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INTRODUCTION

It is well-known that finite element analysis of boundary value problems in elasto-
statics can be based on i) the principle of minimum potential energy, ii) the principle
of minimum complementary energy, iii) the mixed variational principle (of the
Hellinger-Reissner type). The most important purpose of calculations in engineering
usually is to determine the state of stress in the body. One of the natural ways obtain-
ing approximations of stress is to use the procedure of class ii) which we study
in the present paper. The fundamental problem in the application of the principle
of complementary energy is the construction of suitable subsets that approximate
the set of all the statically admissible fields satisfying both the conditions of equi-
librium inside the body and the static boundary conditions. A number of articles
has been written on the dual finite element analysis (see e.g. [6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 17, 18, 19]).

The recognition of an analogy between the Airy stress function in plane problems
and the lateral displacement of plates (the so called slab analogy) was evident early
[21, 3, 1] through the identical biharmonic relations valid for homogeneous and
isotropic situations. B. M. Fraeijs de Veubeke and O. C. Zienkiewicz [19] made use
of the slab analogy to indicate how suitable two-dimensional stress equilibrium models
may be generated from conforming plate bending displacement models. V. B.
Watwood and B. J. Hartz [ 14] developed the equilibrating stress element conjugated in
the sense of slab analogy with Clought-Tocher’s compatible displacement element. For
Watwood and Hartz’s element and the general domain, the theoretical convergence
results have been presented by I. Hlavd&ek [7] without using the Airy stress function.
M. KfiZek [16] extended Watwood and Hartz’s element for the plane problem
to three dimensions. The author is obliged to bring the article of M. KiiZek [17]
to the reader’s attention.
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In Section 1 the notion “slab analogy”, stated in [19], is motivated (from the
mathematical point of view it generally includes the proof of existence of the Airy
stress function) and the interface condition for the Airy stress function are established
at the contact of two domains. Some spaces of types of conforming equilibrium
stress elements, which can be obtained by slab analogy, are investigated in Section 2.
In Section 4 a weak version of the Castigliano principle is established and the approx-
imate variational problem is defined by using equilibrium stress fields. In Section 5
some subspaces of equilibrium stress elements are introduced and a priori error
estimates in the I*-norm (provided the solutions are smooth enough) and conver-
gence results are obtained from the well-know results for compatible finite elements.

1. AIRY STRESS FUNCTION

Let Q = R* be a non-empty multiply connected bounded domain with a Lip-
schitz boundary I' (for the definition of a Lipschitz boundary see [1]). Let I'y be the

exterior boundary of Qand I';, 1 £ i < p, (1 <p< oo) be all the remaining parts
P

of the boundary I', i.e. I' = |J I';. Note that a normal to the boundary I' exist
i=0
almost everywhere; the outward unit normal is always denoted by v = (v,, v,)T.
Henceforth, Pk(Q) will be understood as the space of polynomials of orders at most
k. Let us denote the space of real infinitely differentiable functions with a compact
support on © by C3(2), and let us define the space C*(2) by C*(2) = {¢|, |0 e
€ C3(R*)}. The Sobolev space of functions the derivatives of which up to the order
m exist (in the sense of distributions) and are square-integrable in Q, is a Hilbert
space, denoted by H™(Q), for the scalar product (u,v),o = Y [, D D% dx,
Ja[Zm

equipped with the norm ||, o = (*, *)o/% - (! . lmlg is the usual seminorm).

As C7(2) = H™(Q), we can define the space Hy(€2) as the closure of CJ(Q) in
H"(Q).

All vectors will be column vectors. The norm, seminorm and scalar product of
vector and matrix functions, the components of which are from H"(Q), will be
denoted in the same way as in H*(Q) and we put

n

(, V)eo = Y (i 0o for w=(uy,...,u,)", v=_vy,...,0,) e(HYQ))

i=1

and
“”Hkﬂ = (v, )}/ for v=(vy,...,v,)" e (H(Q)).

Throughout the paper let the symbols d;, 0;

in [2].

In the usual way we define the operator grad : H'(Q) — (I*(Q))* by
(1.1) gradv = (9,0, 0,v), ve H(Q),

j» 0y, 0, 0;; have the same meaning as
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and the operator curl : H'(Q) —» (I*(Q))? by
(1.2) curlv = (9,0, —0,v), ve HY(Q).

We say, that f e I*(Q) is the divergence of a vector function g € (L*())*in the sense
of distributions in Q if

(1.3) (fsv)o,0 = —(q,grad v) o Vve CP(Q)
holds and we write

divg=f in I¥Q).

Note that the first generalized derivatives of ¢ need not exist. However, if g € (H'(Q))?,
then, evidently, div g = d,9; + 0,4,.
Let us introduce the following space:

H(div; Q) = {g e (I(Q))* | div g e I¥(Q)} .

The next theorem concerns the boundary values of functions from the space H (div; Q)
(see [4] Theorem 1.2.2):

Theorem 1.1. A functional y,:q — q™v|; defined on (C*(Q))* can be extended
by continuity to a linear and continuous mapping, still denoted by y,, from H(div; Q)
into H™Y(T). O

Here H™Y*(T') denotes the dual space to the space H'/*(T') of the traces on I of
all functions from H'(Q).

Now Green’s formula will be of the form:

(1.4) (g, grad v)y o + (div g, v)0,0 = {1,4, Yov>r Vg€ H(div; 2) Yve H'(Q).

Here y,v denotes the traces of v and (-, -) denotes the duality between H™*/*(I)
and HY*(T). Particularly, if y,q € L*(T'), then

<YVq1 y00>f = f qTVU dS VU € HI(Q) .

r

Now, for any g € H(div; 2) we can define the functional y,q € H™*(I';), i € {0, ..., p}
as
<’Y\'q9 70”)1‘; = (q9 grad U)O,!Z + (le q, U)O,Q Yve Vi s
where
Vi={veH(Q) |70 =0 on I; Vje{{0,....p} = {i}},

ie. (*, *Dr, represents the duality between H™'/*(I";) and H'*(T';).
The next theorem (see [4], Theorem 1.3.1) yields necessary and sufficient conditions
for the existence of a stream function of a divergence-free vector.
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Theorem 1.2. A function q € (I*(Q))* satisfies
(1.5) divg =0, <{y,q, 1D>r, =0 for i=0,...,p,
if and only if there exists stream function ¢ in H'(Q) such that
(1.6) q=curlg,

and this function ¢ is unique apart from an additive constant. O
Let us introduce some further notations. Henceforth,

H=HQ)={re(l}(Q)*|t=1"}
denotes the space of symmetric tensors. It is a Hilbert space for the scalar product
2
(v 7)o.e = X (7 Thlow, 7,7 €(1X(Q)*.
i,j=1
Define the operator &: (H'(Q))* - H(Q) by

010y, 0,0, + 0,0,)

(1.7)  &(v) = <%(alvz + o). oy, ), v = (v, v;)" € (HY(Q))? .

Further, we say, that fe (L*(Q))* is the divergence of a tensor function e H(Q)
in the sense of distributions in Q if ’

(1.8) (fsv)0.0 = — (7, 6(v))0.0 Vve(CP(RQ)?
holds and we write
Dive =f in (I*(Q))*.

Evidently, for t € H(Q2) N (H'())* we have Div t = (0;7,; + 0,715,0,T15 + 0,75,)".
Now, we introduce the following space:

H(Div; @) = {re H(Q)| Div r e (I*(Q))*} .
For 1 e H(Div; Q) we can define the linear functional y,t € (H ™ '/*(4)) by
<va’ W>A = <YVq13 w1>A + <)’qu, w2>A , W= (WI’ “)Z)T € (HI/Z(A))Z >

where q' and ¢? are the columns of the tensor t and 4 is either I' or I'; for i € {0, ..., p}.
The functional y,t € (H'/?(4))? is called the stress vector and its components are
74’, j = 1,2 (for ve(C(Q))* the components of the stress vector will be denoted
in the usual way by t; = (¢’)"v). Thus Green’s formula will clearly have the form.

(1.9) (7, &(v))o.0 + (Div T, v)g 0 = <NT o0>r Vee H(Div; Q) Voe (HY(Q))*.
Moreover, we define the operator o: H*(2) — H(Q) by

a22U3 _aIZU) 2
1.10 U= , UeH¥Q).
(1.10) 4 (—612U, 0,,U @)

190



We introduce the conditions of total equilibrium for reH(Div;Q), Divt =0
(see [1])

(1'11) <’)quj’ 1>[‘=0> _] = 1921

(1'12) xXng? — x4, 1Dr =0,

which immediately follow from (1,9) (¢ are the columns of 7).

Now, let us denote by 9t the set of all non-empty simply connected bounded
domains in R? with a Lipschits boundary I'. Necessary and sufficient conditions
for the existence of the Airy stress function are given in

Theorem 1.3. Let Q € M. A function t € H(Div; Q) satisfies
(1.13) Divt =0 in @,
if and only if there exists an Airy stress function U € H*(Q) such that
(1.14) T = U
and this function U is unique apart from a linear function.

Proof. Let Ue H*Q). Write © = oU, q' = curl (d,U), ¢*> = curl(—d,U). By
Theorem 1.2 we see that div ¢ = div g?> = 0. Hence Divt = 0 in Q.

Conversely, let e H(Div; Q), Divt = 0. Then div ¢/ = 0,j = 1, 2. By Theorem
1.2 there exist ¢!, ¢? € H'(Q) such, that ¢/ = curl ¢/, j = 1,2 and (1.11) holds.
Since t,, = 7,, we have —d,¢! = 0,0 Hence putting ¢ = (¢', ¢*), we obtain
dive = 0 in Q and using (1.4) we obtain {y,@, 1>r = 0. Applying Theorem 1.2
once again we see that there exists U e H'(Q) such that curlU = ¢ in Q. But Ue
e H¥(Q), as 0,U = —¢? and 3,U = ¢ are from the space H'(Q).

The Airy stress function of a divergence-free tensor 7 is unique apart from a linear
function, since if U!, U?e H3(Q) and oU! = oU? = 1, then o(U' — U?) =0,
which yields U' — U? e P((Q). O

Let Qe 9 and let us denote by y the measurable part of the boundary I' for
which mesy > 0.

Let us introduce the space

Ve=1Q)={veH(Q)|v=0o0n T =y}
and on y let us define the functional y,7 by

(1.15) T Y0y, = (1, &(0))0,0 + (Div T, 0)o0, ve (V).

Let Q, denote the Q€ M which is divided into two simply connected domains
Q' Q? with Lipschitz boundaries I'', I'2. The common part of this boundaries will
be denoted by y, i.e. y = I'" (Y I'”. Let a normal n to y be oriented so that it is
an outward normal of the subdomain Q1.
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Definition 1.1. Let Q = Q,. Let ' € H(Div; Q') and t* € H(Div; Q). Then the
stress vector y,T is said to be continuous at vy provided

(] 16) <yvrl> W>y = - <'}’v‘52, W>y >

where w is the common trace of functions v* € (VO(Q'))? and v* e (V°(2%))*ony. O
The interface conditions on y for the Airy stress function are established in

Theorem 1.4. Let Q, be given and let t* e H(Div; Q°), Divt* = 0 on Q% k = 1, 2.
Then there exist representatives U' and U? of the classes of equivalence from the
quotient spaces H*(Q")[P,(Q") and H*(Q?)[P((Q?) such, that

U, =o;u%,. =12,

1.17 TLwd, = =t w), =
(1L17) Gty = — Gt W, {U1|y= g

Proof. We choose Q* « Q' < @ < Q,, Q% Q" e, such that both Q* N Q!
and Q* N Q% are non-empty. Let u} € V°(Q'), u} € V°(2?) and let w; be the common
trace of these functions on y, i = 1,2. Then u; e I*(Q,) and uf = u|Q", k = 1,2.
Let us regularize u; € L*(Q,) by means of a kernel w,(x — y), where A = const.

Aw,(z) = sexp (|2|*/(|z|* — h?)) for |z| <h,
.0 for Izl >h,

h < dist (92*, 02'). We obtain (u,), (x) € C(2,),
(e () = j 0l = Vuy)dy, i=12.
B

Then (u}), = (u.), | @% k = 1,2and (w;), € CP(y) (where C3(y) = {o]y| 0 € C3(2,)})
is the common trace of the functions (u}), and (u), on y, i = 1,2. The function
(uf), are dense in VO(Q¥), k = 1, 2. Let {y,t', w,>, = —<3,7%, w,>,. Then by (1.15)
we have

(, e(up))o.r + (DivTh, uy)o .00 = — (22, &(ul))o.02 — (Div 12, u7)g 02 -

Next, let us choose in particular (u}), = 0, (4%), = 0, k = 1, 2. Then a direct calcula-
tion from (qi, grad (u}))o.01 = —(42, grad (u}),)y o2, if we make use of (1.14)
again, yields

j (0,U" = 3,U%) 0,(wp)ds = 0 V(wy)y e C2().

This implies that 0,(0,U"|, — 9,U?|,) exists in the sense of distributions and
is equal to zero. Interchanging the subscripts we obtain the same assertion for
a(0,U"|, = 8,U?,). Hence (9;U%|, — 9,U?|,) = a;, a;€ R, j = 1,2. Because the
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mapping t — U, for Divt = 0, is unique modulo P,, then U** = U* 4+ p* Vp*e
€ P(2), k = 1,2 is also pertaining to the given stress tensor t* on Q% k =1,2.
Now we can express

o(UY, = U?|,) = = (2,U"], = 8,U,) v, + (8,U1, = 8,U%,) v, =
= —a,V, + av; .

Hence we obtain, making use of the parametrical expression of the boundary ctirve
with the length of arc of the curve y for the parameter,

U'(s)|, = U(s)], = a, x4(s) + a5 x5(5) + a .
Let us denote

pt —p> =p* =a3x, + alx, + a5 in Q'Y Q*.
Therefore, we obtain

UI'*|v — U*|, = (a, + a}) x,(s) + (a2 + a3) x5(5) + (a0 + a3)
and
(@U"*], — oUr¥,) =a; +aj, j=1,2.

From the last two formulas the assertion follows, for we can choose p* so, that
a;+a =0,j=0,1,2.

Conversely, let U e H*(Q') and U? e H*(Q?) satisfy the right-hand part of the
equivalence (1.17). Let us take into consideration the functions (uf), from the proof
of the first implication. Then the definition of the derivative in the sense of dis-
tributions implies that

f 8, 0w;)y ds = f 0,U% 0(w,)y ds .
Y 7

Making use of (1.14), we obtain (g}, grad (us))o.er = — (43, grad (u3),).q2. This
together with (1.13) and (1.9) yields <p,q}, (W2)»>, = —<nd3: (W2),>,. From the
density of the functions (u}), in ¥°(@"), k = 1,2, we conclude that y 3|, = "M%ly
in the sense of distributions. In fact, it is sufficient to verify, that CZ(y) is dense
in H'*(y) with respect to the I*-norm. This, however, follows from the density
of the set V°(Q*) n C*(&,) in V°(2*), k = 1, 2, if we employ the trace theorem.
Interchanging the subscripts we obtain the same result for yvq'{ly, k=1,2. O

Theorem 1.5. Let @ = Q,, U'e H¥(Q'), U? e H*(Q?) and let the right-hand
part of the equivalence (1.17) holds.

Then U € HX(Q,) for any function U such that Ulg: = U' and Uy, = U2 The
proof follows from Green’s theorem. O
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2. SOME SPACES OF CONFORMING EQUILIBRIUM STRESS FINITE ELEMENTS

In this section we shall study conforming equilibrium stress finite elements con-
jugated, in the sense of slab analogy, with compatible elements used for solving
an approximation of the biharmonic problem (the so-called C! elements). Throughout
the paper we shall use a compatible finite element (K, P, Zx) defined in [2].

With regard to Theorem 1.3 let us define the space .#x by

(2.]) '/IK:QPK'

Clearly, dim /4y = dim Py — 3and for 7 € ./ y the three overall equilibrium condi-
tions

22) J.tk(t)ds=0, k=12,
oK

f (31 13(2) = x> 14(e)) ds = 0

are fulfilled.

We shall start from the general definition of such an element.

Definition 2.1. A conforming equilibrium stress finite element is a triple (K,
My, ZX), where

— K < R?is either a triangle or a rectangle;

— My is a finite-dimensional space of stress fields t defined over K and satisfy-
ing Divt = 0 in K;
- ¥ is a set of linear functionals T, i=1,...,q, defined on My and

determining a distribution of the stress vector on the boundary 0K of K,
from which q-3 are linearly independent; the functionals which are
linear combinations of the others are determined by the three conditions
of total equilibrium.

Let us note that card i = card Zy. O

Definition 2.2. We shall say that the set Xy is M -unisolvable, if for an arbitrary
stress vector satisfying the conditions of total equilibrium, the distribution of which
on the boundary 0K of K is determined by a q-tuple of real numbersa,, ..., o
there exists precisely one tensor t € M such that

T(t)=a;, i=1,...q. O

Let us denote by K a reference domain which can be either the unit square with the
vertices d; = (0,0)7, d, = (1,0)7, 45 = (1, 1), d, = (0, 1)" or the triangle with the
vertices d, = (0,0)7, d, = (1,0)7, d; = (0, 1)7. Let I, denote the length of the side
G,4,,, and let A’ denote an outward normal to the side d;d,.,. Denote by (24’);
the j-th component of the stress vector on the side d;d; . Introduce the affine one-

q°
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to-one mapping F : K — K by

(2.3) x=F(&X)=B%+ b
where
2 1 r 1
X T X Xy T Xy
B_<x§ — x3, x5 —xi)’
b= (x{, x3)

and (x},x%),i = 1,...,r, (where r € {3, 4}) are the vertices of K. We note that the
mapping F maps the gravity center of K onto the gravity center of K and maintains the
dividing rates of a point on a straight line.

Given the stress tensor 7 defined on K we define the stress tensor £ defined on K by
(2.4) #(%) = B~ '¢(F())(B~1)T,

(i.e. a correspondence between contravariant tensors). If /i is a normal to the side §
of K, thenn = (B~ )T # (i.e. a correspondence between covariant vectors) is a normal
to the corresponding side S of K. Making use of (2.3) we have? = B~ 't(i.e. a corre-
spondence between contravariant vectors) and the relation

tedly<>te My
can be verified by direct calculation.
C—E—S—I ELEMENT
This conforming equilibrium stress element (known as Watwood-Hartz’s element)
is conjugated, in the sense of slab analogy, with the Hsieh-Clough-Tocher (H—C—T)

compatible element defined in [2].

£

Fig. 1.

195



Let us recall that for an H—C—T element, K is a triangle (see Fig. 1) with vertices
a;, 1 =i =<3, which is decomposed into three subtriangles K; 1 < i £ 3. The

3
point a = () K; is a point lying inside the triangle K, usually the center of gravity
of K. =1

With the triangle K we associate the space

(2:5) Py ={UeCYK)|U|x,=U'ePy(K), 1 £i < 3}
and the set of degrees of freedom
(2.6) Ix = {U(a;), 0,U(a;), 0,U(a;), 8,U(b;), 1 < i < 3},

where b; is the mid-point of the side a;, ,a;,. The subscripts are calculated modulo 3.
The connecting line of the vertex a;, 1 < i < 3 with the gravity center will be called
the internal side of the triangular “building block” K.
Let the restriction U|K, = U'e P4(K,), 1 £ i <3, of the Airy stress function
U e Py be given in the form

(27)  U' = Bio + Bixy + Bixa + 3Bix3 + 3B3xT — Bixix, + $ix] +
+ %ﬁ;xfxl + %Béxlxg + 1B5x3,
where i, m = 1, ..., 10, are real constants.

By virtue of (2.1), on each K;, 1 < i < 3, we can define an auxiliary space

(2.8) N (K;) = ¢ P4(K;).
X,
A
03
£33 223
"337; 1 T2 223
7" (LA - T’ !

234 222
,‘J’Ti-' T A ? r? ap9
7": — a - 7', ]

a, >a,
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Thus the space ./V(K,) is a seven-dimensional linear set. Obviously, the vectors
t(t?), k = 1,2, t' e #/(K;) are linear on each side j, j = 1,2, 3 of the triangles K,
15ig3.

Now, due to Theorems 1.3, 1.4, 1.5 and (2.5), (2.8), we define the self-equilibriated
piecewise linear stress fields over the triangle K:

(2.9) My ={re HDiv;K)|t|x, = e #(K). 1Zi<3,

™ is continuous across the internal sides of K} .

Clearly, dim .4 = 9 and if we again employ (2.6), we can define a reference equi-
librium triangular “building block™ element by

Definition 2.3. A reference conforming equilibrium stress triangular “building
block” finite element is a triple (K, Mg, %) (see Fig. 2), where K is the reference
triangle, M g is defined by (2.9) and X% is the set of linear functionals defined on
M g. The functionals are defined in the following manner:

For any external side d;4;., = R; n 0K, 1 £ i £ 3, select an outward normal
i'. Then, if © is any stress field of the space M ¢ put

(2.10) Trt = H{(#'(dis 1) A + (37(d) A} S
Tt = 3{(#%(dis 1) A — (2(@) A%},
i=1,23i+1=1fori=3 k=12 0

Lemma 2.1. Let te /Mg and let twelve degrees of freedom be given by (2.10).
Then the three conditions of the overall equilibrium hold:

(2.11) o'+ JR) T2+ T2 =0, k=12,
(the resultant forces vanish)
(212) 37y + T3 + 32 T3 - J(2 T3 - 3J(2) TP -

-J@)Ti? =3T3 + T =0
(the resulting moment vanishes).

Proof. On any side S of K we introduce the basic linear functions A} € P,(S),
k = 1, 2 such that

(2.13) A@) =1,

i 28— 1;
lz(s) = ; R

i

where the parameter § has the starting point in d; of any side S.
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Then (2.11) and (2.12) is a consequence of the equilibrium conditions and of the
symmetry of £ if we make use of the definitions of .# ¢ and 4'(K;) and insert #}(¢’) =
=Tyl + TP aL. O

Theorem 2.1. Let twelve degrees of freedom T}, Ti*', i=1,2,3, k=12,
be given, which satisfy (2.11) and (2.12).
Then there exists a unique stress tensor £ € M g such, that the equations (2.10) hold.

Proof. As the dimension of the set /4'(K;) is seven, it is necessary to have 21
equations to determine the three functions %/ = %IK." It is easy to see, that the set
X% of degrees of freedom generates twelve equations which are constrained by three
equations (2.11) and (2.12). The conditions of continuity of the stress vector across
internal sides of K give the remaining twelve equations. Due to these facts, it only
remains to show regularity of the matrix of the linear system obtained.

On any side S of K we express the stress vector in the form

(2.14) H,=RIM + RV, ji=1,2,3 k=12,
where
(2.15) R = H{(#(dj41) A7) + (21(a)) A),}

and A/, k = 1,2 are the basic linear functions from (2.13). The subscript i refers
to the subtriangle K, superscript j refers to each side of each K. Then the continuity
conditions for the stress vector on any side of K give

(2.16) G;) R* = {g}

where A¥ is a matrix of the type (12 x 36) and the continuity conditions are expressed
across the internal sides of K, and A} is a matrix of the type (12 x 36) and the
continuity conditions are expressed across the external sides of K. R* is the matrix
of parameters R{/, R1{*', j, i = 1,2,3; k = 1, 2, of the type (36 x 1). The column
matrix on the right-hand side of (2.16) is of the type (24 x 1) and is partitioned
between the 12th and 13th rows. T denotes the submatrix of the degrees of freedom.

Express the stress vector on any side of K; in terms of the stress field . To this
end we have

| PN
2.17 —CYp =Ry,
(2.17) 20 ¢ F =R

where d; denotes the length of the j-th side of K, B' = {Bi, ..., i}, R = {R{{, Ri,
R, RP*T'Y and
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(2.18) ¢ =

=2Y; - Y1), 0 o AR = Xja)s =2XY; - X1 Y0),
_ 0 2K = X)) —2Y — Vi), VR
B 0 , 0 , 0 C2AX = X)) (Y = ),
0 , 0 , 0 , —(¥; = ¥0)%
0 ’ ij - X:‘ZH’ —(YJ:}— szﬂ)
X2 - X%, —2R0 - X00), 0
0 , —(X; = X (Y= Y)

—(X; = X0)% 2% = £ (B = Bi4), 0

if we insert 9 = —(I;)""(¥; — ¥j4,), 95 = (1;)"* (X; — X;4,) for the compo-
nents of the unit outward normal. ()?j, Yj) denotes the coordinates of the vertex d;,
j = 1,2, 3. Inserting (2.17) into (2.16) we obtain

A-8)

As in [14], we use the continuity conditions for the stress vector across the internal
sides of K to reduce the parameters B of the stress field. The rank of the matrix A
is twelve and we have

(2.20) A, <(2\g)1 _(AE)HI Ai) =AQ=(:0),

u

where Z\f,) is a matrix of the type (12 x 12) which is formed by the first twelve columns
of the matrix A,, while the matrix A? is of the type (12 x 9), I is the unit matrix
of the type (9 x 9).

Then we introduce a transformation of the form

(21) B=Qb =(Q: Q){ﬁ}

where Q is partitioned between the 12th and 13th columns and B’ is partitioned
accordingly.
The equation (2.21) isthen inserted into the upper equations of (2.19) with the result:

(2.22) AQp =0,

(150){”%} "y

Hence the equation (2.21) takes the form:
(2.23) B = Qb
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and the lower equations of (2.19) produce

(224) AQ - T.

The matrix product Z\IQl is now considered as a matrix C for a triangular “building
block™ and we have the desired system

(2.25) Ch =T,
in details
-1/6 —1/6 0 0 -1 0 0o -1/3 1/6
11/24 5/6 0 -1 0 0 —1/2 -—11)24 =56
1/4 1)2 0 . S 0 -3/4 —-1/2
7/8 3/2 0 . .0 =12 =78 -3/2
J2/12 V2120 22 0 212 0 0 J2/6 J2/6
—11./2/48 =5/2/12 0 /2/2 /2[2 — 2[4 J2]4 11 /2/48 5./2/12
—/2/8 V2[4 0 . 0 =22 0 =28 22
52/16 324 0 0 —2/4 —2/4 —13/2/16 -3 /2/4
0 0 -1 0 . . . 0 —-1/2
0 . .0 =1 12 0 . 0
0 . e . . 0 1/2
0 0 —-12 0 . 0
By (T
Bl |1
A
AN
By | = | 122
6| | 132
| |1i
Bl | 137
) |13
7373
T3t
T3

The three conditions (2.11), (2.12) imply that we can omit three equations of the
system, e.g. the equations 5, 6, 7.
Then the remaining system has the form

o =7,
where
jdet 6] = L2,
3.2°
Consequently, the system has a unique solution p’ € R°. O
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C—E—S—II ELEMENT

This element is conjugated, in the sense of slab analogy, with Ahlin’s compatible
element defined in [2] (as Bogner-Fox-Schmit’s element).

Let us recall that for Ahlin’s element, K is a rectangle (see Fig. 3), the sides of which
are parallel to the coordinate axis x,, x, respectively, with vertices a;, 1 =i = 4.

Xzh

a9=(x;1x;) a)’(X?, X;)
B a,=(x{, X3) ay=(X], x])
Xy
Fig. 3.
With the rectangle K we associate the space
(226) PK = Q3 ’
where
Q3 = Z ﬂam;xcl”x‘;z ’
0<a;<3
i=12
and the set of degrees of freedom
(2.27) Ig = {U(ai)a aIU(ai)a aZU(ai)a alZU(ai): lsis 4} .
Let the Airy stress function U € Py be given in the form
(2.28) U = Bis + Bisxy + Braxs + 381X + 3BoxT — Baxixp +

1 2.2 1 3 3 1 2 1 2 3
+ 1Baxix5 + EPsx7 + EPex5 + 3Psx7X, + FPex x5 + §fex1X, +
1 3 g 3.2 1 2.3 _ 1 3.3
Brox1X3 — 3 x1x5 — B ax1X5 — §B1ax1X3 s

where $,,, m = 1, ..., 16, are real constants.
From (2.1) we have

(2.29) My = {ve H(Div; K) | e P(K), Divt = 0},
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where
P(K) = {re P1u(K) x Pyy(K) x (Pyo(K)) |« =17}
and
P, = 01, P is the set of functions cubic in x, and linear in x, .

P,, = 0,,P is the set of functions cubic in x, and linear in x, ,

P, = Q3 = 043Py is the set of functions of the type Y S, ,,x{'x5* and the
Oig—;a{;zz
operators g;; (i,J = 1, 2) are the entries of the matrix ¢ (see (1.10)). Clearly, the space
JM i is a thirteen-dimensional linear set and if we employ (2.27) we can define a refer-
ence equilibrium square element (the matrix B from (2.3) is diagonal) by

Definition 2.4. A reference conforming equilibrium square stress element (see
Fig. 4) is a triple (K, Mg, 23), where K is the reference square, M g is defined by
(2.29) and Xy is the set of linear functional defined on Mg as follows:

Xzf
. Tals By alhe .
7;1 ] A‘:’[ 2 B/'
g L" a, 7:" .
A 'X A
(Tas)a , G4 Gaid (Ta,3)2
A A
o 17 Q" B
Tf” A a A a A Tzlf X
71,21 ' (hak N Tg2

Fig. 4.

For any side d,4;4, of K, 1 £1 = 4, select an outward normal #'. Then for

T e Mg put
(2.30) T, = t5(d), 1sis4,
Tij=(f(a"i)ﬁk)j, 1gig4d; j=1,2; k=i—-1,i; j=1
for k=i—1, where i—1=4 fori=1,
(Trisr)y = @(Quis) ;s 15045 J=125 k=1i;
i+1=1 for i=4; J=1 for k=i odd, j=2 for k=i even,

where Q: 141 denotes the mid-point of the side d,d;+1- 0l
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Lemma 2.2. Let £ € M ¢ and let sixteen degrees of freedom be given by (2.30).

Then the following three conditions of the overall equilibrium hold;
(2.31) —Ty + 4T ) — T + 3T, +3T5, + Ty + 4Ty 0), +

+ Ty +3T,, +3T,, =0,
(232) 3T, + 3T, + T +4(Tos)s + Ty + 3T, + 34, — T, +
+ 4T, ), - T, =0,
(233) T, + 2T, + Ty + 4Ton)y — Toy — 275, + 2T, + T,y —
- 4(T3,4)1 - T - 2’T4,1 - T1,1 =0.

Proof. On any side d,d;,,; of K, 1 Si<4; i+ 1=1fori=4,1 =1, we
introduce two systems of basic functions 4; € P,(d;d;, ), k = 1,2 and p; € Py(d:d;+,)
k =1, 2, 3 such, that

M) =1-35,
24(5) =8,
pi(§) =1 — 35 + 2§87,
w(8) = 45(1 = 3),
us(5) = 825 — 1),
where the parameter § has the starting point in d; of the side did; ;.

Then (2.31) to (2.33) is a consequence of the equilibrium conditions and of the

symmetry of £ if we make use of the definition of .#¢ and insert the stress vector

on any side 4,4, expressed by the degrees of freedom and the basic functions 4/, ul,
and if we take into consideration the fact, that the stress vector # for € 4 is

i) £, = const.: #; — linear function,
1, — quadratic function;
ii) £, = const.: #, — quadratic function,
i, — linear function

As an outward normal A’ we choose the unit outward normal 9’ for any side &;d;,
of K, and any side of K is expressed parametrically as £, = £,(d;) A} + £(d; 1) A
k=1,2. O

Theorem 2.2. Let sixteen degrees of freedom be given, which satisfy (2.31), (2.32)
and (2.33).
Then there exists a unique stress field £ € M g such that the equations (2.30) hold.

Proof. As in the proof of Theorem 2.1, it is sufficient to show the regularity of the
matrix of the linear system obtained. We write the system (2.30) and insert the equa-
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tions for £ € .4y into it. We obtain the system of 16 equations for 13 parameter 3,1 <
<113, ie
(2.34) Ch="T.

The three conditions(2.31) to (2.33) imply that we can omit three equations of the
system.
Then the remaining system has the form

ép =T
where
9
W“ﬂ=§r
Consequently, the system has a unique solution § € R!3. O
Xa’
A A A
aly, B gl
7;,1 R A 31
Ty T3
A A
( 7:,,1)21 1( T2,3)2
A A
o IA I A
r’:f el a v b‘_‘h;—.T?,f —_’x’
rl,? ! (71,2)1 2 7;,2
Fig. 5.

Remark 2.1. As in [20], we define the components of the main stress vector acting
on the arc Os by T, = [§ t, ds, T, = [} t, ds, the values of which are determined as
the differences of the values of the derivatives of the Airy stress function U at the
points 0 and s, i.e.

TI = azU(S) - 62U(0) 5

—T, = 3,U(s) — 2,U(0).

Now, we can define the set X of linear functionals, defined on /¢ (see Fig. 5), as
follows:
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For any side 4,4,,., of K, 1 £i < 4, select an outward normal #'. Then for

2e g put
(2.35) T = t,(d), 1
T,; = (#(d) #Y);, 1<is4;

i

Il

—~~

IIA
I\
o

=12; k=i-1,i;
j=1 for k=i—-1, where i—1=4 for i=1;
j=2 for k=1,

~.

(T,.,Hl),.:J () A, ds, 1Sig4; i+1=1 for i=4;

Aidi+1
j=1 for k=1 odd; j=2 for k=i even.

It is easy to verify the .4 g-unisolvability of X} in a way analogous to that used in the
proof of Theorem 2.2.

C—E—S—III ELEMENT

This coforming equilibrium stress element is conjugated, in the sense of slab
analogy, with Fellipa’s compatible element defined in [2] (as Argyris’ element).

Let us recall that for Fellipa’s element K is a triangle (see Fig. 6) with the vertices
a,1<i<3.

Xz24
a5
n?
n? b’/
~Ws
a;
b,
a, \ n!
Xy
Fig. 6.
With the triangle K we associate the space
(2.36) Py =P
and the set of degrees of freedom
(2.37) Ze = {D*U(ay), |a| £2, 8,U(b)), 1 £ i <3},

where b; is the mid-point of the side a;a;. ;.
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Let the Airy stress function U € Py be given in the form:
(238) U = Bay + BuoXy + Broxz + 3B1x3 + 3Bax] — Baxyxs + ghaxi +
. = P21 20X 19%2 2P1X2 2P2X] 3X1 X2 §PaX1
1 2 1 2, 1, 3 1 4,1 3 1 2.2
+ 3Bsx1x2 — 3Bex1X5 + gB7x; + 3BsXT + gBoXiXy — FBroX1X7 —
1 3 1 4 1 5 1 4 1 3.2
- gﬁnxxxz + ﬁﬁ]:xz + Toﬂlsxl - 1‘2514"0‘2 - gﬁ15x1x2 -
1 2.3 1 a 1 5
- gﬁmxlxz - ﬁﬁnxlxz + iﬁﬂlsxz s

where f8,,, m = 1, ..., 21, are real constants.
From (2.1) we have

(2.39) My = {te HDiv;K) | re (P5(K))*, 1 = 1'}.

Clearly, the space ./ g is an eighteen-dimensional linear set.

Definition 2.5. A reference conforming equilibrium triangle stress element is
a triple (R, Mg, %) (see Fig. 7), where Mg is defined by (2.39) and Zg is the set
of linear functionals defined on Mg as follows:

For any side G;4,.,, 1 < i < 3, select an outward normal A'. Then for te g
put

2.40 T, =%,(4), 15i<3, 1£j<3; s,m=12;
( ) i,y sm( :) J
j=s=m for j=1,2; j=3 for s<m,
(Tiy); = (#(Q")AY;, 1<i<3; r=12; j=12,

where Q"", r = 1,2, denote the points which partition the side d,d;,, into three

equal parts. d
X,
A
T34
7,14 @
7‘:3'2 a“s

RE
(7‘:,’ ’)’( 75,1)3 t

(Ty2) Gl
Thy

t—f a Al x
’(7;,2)1 : Tas ’
(T (T

Fig. 7.

206



Lemma 2.3 Let © € Mg and let twenty-one degrees of freedom be given by (2.40).
Then the following three conditions of the overall equilibrium hold:

(2-41) —Tl,l - TI,B + 3(T1.1)1 + Ty + 3(T1,2)1 +3 \/(2) (Tz,1)1 +
+3J2)(Ton): + Ty + 3(Ts0) + 3(T5,), =0,

(242) Ty T, + 3(Ti1): + 3(Ti2), + Tos + 32 (Tan): +
+3J(2) (Tz,z)z + Ty, + 3(T3,1)2 + 3(T3,z)z =0,
(2.43) 2Ty — 2T, + ATy 4)s + 36(Ty 5), — 2T, + 11T, 5 —

= 9J@)(Ty,)1 + 36 () (T3,1)2 — 36J(2)(T22)1 +9(2)(T20)2 + 2T5,0 —
— 1Ty 5 = 36(Ts,); — NT5.,); =0.
Proof. On any side d;d;,, of K we introduce a sys:iem of basic functions 1 e
€ P3(d;d;+,) k = 1,2, 3, 4 such, that
A =1- %§(1‘.)“1 + 95%(1)7% — 35%(1,) 73,
25(8) = 95(1) ™" = F8(L) 7 + FS() 77,
23(8) = 385(1)7" + 1887(1) 72 = F(1) 72,
BS) = S0 = 390072 + 58007,
where the parameter § has the starting point in d; of the side 4;d;. ;. As an outward

normal A’ we choose the unit outward normal 9 for any side d,d;,; of K. On any
side d;d;,, of K,i = 1,2, 3, let us express the stress vector in the following manner:

1(8) = (T + T:.592) 21) + (Tia)s 25(8) + (Th2)1 25(5) +
+ (Trar 195 + Tiry39) 24(9)

#(5) = (Ti 3% + Ti29%) 24 + (T0,0)2 45(5) + (Tin)2 45(5) +
+ (Tie1,39 + Tivy 295) 240)

where i + 1 = 1fori = 3.
Now the proof is analogous to that of Lemma 2.2. O

Theorem 2.3. Let twenty-one degrees of freedom be given, which satisfy (2.41),
(2.42) and (2.43).
Then there exists a unique stress field ¢ € Mg such that the equations (2.40) hold.

Proof. To prove the regularity of the matrix of the linear system obtained we write
the system (2.40) for any i = 1,2, 3 and insert the equations for £e.#g into it.
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We obtain a system of 21 equations for 18 parameters f,, 1 < | < 18, i.e.
(2.44) Cp=T.

Due to the equations (2.41), (2.42) and (2.43) we can omit three equations of the
system. The remaining system has the form

€p =7
where
26
|det €| = el
Consequently, the system has a unique solution f e R'8, O

Remark 2.2 As in Remark 2.1, we define the components of the main stress

vector acting on the arc 6; Thus
o U = 0,Uv; + 0,Uvy = =Tov, + Tyv; + c ~ T,,
o0,U = —=0,Uv, + 0,Uv, =Tov, + Tyv; + ¢~ T,,

(fs,f)r hs
5
i
J—d,
(Fye

Now, using Theorem 1.4, we deduce that the tangent and normal components of the
main stress vector are continuous across any side d,d;,, of K and we can define the
set X of linear functionals defined on .#¢ (see Fig. 8) as follows:
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For any side 4,d;+1, 1 £ 1 = 3, select an outward normal ', Then for t el ¢

put
(245) ?i,j = fsm(di) 5

j=s=m for j=12; j=3 for s<m,

(Ti)y = f . (i (2A%), A)) ds

—

<i<3;

T
o

Jaaier ko

i=1,2,3;i+ 1= 1fori=3,b; denotes the mid-point of the side G .

XA
.
Tyt 198
(B")’tz".”. (Ty2):
(Ts) A
Toah | ) f_._— (Fs2)s
f—"( B2), 105 b, (%0,
(75,2)2 t—’( Tty
n:’ A E,l
fra b \\- o —=
# 16 == () A
fis ay 1w Tas
" —"(7;,2)1
iy |
(T2),
Fig. 9.

If we take into consideration the cartesian’s components of the main stress vector,
we can define the set ¢ of linear functionals defined on ./ (see Fig. 9) as follows:

For any side G,4;,1, 1 < i < 3, select an outward normal #i'. Then for te Mg
put

(2.46) Tip =tm(d), 12i23; 12j<3; s,m=1,2;
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j=s=m for j=12; j=3 for s<m,

(Tm)k=j (ta') ds, 1Si<3; k=1,2,
aib;

(T,.,z),(=f thl),ds, 1<i<3; k=12,
Aidi+ 1

where i + 1 = 1 for i = 3, b; denotes the mid-point of the side d,4;, .
It is easy to verify the .#g-unisolvability of both sets Xy, defined in (2.45) and
(2.46), in a way analogous to that used in the proof of Theorem 2.3.

3. APPROXIMATION PROPERTIES OF EQUILIBRIUM STRESS ELEMENTS

From now on, let Q be a bounded polygonal domain in R* with a Lipschitz bound-
ary T'. Let the boundary I" be divided into mutually disjoint parts I'°, T',, I, such
that

3.1) rvr,ur,=r,

where I'° is the union of afinite number of pointsand I',and I, are open in I'. Let.7,
be a decomposition of @ into convex polygons K;, i.e., we write @ = UK;. For their
mutual position precisely one of the following relations holds: i

- K,nK; =0, i*j,
— K,nK; = K', where K’ is either a common side or a common vertex of the
elements K;, K.

Definition 3.1. Let I'°, I',, I', of the boundary I satisfy (3.1). Then a decomposition
T, of Q is said to be consistent with T, and I', if the interior of any side of any
Ke 7, is disjoint with I'°. O

Henceforth, we shall suppose that any decomposition J, is consistent with I,
and I, and the family of decompositions {7} is regular (see [2]).

The approximation properties of the C!-elements for the Airy stress function U,
generated by the elements from Section 2, are characterized in [2], Chap. 6.

Lemma 3.1. Let the operator Il of the Py-interpolation on an element K be such
that Ilgp = p Vpe P, < Pg. Then there exists a constant c, independent of the
element K and such, that for the elements of class C' from Section 2 and a regular
family of decomposition {7} the following inequality holds:

(3:2) |U = DU i S k' "|U}yyy ¢ VU € HY(K)
and for all 0 £ m < k + 1 for which Py = H™(K) holds; k = 3 for H—C—T and
Ahlin’s elements and k = 5 for Fellipa’s element. O
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Let us denote
(3.3) Q(K) = {re H(Div;K) | Divt = 0} .

Then for any e Q(K) N (H* *(K))* we can define the matrix function fIz, the
M -interpolation of the function 7, by

(3.4) Mgt = o(IIkU),

where ITxU is the Pg-interpolation of the function U € H**!(K) and U corresponds
to t by Theorem 1.3.

Then the approximation properties of the conforming equilibrium stress elements,
discussed in Section 2, are characterized by

Theorem 3.1. Let the operator Iy of the Px-interpolation be the operator from
Lemma 3.1. and let the operator ITy be the operator from (3.4). Then there exists
a constant ¢ > 0, independent of K € I, and such, that for all elements C—E—S—1I
to 111 and a regular family of decomposition {f/",,} the following inequality holds;
(35) [t = Myt]ox < ch* ooy x Vre QK)n (H'(K))*,
where k = 3 for C—E—S—1I andlI elements and k = 5 for a C—E—S—III element.

Proof. First we note, that by virtue of Lemma 3.1 and Theorems 1.3, 1.4, the
interpolation matrix function [Ty is fully determined by the inclusion (H*~}(K))* <
< (C(K))*, where k = 3 for C—E—S—1Iand Il elements and k = 5fora C—E—S—
—1II element. On the other hand, we cannot have the inequality of the type (3.5)
for the left hand side for the ||*|,, g-norm, m > 1, because we have only the inclusion

My < (IZ(K))* for all types of the finite elements mentioned above.
Now, from Theorem 1.3, definition (3.4) and Lemma 3.1, we have

|v = ftlox = [V = e(ITxU)o.x £ U = McU[2x < eh* ! |UJss 0 =
= ch"_‘|1|k_1,,<. O

4. DUAL VARIATIONAL FORMULATION OF THE LINEAR BOUNDARY
VALUE PROBLEMS OF ELASTOSTATICS

Making use of the superposition of a particular solution of the equations of total
equilibrium and the general solution of the homogeneous equations, we may assume,
that the body forces are zero. Let a surface load vector Te (I*(I',))* and a displace-
ment vector u, € (H'(2))*> be given. In the case I', = @ (the so called first basic
boundary value problem) we always assume that the conditions of total equilibrium

(4.1) J’Tids=0, J.(xxT)ds=0, i=1,2,
r r

are satisfied.
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Let us consider the generalized Hook’s law in the form
(4.2.) Tij = Cijki€i»

where c,;;; are measurable bounded functions in , mostly constant or piecewise
constant in practice, and a repeated index means summation over the range 1,2.
Assume that

(4.3) Cijkr = Cjirt = Ckiij

and that the corresponding quadratic form is uniformly positive definite in @, i.e.
there exists a constant ¢, > 0 such, that

(4-4) Cijni€ijér 2 Coij€ij

is valid for all symmetric tensors ¢ (see (1.7)) and almost every x € Q. It is known
that the generalized Hook’s law can be inverted, i.e.

(4.5) &i; = Aijta >
where the coefficients 4;;,; are bounded and measurable in Q and satisfy the condi-

tions analogous to (4.4).
Let us introduce the bilinear form on H x H (for H see Section 1)

(4.6) a(t’, ") =J Ajjiatiti dx .
o

From the properties of the coefficients of the generalized Hook’s law we conclude,
that this form is symmetric and uniformly positive definite. The form a(z’, ") is
a scalar product on H. Now let us define the set of statically admissible stress fields

(4.7) 0r = JLT e H(Div; ) | (1, 6(0))o.0 = J

I's

Tw;ds Yve V} ,

where
(4.8) V={ve(H(Q)*|pv=0o0nT,},

It is known, that 1€ Q; iff Divt = 0in Q and v = Ton I',.

Definition 4.1. The dual variational problem of the linear elastostatics consists
in finding o which minimizes the functional of the complementary energy Y:
H — R defined by

l//(T) = %a(r, T) - <YVT5 ;})0u0>l‘ , T GH
over the set Q. O

It is known [1], that this problem has a unique solution. As in [7], the variational
problem from Definition 4.1 can be transformed into the following one:
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Given 6 € Qr fixed [11], find 6 which minimizes the functional

(4.9) ®(t) = ta(t, 1) + a7, 6) — {07, Yolkopr
over the space
(4.10) Q, = {re H(Div; Q) | (1, &(v)o,o = 0 Ve ¥V} .

The stress tensor ¢ + & is considered to be the solution of the dual problem of linear
elastostatics and for any & € Q; there exists precisely one solution o.

Then, as in [7], we may replace the minimum problem from Definition 4.1 by
an equivalent problem:

(4.11) find 1°€ Q, such that
(D(to) = ¢(t) Yre Q.

Now, let {Q,} be a family of finite-dimensional subspaces of Q,. We define the follow-
ing approximate problem:

(4.12) find 1) €@, such that
(1)) £ d(1) VieQ,.

In [7] the following lemma (analogous to Cea’s lemma-see [2]) was proved.

Lemma 4.1. There exists h, such, that for any he (0, hy) exists precisely one
solution of the problem (4.12). Moreover, the following inequality holds;

(&.13) [+ = bl S inf [ = el o

5. ORDER OF CONVERGENCE IN THE L2-NORM
OF THE DUAL FINITE ELEMENT ANALYSIS

Let us consider the variational problem (4.11). Let us define the set of admissible
functions of the variational problem for the Airy stress function, dual to (4.11), by:

(5.1) W={UeH Q)|U=0U=0o0nT,}.

Now, the following theorem generalizes Theorem 1.3 to the case, when the stress
vector is zero only on part of the boundary of the domain investigated.

Theorem 5.1. Let I', and I', be connected. Then

(5.2) 0, = oW.
For the proof see [17] p. 50. O
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In an approximate problem for the Airy stress function the spaces of finite elements,
without boundary conditions, denoted by X, are defined via the following sup-
positions;

i) the corresponding family of decompositions {9',,} is regular;
ii) the finite elements are of the class C*;
i) Px = H*(K).

Then i) to iii) imply X, = C'(2) n H*(Q) (see [2]) and we define the finite — dimen-
sional subspace of admissible functions for the Airy stress function by

(5.3) W,=X,nW={U,eX,|U,=0U,=0o0nT,.
Next, the operator r,, of the X,-interpolation is defined for 7, € {7} by
(5.4) (nU)|x = M(U|x) VKeT,,

where HK(U|K) is the Pg-interpolation U|K on K and Py is the space of polynomial
(or piecewise polynomial) functions on K from Section 2. Let

(5.5) domr, = WA H*(Q) ¢ (@), k=2,3,

be the domain of the operator r,. _
The operator r, of the X -interpolation corresponding to an arbitrary element
of the class C*, mentioned in Section 2, satisfies the implication

(5.6) Uedomr,=r,UeW,.

Now, due to Theorems 5.1, 1.4 and 1.5, we are justified to choose in the approximate
problem (4.12)

(5.7) 0, = oW,

We say, that the space Q) is conjugated with the space W, in the sense of slab analogy
if (5.7) holds.
Then for any 7€ @, N (H*~1(Q))* we can define the matrix function #,r by

(5.8) (Ro)|x = fIx(x|x) VKeT,,

where [T(t|¢) is the .#-interpolation of the function 7| on K, the operator Iy is
from (3.4) and .#y is a finite-dimensional space of functions defined on K (see Section
2 for individual elements). The function 7,z will be called the Q,-interpolation of the
function t. )

Lemma 5.1. Let the operator ¥, be given by (5.8). Then
(5.9) FreQ,.

214



Proof. Due to the suppositions (5.5), (5.6), the definitions (5.8), (3.2) and (5.4)
we can write for ve ¥V n (C*(Q))*

f (Fut) &(v) dx _KELM KHK(1| v)dx = Z f o(IT(U|)) e(v) dx =

= K;} o(4U)|x &(v) dx = J o(r,U) e(v) dx = J‘ (=0,(rU) 00, +

+ 0,(r,U) 0,v,)ds = 0

for 9, =0onTI,and 0(r,U)=0o0nTr, j=1,2. O
The next theorem yields the order of convergence in the I*-norm of the dual
finite element analysis.

Theorem 5.2. Let the supposition of Theorem 5.1 and the relations (5.8), (3.5)
be satisfied. Then, if the solution t°€ Q, of the problem (4.11) belongs to Qo N

N (H*Y(Q))%, for k = 3 for C—E—S—1 and II elements and k = 5 for a C—E—
—S—III element, there exists a constant ¢ > 0, independent of h and such that

(5.10) [7° = o0 £ ch*'1%-s 0
where 1 € @y, is a solution of the approximate problem (4.12).

Proof. Making use of Lemmas 4.1, 5.1, equivalence of the norms |-|, and
|*]l0.0 the relations (5.8) and (3.5) for k = 3 for C—E—S—1I and II elements and
k = 5 for a C—E—S—III element, we obtain

[ = thfon < ¢ mf ”‘L’ — 1)y £ ||t — o0 =

o ) ||T — fIy

KeJn

L)V = ek ll‘[olk—l,ﬂ . O
The following result concerns all the types of finite elements taken into account:

Theorem 5.5. (on the convergence). Let the supposition of Theorem 1.3, the
relations (5.5), (5.6), (5.7) and the suppositions i) to iii) of this section be satisfied.
Let the set ¥° = W~ C*(Q) be dense in W and let T, be connected.

Then
(5.11) lim |° = 1)]oe=0.

h—0 4

Proof. From Lemma 4.2, equivalence of the norms on H and the suppositions

of this theorem we have

[° = thlloe < ¢ mf [° — 1] 0.0 = c inf [[oU — @U,[o.0 = ¢ mf IU Uilz.0 -
hEW R
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The density of #” in W implies that there exists U € W such that [U — U], o < 1¢.
Due to ¥" < dom r,, it follows from Lemma 3.1 (for m = 2) that there exists a con-
stant ¢ > 0 independent of h and such that |T — r,0|, , £ ¢h*™'|U|;, o, then
Ve > 03ho(e): |U — 1,00 < 3¢ Vh < ho(e). Due to the supposition (5.6) we have
r,0 € W, and thus |[U = 1,0, 0 < |U = U|,0 + |0 = 10|, for sufficiently
small h. Then, finally, we have

[2° = o = ¢|U = 70|, o> 0 for h—0,. |
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Souhrn

DESKOVA ANALOGIE V TEORII A PRAXI KONFORMNICH
ROVNOVAZNYCH MODELU POLI NAPETI
PRO RESENI ROVINNE PRUZNOSTI METODOU KONECNYCH PRVKU

MIROSLAV VONDRAK

Pro jednotlivé trojuhelnikové resp. obdélnikové prvky lze uplatnit metodu Airyho
funkce napéti, odtud vyplyvd, Ze apriorni odhady zndmé z teorie kompatibilnich
prvki pro rovnice étvrtého fddu zdrovet poskytuji odhady v [>-normé pro aproxima-
ce pole napéti. Je odtivodnén pojem ,,deskovd analogie” a poddn rozbor souvislosti
Airyho funkce — pole napéti ve vztahu k pfechodovym podminkdm na styku dvou
prvki. Jsou navrZeny unisolventni mnoZiny stupiitt volnosti pro prvky sdruZené
ve smyslu deskové analogie s nékterymi kompatibilnimi prvky a odvozeny aproxi-
madni vlastnosti téchto rovnovdZznych prvki.

Pro viechny tyto typy prvki je dokdzdna konvergence v [?-normé pro dostatedng
hladkd feSeni.

Author’s address: Ing. Miroslav Vondrdk, CSc., Vyvojova konstrukce letadel n. p. Rudy Letov,
Beranovych 65, 199 02 Praha 9-Letfiany.
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