

 n I A e,sym > 

V p v r2 ' 
^ d . s y m Li ^i 

where Ct = curvature at the point 

77/2 

Kj,л/2 + j = 2 J ^v^n + l - i 
i = 2 

is a correlation measure of the curvature values between pairs of points equidistant 

from the axis of symmetry in question. 

B. Image enhancement 

Pal and King [24] have considered the pixels as fuzzy singletons and have applied 

the fuzzy operator "contrast intensifier", and, considering some gray scale pictures, 

have demonstrated that the index of fuzziness decreases. Let us have a picture 

X = (xmn) , m = 1,..., M ; n = 1,..., N , 

where xmn is the pixel corresponding to the mth row and nth column. Entering 

a property plane by a transformation 

( x _ v y i - F e 
VA max __!£/ P„m = G(xm}l) = 1 + г 

m = 1, . . . , M ; n = 1, ...,N, where x m a x is the maximum gray level, P = (pmll) is 

an M x N matrix where pm„ lies in the real interval [0, 1]. Regarding this as M x N 
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fuzzy singletons, the "intensification" transform gives on the rth application 

W =T(p ) = Í T ^»«) ' ° - - ' • 
Fmn r\FmnJ \ ( . 

0 <= Л„„ < 0-5 

< 1 0 . 

for r = 1, 2, ... and the iterative application rule is 

7i(Pm«) = Tl{Ts~l (Pnm)} for 5 = 1 , 2 , . . . , 

with Tj the usual fuzzy INT operator. 

ЧP„ 
2(P,„„)2 , 0 g pm„ g 0-5 , 

1-2(1 - p m „ ) 2 , 0-5 < p m n á 1 0 . 

Figure 4 shows graphically the result of the iterative application of this INT operator. 
Rosenfeld and Nakagawa [25] have discussed the application of "min" and "max" 

operators on the neighborhood of a pixel to smooth salt-and-pepper noise on gray­
scale pictures. 

/ 

P' o%5 
^mn 

/ / / >• 
/ / / Г 

fTr 

тà 
Г\/J 

o'5 

mn 

Fig. 4. INT transformation function for contrast enhancement in a property plane. 

For a 2-tone or binary picture with salt-and-pepper noise (sprinklings of isolated 

0's in a background of l's and vice-versa), replacing a pixel by the AND of the 

neighborhood pixels is equivalent to shrinking a mass of l's; and subsequent use 

of OR expands masses of l's, and also cleans up salt-and-pepper noise. 

Given a gray-scale picture with salt-and-pepper noise, it is possible to threshold 

the picture and perform the above binary operation,- but early thresholding may be 

undesirable. Since the operators AND and OR on [0, 1} generalize to MIN and 

MAX on [0, 1], the latter set of operatots are used on the gray-scale picture (after 

normalizing the pixel gray scale values to [0, 1]). It has been shown that this produces 

cleaning of salt-and-pepper noise as well as what is described as "fuzzy thinning". 
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C. Scene labeling 

Rosenfeld et al. [26] have proposed a fuzzy model for labeling a scene by a relaxa­
tion procedure. The problem is to identify a set of objects in a scene with a set of 
labels. Since identifications are ambiguous to start with, the relationships among 
the objects are used to reduce or eliminate the ambiguity. The fuzzy model accounts 
for preferences among the interpretations. 

IV. FUZZY SETS IN SPEECH RECOGNITION 

Since speech is a pattern of biological origin, and is influenced by the message, 
the speaker, the latter's health and mood, as well as the environment, it is found 
to be fuzzy in nature to a considerable extent. Again since conditional densities 
of cJasses are often not known, stochastic techniques are not very appealing. Available 
acoustic-phonetic knowledge is mostly non-numerical involving imprecise relations 
between acoustic features and their phonetic or phonemic interpretation. Thus fuzzy 
set theory appears to be a useful alternative as a tool in the problem of recognition 
of speech. 

DeMori et al. [27] have used fuzzy algorithms in a speech understanding system, 
organized with several levels of knowledge sources, each knowledge source being 
a set of syntactic rules. Fuzzy algorithms are used to model the fact that acoustic-
phonetic properties of speech sounds are known with a degree of vagueness, e.g., 
the signal energy is high for vowels, nonsonorant consonants have high frequency 
components, and in univoiced stops there is an interval of silence followed by some 
noise. 

First, phonetic features like vocalic-nonvocalic, sonorant-nonsonorant, etc. are 
extracted by answering a branching questionaire or relational table in the manner 
of Zadeh, as discussed. Next, fuzzy linguistic variables are used to represent subjective 
judgment after inspecting some acoustic parameters. Given x, a value of an acoustic 
parameter, A a fuzzy label (e.g. "high consonant durations") defined on the universe 
of x, a membership function juA(x) is used to compute the compatibility of x with the 
judgment A. These membership functions were established subjectively after inspec­
tion of the distribution of acoustic measurements made on a large number of sound 
samples. Thus B, a string of linguistic variables is obtained. If p is an acoustic pattern 
represented by its description in terms of acoustic features, then the possibility that 
a phonetic feature (FF) is present in p is given by 

^ ( F F ) = sup (min (fip(B), fiB(FF)) 
B 

and is considered as the result of the invocation of a knowledge source to verify 
the hypothesis FF is in p. 

Thus the use of fuzzy sets attempts to blend the non-numerical nature of acoustic-
phoentic knowledge witli the numerical formalism required for computer processing. 
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Pal et al. [28] have applied fuzzy set theory for machine recognition of speech and 

informants using the first three formants only. The problem is to answer, with 

minimum of errors, the question; "What is the vowel contained in, and who is the 

informant of an unknown utterance in a large number of spoken CNC (consonant — 

vowel nucleus — consonant) words?" They worked with Telugu (a major Indian 

language) words using two recognition schemes. 

In the first scheme, the membership of a measurement vector x to the jth class 

is a normalised (e [0, 1]) value computed in terms of the distance d(x, Rj) to a refer­

ence prototype Ry, 

џCj(x) = Min { 
1 

! , M*,RJY 

where E, F are constants. 

In the second scheme, n dimensions of the measurement vector x are considered 

as n properties, and the idea of property sets is used, as discussed. 

The results are given in Tables I and II. 

Tab. I. Confusion matrix showing machine's performance on vowel recognition. 

R e c o g n i z e d 
i e д 

as 
a: o Spoken 

R e c o g n i z e d 
i e д 

as 
a: o u 

i 
e 
д 
a: 
o 
u 

155 17 
25 154 

9 

1 

20 
52 
17 

7 
1 

8 
8 

70 
1 

2 
2 

Í38 
6 

1 

34 
144 

Tab. II. Accuracy rate of speaker ideцtifìcation for each vowel formant. 

R e c o g n i t i o n score 
e д a: Speakeг i 

R e c o g n i t i o n score 
e д a: o u 

X 89-47 
Y 90-9 
Z 100-0 

Total 94-12 

92-6 
90-63 

100-0 
94-85 

100-0 
83-4 
96-43 
93-06 

82-76 
78-95 
95-13 
87-64 

95-84 91-3 
94-45 90-63 
83-34 92-0 
90-63 91-25 

A similar study was undertaken for recognition of unaspirated plosives in CVC 

context. Again Telugu words were used. The velars k, g, the alveolar t, d, the dentals 

t, d, and the bilabials p, b in combination with ten vowels d9 a:, i*, i:, u*, u:, e*, e:, o* 
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and o: including shorter and longer categories had been selected. The results are 

shown in Table III (cf. [29]). 

Tab. III. Percentage of correct classification of plosives. 

k t t P g d d 
Target vowel 

k t t P g d d b 

д 31-58 88-89 38-10 100-00 33-34 50-00 83-34 100-00 
a: 48-14 60-00 37-50 100-00 38-46 76-92 40-00 100-00 
e 100-00 75-00 75-00 22-23 100-00 85-71 80-00 40-00 
o 100-00 62-50 72-73 100-00 100-00 100-00 100-00 66-67 
u 100-00 66-62 88-89 90-90 100-00 58-82 15-00 93-75 
i 91-67 25-00 70-00 11-12 100-00 64-70 13-34 66-67 

V. CONCLUSIONS 

F^uzzy set theory, a recent generalization of classical set theory, has attracted the 

attention of researchers. A large number of techniques and methodologies that have 

evolved in the area of pattern recognition are sampled in this paper, and the problem 

of determination of the membership function is also discussed. 

The principal motives for invocation of fuzzy set theory is that of accounting 

for variability in patterns of the same class, the non-uniqueness of some cues used 

by human beings, the artificiality and arbitrariness in assuming probability densities, 

and the generalization of the Boolean AND/OR offered by the mm/max operators. 

The principal drawbacks are that firstly some of the "fuzzy" methods are equi­

valent to standard ones; secondly, arbitrary membership functions are often assumed. 

Though there is, as yet, no unified "fuzzy" approach to pattern recognition, there 

is a promise of interesting developments. 
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S o u h r n 

NEOSTRÉ MNOŽINY V ROZPOZNÁVÁNÍ OBRAZCŮ, ANALYSE 
OBRAZŮ A AUTOMATICKÉM ROZPOZNÁVÁNÍ ŘEČI 

D . DUTTA MAJUMDER 

Teorie neostrých množin, nedávné zobecnění klasické teorie množin, připoutala 
pozornost výzkumníků pracujících v rozličných oblastech včetně rozpoznávání 
obrazců, což mělo zásadní význam v rozvoji této nové teorie. V tomto článku se podá­
vá přehled některých metod, jež byly navrženy pro rozpoznávání obrazců, analysu 
obrazů a rozpoznávání řeči. 
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