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SVAZEK 30 (1985) A P L I K A C E M A T E M A T I K Y ČÍSLO 3 

SLAB ANALOGY IN THEORY AND PRACTICE 
OF CONFORMING EQUILIBRIUM STRESS MODELS 

FOR FINITE ELEMENT ANALYSIS OF PLANE ELASTOSTATICS 

MlROSLAV VONDRAK 

(Received January 26, 1984) 

INTRODUCTION 

It is well-known that finite element analysis of boundary value problems in elasto-
statics can be based on i) the principle of minimum potential energy, ii) the principle 
of minimum complementary energy, iii) the mixed variational principle (of the 
Hellinger-Reissner type). The most important purpose of calculations in engineering 
usually is to determine the state of stress in the body. One of the natural ways obtain­
ing approximations of stress is to use the procedure of class ii) which we study 
in the present paper. The fundamental problem in the application of the principle 
of complementary energy is the construction of suitable subsets that approximate 
the set of all the statically admissible fields satisfying both the conditions of equi­
librium inside the body and the static boundary conditions. A number of articles 
has been written on the dual finite element analysis (see e.g. [6, 7, 8, 9, 10, 11, 12, 13, 
14, 15, 17, 18, 19]). 

The recognition of an analogy between the Airy stress function in plane problems 
and the lateral displacement of plates (the so called slab analogy) was evident early 
[21, 3, 1] through the identical biharmonic relations valid for homogeneous and 
isotropic situations. B. M. Fraeijs de Veubeke and O. C Zienkiewicz [19] made use 
of the slab analogy to indicate how suitable two-dimensional stress equilibrium models 
may be generated from conforming plate bending displacement models. V. B. 
Watwood and B. J. Hartz [14] developed the equilibrating stress element conjugated in 
the sense ofslab analogy with Clought-Tocher's compatible displacement element. For 
Watwood and Hartz's element and the general domain, the theoretical convergence 
results have been presented by I. Hlavacek [7] without using the Airy stress function. 
M. Kfizek [16] extended Watwood and Hartz's element for the plane problem 
to three dimensions. The author is obliged to bring the article of M. Kfizek [17] 
to the reader's attention. 
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In Section 1 the notion "slab analogy", stated in [19], is motivated (from the 
mathematical point of view it generally includes the proof of existence of the Airy 
stress function) and the interface condition for the Airy stress function are established 
at the contact of two domains. Some spaces of types of conforming equilibrium 
stress elements, which can be obtained by slab analogy, are investigated in Section 2. 
In Section 4 a weak version of the Castigliano principle is established and the approx­
imate variational problem is defined by using equilibrium stress fields. In Section 5 
some subspaces of equilibrium stress elements are introduced and a priori error 
estimates in the L2-norm (provided the solutions are smooth enough) and conver­
gence results are obtained from the well-know results for compatible finite elements. 

1. AIRY STRESS FUNCTION 

Let Q cz R2 be a non-empty multiply connected bounded domain with a Lip-
schitz boundary F (for the definition of a Lipschitz boundary see [l]) . Let F0 be the 
exterior boundary of Q and Ff, 1 :g i ^ p, (1 = p < GO) be all the remaining parts 

p 

of the boundary F, i.e. F = \J rt. Note that a normal to the boundary F exist 
i = 0 

almost everywhere; the outward unit normal is always denoted by v = (vl9 v2)T. 
Henceforth, Pk(Q) will be understood as the space of polynomials of orders at most 
k. Let us denote the space of real infinitely differentiable functions with a compact 
support on Q by C£(Q), and let us define the space C°°(S) by C00^) = {pL U e 
e CQ(R2)}. The Sobolev space of functions the derivatives of which up to the order 
m exist (in the sense of distributions) and are square-integrable in Q9 is a Hilbert 
space, denoted by Hm(Q)9 for the scalar product (u9 v)mQ = ]T j * Q T>au Dav dx, 

\ct\^m 

equipped with the norm || * ||m Q = (*, ')H% . (| * \m,Q is the usual seminoma). 
As Co°(£) c Hm(Q)9 we can define the space Hm(Q) as the closure of C%(Q) in 

Hm(Q). 
All vectors will be column vectors. The norm, seminorm and scalar product of 

vector and matrix functions, the components of which are from Hk(Q)9 will be 
denoted in the same way as in Hk(Q) and we put 

n 

(*> V)U,Q = £ (u>h Vi)k,a for w = (ul9 ..., un)
T , v = (vl9 ..., vn)

T e (Hk(Q))n 

i = l 

and 

H U = (v,v)l[2
n for v = (vu ..., vnf e (H"(Q)f . 

Throughout the paper let the symbols di9 dij9dV9 dx9 S^ have the same meaning as 
in [2]. 

In the usual way we define the operator grad : Hi(Q) -»• (l3(Q))2 by 

(1.1) grad v = (dp, 82v) , veH\Q), 
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and the operator curl : Hf(Q) -> (L2(Q))2 by 

(1.2) curl v = (d2v, - O \ v ) , v e H^Q). 

We say, t h a t / e L2(Q) is the divergence of a vector function q e (l}(Q))2An the sense 
of distributions in Q if 

(1.3) (/, v)0,o = - ( g , grad v)0>r2 Vv e C?(Q) 

holds and we write 

div q = / in L2(Q) . 

Note that the first generalized derivatives of g need not exist. However, if q e (H1(Q))2
9 

then, evidently, div q = d1q1 + d2q2-
Let us introduce the following space: 

H(div; Q) = {q e (L2(Q))2 \divqe L2(Q)} . 

The next theorem concerns the boundary values of functions from the space H(div; Q) 
(see [4] Theorem 1.2.2): 

Theorem 1.1. A functional yv : q -» gTv|r defined on (C 0 0 ^)) 2 can be extended 
by continuity to a linear and continuous mapping, still denoted by yv,from H(div; Q) 
intoH~1/2(r). D 

Here H~1/2(F) denotes the dual space to the space H1/2(F) of the traces on F of 
all functions from H1(Q). 

Now Green's formula will be of the form: 

(1.4) (g, grad v)0>Q + (div q, v)0,Q = (yvq, y0v}r Vg e H(div; Q) Vv G H\Q). 

Here y0v denotes the traces of v and <•, «>r denotes the duality between H"1/2(F) 
and H1/2(F). Particularly, if yvq e L2(F), then 

<7vg> 7oy>T = gT™ ds Vv e HX(Q) . 

Now, for any q e H(div; Q) we can define the functional yvq e H~ 1/2(Ff), i e {0 , . . . , p} 
as 

<?vg> yo^ri = (g? g ^ d v)0>Q + (div a, v)0jr2 Vv e V\, 

where 

Vi = {veH1(Q)\y0v = 0 on F; VI e {{0,. . . , p) - {{]} , 

i.e. <•, »>r. represents the duality between H~1/2(rt) and H1/2(Ff). 
The next theorem (see [4], Theorem 1.3.1) yields necessary and sufficient conditions 

for the existence of a stream function of a divergence-free vector. 
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Theorem 1.2. A function q e (L2(Q))2 satisfies 

(1.5) divO = 0 , <jva, l> r i = 0 for i = 0 , . . . , p , 

if and only if there exists stream function cp in HX(Q) such that 

(1.6) q = curl q> , 

and this function cp is unique apart from an additive constant. • 

Let us introduce some further notations. Henceforth, 

H=H(Q) = {TG(L2(.Q))4|T = TT} 

denotes the space of symmetric tensors. It is a Hilbert space for the scalar product 

(T'> T")o,-i = Z (T'-j, TI/)o,fl , T', T" e (L2(0))4 . 

Define the operator e: ( H 1 ^ ) ) 2 -> H(&) by 

(i-7> • w - U ^ ^ . t r ^ ) ' -i--j•(*<*?• 
Further, we say, that / e (L2(Q))2 is the divergence of a tensor function T e H(Q) 
in the sense of distributions in Q if 

(1-8) (/, f)o,fl = - ( t , e(t>))o,0 Vt> 6 (Co°(f3))2 

holds and we write 
Div T = / in (L2(Q))2 . 

Evidently, for x e H(Q) f) (H1(Q))4 we have Div T = (d1xli + d2x12, dtx12 + d2T22)T. 
Now, we introduce the following space: 

H(Div; Q) = {T 6 H(£) | Div T e (L2(-3))2} . 

For T e H(Div; .(2) we can define the linear functional yvT e (H~1/2(A))2 by 

<?vT, w}A = <yvq\ w , ^ + (yyq
2, w2}A , w = (wu w2)

T e (Hi/2(A))2 , 

where q1 and q2 are the columns of the tensor T and A is either F or rt for i e {0, . . . , p}. 
The functional yvT e (H1/2(A))2 is called the stress vector and its components are 
yvq

J\ j = i9 2 (for T G (C(.0))4 the components of the stress vector will be denoted 
in the usual way by tj = (qJ)Tv). Thus Green's formula will clearly have the form; 

(1.9) (T, £(<;))o,0 + (Div T, t>)0,o = <yvT, y0f>r VT e //(Div; Q) Vo e {H\Q)f . 

Moreover, we define the operator O: H2(Q) -> H(jQ) by 

('•"« ^ - ( J : £ 1 : $ ' ue"2(Q>-
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We introduce the conditions of total equilibrium for T e H(Div; Q), Div T = 0 
(see[l]) 

( l .H) <yvq i
Jl>r = 0 , j = 1,2, 

(1.12) <*i7vg2 - x2yvgx, l > r = 0 , 

which immediately follow from (1,9) (qJ are the columns of T). 
Now, let us denote by 3JI the set of all non-empty simply connected bounded 

domains in R2 with a Lipschits boundary F. Necessary and sufficient conditions 
for the existence of the Airy stress function are given in 

Theorem 1.3. Let Q e 9ft. A function % e H(Div; Q) satisfies 

(1.13) DivT = 0 in Q, 

if and only if there exists an Airy stress function U e H2(Q) such that 

(1.14) T = QU 

and this function U is unique apart from a linear function. 

Proof. Let U e H2(Q). Write x = OU, q1 = curl(^2U), q2 = curl (-O \U) . By 
Theorem 1.2 we see that div q1 = div q2 = 0. Hence Div T = 0 in Q. 

Conversely, let T e H(Div; Q), Div T = 0. Then div qj = 0, j = 1, 2. By Theorem 
1.2 there exist cp1, cp2 e HX(Q) such, that qj = curl cpj, j = 1,2 and (1.11) holds. 
Since T 1 2 = T2 1 we have —d^cp1 = d2cp2. Hence putting cp = (cp1, cp2), we obtain 
div(B- = 0 in Q and using (1.4) we obtain (yv(p, l > r = 0. Applying Theorem 1.2 
once again we see that there exists U e H1(Q) such that curl U = cp in Q. But U e 
G H2(Q), as O\U = — cp2 and d2U = (p1 are from the space H1(Q). 

The Airy stress function of a divergence-free tensor T is unique apart from a linear 
function, since if U1, U2 e H2(Q) and OU1 = QU2 = T, then Q(UX - U2) = 0, 
which yields U1 - U2 e Pt(Q). • 

Let Q e SDl and let us denote by y the measurable part of the boundary F for 
which mes y > 0. 

Let us introduce the space 

V° = V°(Q) = {ve H\Q) \ v = 0 on F •-- y} 

and on y let us define the functional yvT by 

(115) <yvT, 7ov>y = (T, e(v))0)Q + (Div T, V)0,Q , v e (V0)2 . 

Let Qy denote the Q e ffll which is divided into two simply connected domains 
Q1, Q2 with Lipschitz boundaries F1, F2. The common part of this boundaries will 
be denoted by y, i.e. y = F1 f) T2. Let a normal n to y be oriented so that it is 
an outward normal of the subdomain Q1. 
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Definition 1.1. Let Q = Qy. Let T 1 e H(Div; Ql) and T2 E H(Div; Q2). Then the 

stress vector yvT is said to be continuous at y provided 

(1.16) <yvt
1, w>y = -<y v T 2 , w}y, 

where w is the common trace of functions v1 e (V°(Q1))2 and v2 e (V°(.Q2))2 On y. • 

The interface conditions on y for the Airy stress function are established in 

Theorem 1.4. Let Qy be given and let Tk e H(Div; Qk), Div Tk = 0 on Qk, k = 1, 2. 

Then there exist representatives U1 and U2 of the classes of equivalence from the 

quotient spaces H^Q^/P^Q1) and H2(.Q2)/Pi(.Q2) such, that 

(1.17) 
/ i \ / 2 \ \дju% = дjU2L , 7 = 1, 2, 
<УУ, w>ľ = - < ľ v т 2 , w>ľ o } ' ' J ' 

l ^ 7 = ü 7-

Proof. We choose O* c 0 ' cz 0 ' c ;Qy, .(2*, Q' e 9M, such that both O* n &1 

and Q* n JQ2 are non-empty. Let u? 6 V0^1), u 2 e V°(&2) and let vv£ be the common 
trace of these functions on y, i = 1, 2. Then u; e l?(Qy) and u^ = ui|.Qfc, k = 1, 2. 
Let us regularize ut e L2(Qy) by means of a kernel coh(x — y), where A = const. 

A^(z) = / e x p ( | z | 2 / ( | z | 2 - h 2 ) ) for \z\ < h , 

\ 0 for \z\ = h , 

h < dist (dQ*, dQf). We obtain (ut)h (x) e C£(Qy), 

(ui)h (x) = coh(x - y) ut(y) dy , i = 1, 2 . 
J*y 

Then («}), = (»-), | fik, k = 1, 2 and (w()h e C?(y) (where C?(y) = {<p|y| 9 6 C?(.Oy)}) 
is the common trace of the functions (u))h and (u2)h on y, i = 1,2. The function 
(uk)h are dense in V°(Qk), k = 1, 2. Let <yvT

1, w„>r = -<yvT2, wfc>y. Then by (1.15) 
we have 

(*\ eW))o,oi + ( D i v T*> w/!)o,r?i = ~ (^ 2 , e(ujj))0,fl2 - (Div T2, ujj)0,fl2. 

Next, let us choose in particular (u\)h =1= 0, (uk)h = 0, k = 1, 2. Then a direct calcula­
tion from (qj, grad(uj)ft)0 Qi = — (q^ g r a d (ul)h)0 Qi, if we make use of (1.14) 
again, yields 

1 (Ô2U
l - ð2U

2) ðт(Wl)h ds = 0 V(w.)» є Q f ø ) . 

This implies that dr(d2U
l\y — O,

2^
2|y) exists in the sense of distributions and 

is equal to zero. Interchanging the subscripts we obtain the same assertion for 
dtfiU^y - diU%). Hence (djUx\y - d;U2|y) = o/, OJER, j = 1,2. Because the 
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mapping T -> U, for Div T = 0, is unique modulo P1? then Ufc'* = Uk + pk Vpfc e 

e Pi (-2*), k = 1, 2 is also pertaining to the given stress tensor xk on Qk, k = V 2. 

Now we can express 

^(U1!, - U2|T) = -(d,u% - ^U 2 | y )v 2 + (d2u% - d2u
2\7)vx = 

= - O x V 2 + C T ^ . 

Hence we obtain, making use of the parametrical expression of the boundary curve 

with the length of arc of the curve y for the parameter, 

U\s)\y - U2(s)\y = a, xx(s) + o2 x2(s) + c 0 . 

Let us denote 

p1 - p2 = p3 = o3

1x1 + Q\X2 + a3 in Q1 \J Q2 . 

Therefore, we obtain 

U'-*|, - U2>*\y = (a, + o f ) * ^ ) + (o 2 + cii)x2(S) + (o 0 + al) 

and 

( a , U 1 ' * | y - 5 , U 2 - % ) = o, + o ) , J - 1 , 2 . 

From the last two formulas the assertion follows, for we can choose p3 so, that 

oj + o3 = 0 , ; = 0,1,2. 

Conversely, let U1 e H2^1) and U2 e H2(Q2) satisfy the right-hand part of the 

equivalence (1.17). Let us take into consideration the functions ( u ^ f r o m the proof 

of the first implication. Then the definition of the derivative in the sense of dis­

tributions implies that 

дiV1 ôт(w2)ћ ds = f őiU2 Ôт(w2)ћ ds. 
Ý J ľ 

Making use of (1.14), we obtain (q2, grad (u\)h\,ni = - ( q 2 , grad (u2
2)h)0J}2. This 

together with (1.13) and (1.9) yields (yvq\, (w2)h}7 = -<y v q 2 , (w2) f c> r From the 
density of the functions (u\)h in V°(Qk), k = 1, 2, we conclude that yvq

2\y = -y v q 2 | y 

in the sense of distributions. In fact, it is sufficient to verify, that C0(y) is dense 
in H1/2(y) with respect to the L2-norm. This, however, follows from the density 
of the set V°(Qk) n C™(Q7) in V°(Qk), k = 1, 2, if we employ the trace theorem. 

Interchanging the subscripts we obtain the same result for y vqi | y ? k = 1, 2. • 

Theorem 1.5. Let Q = Qy, U1 e H2(QX), U2 e H2(Q2) and let the right-hand 
part of the equivalence (1.11) holds. 

Then U e H2(Qy) for any function U such that U\ai = U1 and U\Q2 = U2. The 
proof follows from Green's theorem. • 
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2. SOME SPACES OF CONFORMING EQUILIBRIUM STRESS FINITE ELEMENTS 

In this section we shall study conforming equilibrium stress finite elements con­
jugated, in the sense of slab analogy, with compatible elements used for solving 
an approximation of the biharmonic problem (the so-called C1 elements). Throughout 
the paper we shall use a compatible finite element (K, PK, ZK) defined in [2]. 

With regard to Theorem 1.3 let us define the space MK by 

(2A) MK = QPK. 

Clearly, dim MK = dim PK — 3 and for T e MK the three overall equilibrium condi­
tions 

(2.2) h(T)ds = 0 , k = 1,2, 
J dK 

(xi h(x) - x2 ^ ( T ) ) ds = 0 
J dK 

are fulfilled. 
We shall start from the general definition of such an element. 

Definition 2.1. A conforming equilibrium stress finite element is a triple (K, 
MK, IK), where 

— K <= R2 is either a triangle or a rectangle; 
— MK is a finite-dimensional space of stress fields T defined over K and satisfy­

ing Div T = 0 in K; 
— IK is a set of linear functional^ Th i — l9...,q, defined on MK and 

determining a distribution of the stress vector on the boundary dK of K, 
from which q-3 are linearly independent; the functionals which are 
linear combinations of the others are determined by the three conditions 
of total equilibrium. 

Let us note that card IK = card IK. • 

Definition 2.2. We shall say that the set IK is MK-unisolvable, if for an arbitrary 
stress vector satisfying the conditions of total equilibrium, the distribution of which 
on the boundary dK of K is determined by a q-tuple of real numbersal5 . . . ,a € , 
there exists precisely one tensor T e MK such that 

r .(i) = a . , 1 = 1 « . a 

Let us denote by K a reference domain which can be either the unit square with the 
vertices ax = (0, 0)T, d2 = (1, 0)T, d3 = (1, 1)T, a4 = (0, l )T or the triangle with the 
vertices ax = (0, 0)T, d2 = ( l , 0)T, d3 = (0, 1)T. Let l{ denote the length of the side 
didi+1 and let hl denote an outward normal to the side dtdl + l. Denote by (Tnl)j 
thej-th component of the stress vector on the side &idi+v Introduce the affine one-

194 



to-one mapping F : K 

(2.3) 

where 

- K b y 

x ~ F(x) = Bx + b 

B -
Xj X j , 

X2 ~ X2> 

b = (xi x\y 

and (x\, xl
2), i — 1 , . . . , r, (where r e {3, 4}) are the vertices of K. We note that the 

mapping F maps the gravity center of K onto the gravity center of K and maintains the 
dividing rates of a point on a straight line. 

Given the stress tensor r defined on K we define the stress tensor t defined on K by 

(2.4) trø-в-ед*)) (-»--) iүг 

(i.e. a correspondence between contravariant tensors). If ft is a normal to the side S 
of K? then n = (B~ l)T h (i.e. a correspondence between covariant vectors) is a normal 
to the corresponding side S of K. Making use of (2.3) we havet = B_1t(i.e. a corre­
spondence between contravariant vectors) and the relation 

T e Ji K o t e Ji K 

can be verified by direct calculation. 

C - E - S - I ELEMENT 

This conforming equilibrium stress element (known as Watwood-Hartz's element) 
is conjugated, in the sense of slab analogy, with the Hsieh-Clough-Tocher (H —C —T) 
compatible element defined in [2]. 

iг\ 

Ғig. 1. 
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Let us recall that for an H —C —T element, K is a triangle (see Fig. 1) with vertices 
ai9 1 g i 2* 3, which is decomposed into three subtriangles K; 1 ^ f ^ 3. The 

3 

point a = f) Kt is a point lying inside the triangle K, usually the center of gravity 
ofK. i=l 

With the triangle K we associate the space 

(2.5) PK = {U e C 1 ^ ) |U |K( = U; e P 3 (X ; ) , 1 ^ . ^ 3} 

and the set of degrees of freedom 

(2.6) IK = {U(at)9 dxU(a^ d2U(at)9 dvU(bt)9 1 rg i g 3} , 

where b; is the mid-point of the side ai+1ai+2. The subscripts are calculated modulo 3. 
The connecting line of the vertex ai9 1 ^ i ^ 3 with the gravity center will be called 

t/ie internal side of the triangular "building block" K. 
Let the restriction U\Ki = U'eP3(Kt), 1 ^ i ^ 3, of the Airy stress function 

U e PK be given in the form 

(2.7) U< = p[0 + feXl + & x 2 + Wxx\ + i^2x? - p3xtx2 + ij5lx? + 

+ W5X
2
lXl + i^*l-«2 + ^7X2 , 

where /?,'„, m = 1 , . . . . 10, are real constants. 

By virtue of (2.1), on each JK;, 1 ;£ i :g 3, we can define an auxiliary space 

(2.8) jV(Kt) = Q P3(Kt). 

t ғ t^'s 

г2 

*,? f ř.2 
'2 

Fig. 2. 
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Thus the space */V(Kf) is a seven-dimensional linear set. Obviously, the vectors 
tfc(t

f), k = 1, 2, T{ eJ^(Kt) are linear on each side j , j = 1, 2, 3 of the triangles Kh 

1 = i S 3. 
Now, due to Theorems 1.3, 1.4, 1.5 and (2.5), (2.8), we define the self-equilibriated 

piecewise linear stress fields over the triangle K: 

(2.9) A = { re H(Div; K)| x\Ki = xl e JV(K^) . I <, i = 3, 

in is continuous across the internal sides of K] . 

Clearly, dim JiK = 9 and if we again employ (2.6), we can define a reference equi­
librium triangular "building block" element by 

Definition 2.3. A reference conforming equilibrium stress triangular "building 
block" finite element is a triple (K, Jt' K, IK) (see Fig. 2), where R is the reference 
triangle, JiK is defined by (2.9) and IK is the set of linear functionals defined on 
MK. The functionals are defined in the following manner: 

For any external side didi+1 = Kt n OK, 1 — i = 3, select an outward normal 
hl. Then, if' t is any stress field of the space JlK put 

(2.10) r/ = i{(ff(a i + 1) fi% + (¥(at) fi%} , 

nJ+i =12{(m+i)n%-(Ti(di)n%}, 

i = 1, 2, 3; i + 1 = 1 for i = 3; k = 1, 2. D 

Lemma 2.1. Let xeJiK and let twelve degrees of freedom be given by (2.10). 
Then the three conditions of the overall equilibrium hold: 

(2.11) fl1 + V(2) t,2 '2 + F3'3 = 0 , k = 1, 2 , 

(the resultant forces vanish) 

(2.12) 3T1 '1 + T1'2 + 3 V(2) f r - V(2) f r ~ 3 V(2) t ? ' 2 -

- V(2) T2'3 - 3T3 '3 + T3'1 = 0 

(the resulting moment vanishes). 

Proof. On any side S of K we introduce the basic linear functions X[e P^S), 
k: = 1, 2 such that 

(2.13) l[(S) = 1 , 

2? - /• 

h 

where the parameter s has the starting point in dt of any side S. 
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Then (2.11) and (2A2) is a consequence of the equilibrium conditions and of the 
symmetry of t if we make use of the definitions of JiR and J^(Kt) and insert Vk(z

l) = 
= Pk-% + fti+1Xl D 

Theorem 2.1. Let twelve degrees of freedom tl
k\ fl

k
,i+i, i = 1,2,3, k = 1,2, 

he given, which satisfy (2.11) and (2.12). 
Then there exists a unique stress tensor t eJiK such, that the equations (2.10) hold. 

Proof. As the dimension of the set A^K;) is seven, it is necessary to have 21 
equations to determine the three functions t l = f L , It is easy to see, that the set 
£ | of degrees of freedom generates twelve equations which are constrained by three 
equations (2.11) and (2.12). The conditions of continuity of the stress vector across 
internal sides of K give the remaining twelve equations. Due to these facts, it only 
remains to show regularity of the matrix of the linear system obtained. 

On any side S of K we express the stress vector in the form 

(2.14) Hjk = m& +&d+1l{, j , / = l , 2 , 3 ; k = l , 2 , 

where 

(2A5) Rj;l = ml(dJ+1) h% + (tl(dj) fiJ)k}, 

m+i = H(%W - (w^i 
and ?Jk, k = 1,2 are the basic linear functions from (2.13). The subscript i refers 
to the subtriangle Kh superscript j refers to each side of each Kt. Then the continuity 
conditions for the stress vector on any side of K give 

©»•-&}• 
where i-\* is a matrix of the type (12 x 36) and the continuity conditions are expressed 
across the internal sides of K, and A? is a matrix of the type (12 x 36) and the 
continuity conditions are expressed across the external sides of K. R* is the matrix 
of parameters &{*£, RJ

t
,J

k
+1,j, i = 1, 2, 3; k = 1, 2, of the type (36 x 1). The column 

matrix on the right-hand side of (2.16) is of the type (24 x 1) and is partitioned 
between the 12th and 13th rows. T denotes the submatrix of the degrees of freedom. 

Express the stress vector on any side of Kt in terms of the stress field t'. To this 
end we have 

(2.17) ~ C'->t' = R{ , 
2ds 

where ds denotes the length of the j-th side of £;,/T = {$[,..., f}7},R{ = {£/'/ , £f'i, 
Ri;i+l,R{;i+1} and 
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(2.18 ;) 

/ - 2 ( ř , - f , + 1 ) , 
o 

_ o 
\ o 

c = 
0 , 2(Xj-XJ+1), -2(XYj-Xj+1fJ+1), 

2(Xj-XJ+1), -2(Yj-?j+1), V-V+u 
0 , 0 ,2(Xj-XJ+1)(Y}-YJ+1), 

0 , 0 , -(Y.-Yj+1)\ 

0 , Xj — X[+i, — (Yj— YJ+1)\ 

Xj-Xj+1, -2(Xj?j-Xj + 1Yj+1), 0 

0 , - ( X , - J ? , + 1 ) 2 , (fj- YJ+1f 

-(X} - Xj+1f, 2(Xj - Xj + 1)(fj - f J + 1 ) , 0 

if we insert v{ = -(Ij)'1 (fj - Yj + 1),v'2 = (/y)
_1(^y - XJ + 1) for the compo­

nents of the unit outward normal. (%j, Y,) denotes the coordinates of the vertex dj, 
j = 1, 2, 3. Inserting (2.17) into (2.16) we obtain 

( 2 , 9 ) ( * • ) * = {» 

As in [14], we use the continuity conditions for the stress vector across the internal 
sides of K to reduce the parameters ft of the stress field. The rank of the matrix Au 

is twelve and we have 

(2.20) A ^ o * _ ( A
/ " r l A " ) = A . Q = ( , : ° ) . 

where Au is a matrix of the type (12 x 12) which is formed by the first twelve columns 
of the matrix Au, while the matrix Au is of the type (12 x 9), I is the unit matrix 
of the type (9 x 9). 

Then we introduce a transformation of the form 

(2.2i) /5 = Q/3' = ( Q 0 ; Q 1 ) { | } , 

where Q is partitioned between the 12th and 13th columns and /T is partitioned 
accordingly. 

The equation (2.21) is then inserted into the upper equations of(2.19) with the result: 

(2.22) AM' = 0 , 

e:o)$}-o. 
Hence the equation (2.21) takes the form: 

(2.23) 'p = Qji 
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and the lower equations of (2.19) produce 

(2.24) AtQ J\ = f . 

The matrix product >4rQi is now considered as a matrix C for a triangular "building 

block" and we have the desired system 

(2.25) CP't=f, 

in details 

-1/6 -1/6 0 0 - 1 0 0 - 1 / 3 1/6 ' 

11/24 5/6 0 - 1 0 0 -1/2 -11/24 -5/6 

1/4 1/2 0 0 -3/4 -1/2 

7/8 3/2 0 0 -1/2 -7/8 -3/2 

V2/12 V2/12 V2/2 0 V2/2 0 0 V2/6 V2/6 
- l lV 2 /48 - 5 V 2 / 1 2 0 V2/2 V2/2 -V2/4 V2/4 11 V2/48 5 V2/12 
-V2/8 V2/4 o 0 -V2/2 0 -V2/8 V2/2 

5^2/16 з V2/4 o 0 -V2/4 
-V2/ 4 - 1 3 V2/16 - 3 ^ 2 / 4 

0 0 - 1 0 0 -1/2 

0 0 - 1 1/2 0 0 

0 0 1/2 

0 0 -1/2 0 0 

(ß'Л (Ť['l\ 
ß'г фí,í 

1 2 

ß'ъ f l , 2 

к 7^1,2 
1 2 

ßs = П'2 

ß'б П'2 

ßi f 2 , 3 

ßs n-ъ 

W f 3 , 3 

7^3,3 
1 2 
f 3 , l 

\ПЛ) 
The three conditions (2.11), (2.12) imply that we can omit three equations of the 

system, e.g. the equations 5, 6, 7. 

Then the remaining system has the form 

w = r, where 

deťíí = 
7-V2 
3 . 2 9 

Consequently, the system has a unique solution /T e i D 
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C - E - S - I I ELEMENT 

This element is conjugated, in the sense of slab analogy, with Ahlin's compatible 

element defined in [2] (as Bogner-Fox-Schmit's element). 

Let us recall that for Ahlin's element, K is a rectangle (see Fig. 3), the sides of which 

are parallel to the coordinate axis xl9 x2 respectively, with vertices ah 1 ^ i ^ 4. 

*** 
Q^ІЇuXÎ) Qì'(*î,Ф 

<*,*(*, ,x}) aг=ЫÎ, ф 

Fig. 3. 

With the rectangle K we associate the space 

(2.26) PK = Q 3 , 

where 

Qz = I /Wi 1 *?, 
0 ^ a f ^ 3 

1 = 1 , 2 

and the set of degrees of freedom 

(2.27) IK = {U(at), dxU(at)9 d2U(at), d12U{a^ 1 g i£ 4} . 

Let the Airy stress function U e PK be given in the form 

(2.28) U = p16 + pl5x± + P14x2 + \Pxx\ + \p2x\ - £3X1*2 + 

+ ±iMi*2 + \Psx\ + iPexl + \Pix\x2 + \Psxixl + WgtiXi + 

~QPXOXXX2 *""" i:PlXXXX2 ~~~ ~lP\2X\X2 ~~~ ^Pl3XlX2 "> 

where /?m, m = 1, . . . , 16, are real constants. 
From (2.1) we have 

(2.29) JlK = {T G H(Div; K) | % e PS(K), Div T = 0} , 
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where 

and 

P\K) = {rePu(K) x P22(K) x (P12(K)f | T = TT} 

Pn == QU^K *s t n e s e t of functions cubic in xx and linear in x 2 . 

P22 ** QII^K is t n e s e t of functions cubic in x2 and linear in xx , 

P12 = 0 2 = Oi2i\ is the set of functions of the type £ Paia2
xVx22 anQt the 

О ^ a . ^ 2 
/ = 1,2 

operators QU (i,j = 1, 2) are the entries of the matrix O (see (1.10)). Clearly, the space 

J/K is a thirteen-dimensional linear set and if we employ (2.27) we can define a refer­

ence equilibrium square element (the matrix B from (2.3) is diagonal) by 

Definition 2.4. A reference conforming equilibrium square stress element (see 

Fig. 4) is a triple (K, MK, IK), where K is the reference square, JtK is defined by 

(2.29) and l\ is the set of linear functional defined on JtK as follows: 

м 

TM 
*\г 

(h <t,iҺ 1 

m * 

Êä-
(Ъл), Qy 

Q3,t 

Ì V 

QV 

Tз,i л 

— т„ 

\ A 

Qv},(ľг'з)г 

—т, V X, 
Ti,i\Ql (T>^ aVv 

Fig. 4. 

For any side a{ai + 1 of fc, 1 S i S 4, select an outward normal h\ Then for 

f e MK put 

(2.30) Ti^fUdi), l £ i £ 4 , 

?y = («(*) fik)j > l -S ^ 4 5 I = 1, 2 ; k = i - l , i ; j = 1 

for k = i - 1 , where i - 1 = 4 fori = \ , 

( ^ + i ) i = ( ^ i ) ^ ' l S i ^ 4 ; ; - l , 2 ; k = *; 

I + 1 = 1 for j = 4 ; J - - 1 for k = i Odd , j = 2 for k = i even , 

where <2M+I denotes the mid-point of the side d{&i+v Q 
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Lemma 2.2. Let t e JiK and let sixteen degrees of freedom be given by (2.30). 
Then the following three conditions of the overall equilibrium hold; 

(2.31) - f i + 4(fu2), - f2 + 3f2 j l + 3f3)1 + f3 + 4(f3,4), + 

+ f4 + 3f4j l + 3f l s l = 0, 

(2.32) 3f1}2 + 3f2,2 + f2 + 4(f2,3)2 + f3 + 3f3,2 + 3f4,2 - f4 + 

+ 4 ( f 4 , 0 2 - fx =0, 

(2.33) f l j 2 + 2f2j2 + f2 + 4(f2,3)2 - f2)1 - 2f3sl + 2f3>2 + f4>2 -

-4( f3 ,4 ) i - f 4 ~2f 4 ? 1 - ful =0. 

Proof. On any side dtdi+1 of K, 1 = i g 4; i + 1 = 1 for i = 4, lt = 1, we 
introduce two systems of basic functions Xl

k EP1(didi+1), k = 1,2 and jil
keP2(didi+1) 

k = 1, 2, 3 such, that 
X[(s) = 1 - s, 

4(s) = £, 

/4(s) = 1 - 3s + 2s2 , 

//2(s) = 4s(l - s), 

//3(s) = s(2s - 1) , 

where the parameter s has the starting point in dt of the side dxdi+1. 
Then (2.31) to (2.33) is a consequence of the equilibrium conditions and of the 

symmetry of f if we make use of the definition of JtK and insert the stress vector 
on any side didi + 1 expressed by the degrees of freedom and the basic functions Xk, \i

l
k, 

and if we take into consideration the fact, that the stress vector t for t e Ji\ is 

i) xx = const.: ix — linear function, 
i2 — quadratic function; 

ii) x2 = const.: tx — quadratic function, 
i2 — linear function 

As an outward normal nl we choose the unit outward normal v' for any side didi+1 

of K, and any side of K is expressed parametrically as xk = xk(d^) X\ + xk(di + 1) k
l
2> 

k = l,2. a 

Theorem 2.2. Let sixteen degrees of freedom be given, which satisfy (2.31), (2.32) 
and (2.33). 

Then there exists a unique stress field t e JiRsuch that the equations (2.30) hold. 

Proof. As in the proof of Theorem 2.1, it is sufficient to show the regularity of the 
matrix of the linear system obtained. We write the system (2.30) and insert the equa-

203 



tionsfor xeM^ into it. We obtain the system of 16 equations for 13 parameter fihl ^ 
^ l g 13, i.e 

(2.34) Cp = f . 

The three conditions(2.31) to (2.33) imply that we can omit three equations of the 

system. 

Then the remaining system has the form 

where 

Г 

l^l-ӯï-

Consequently, the system has a unique solution fie R13. 

#2 J 

D 

Fig. 5. 

R e m a r k 2.1. As in [20], we define the components of the main stress vector acting 

on the arc 0s by Tx = /£ tx ds, T2 = js
0 t2 dS, the values of which are determined as 

the differences of the values of the derivatives of the Airy stress function U at the 
points 0 and s, i.e. 

7\ = d2u(s) - d2u(o), 

-T2 = dxU(s) - dtU(0). 

Now, we can define the set £ | of linear functionals, defined on Jl& (see Fig. 5), as 
follows: 
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For any side dLdi + l of K, 1 ^ i ^ 4, select an outward normal ft1. Then for 

% e MK put 

(2.35) % = *12(«J.), 1 ^ i g 4 , 

f£J = (T(dt) nk)j, 1 ^ i £ 4 ; 7 = 1, 2 ; fc = i - 1, i ; 

j = l for fc = i — 1 , where i — 1 = 4 fOr i = 1 ; 

7 = 2 for fc = i, 

(TM + i),. = ( t ( s ) ^ . d s , l ^ i ^ 4 ; i + l = l for i = 4 ; 

7 = 1 fOr fc = 1 Odd ; j = 2 fOr fc = i even. 

It is easy to verify the ^^-unisolvability of ZK in a way analogous to that used in the 
proof of Theorem 2.2. 

C - E - S - I I I ELEMENT 

This coforming equilibrium stress element is conjugated, in the sense of slab 
analogy, with Fellipa's compatible element defined in [2] (as Argyris' element). 

Let us recall that for Fellipa's element K is a triangle (see Fig. 6) with the vertices 
ah 1 ^ i ^ 3. 

Xl 

Fig. 6. 

With the triangle K we associate the space 

(2.36) PK = P5 

and the set of degrees of freedom 

(2.37) ZK = {D* U(at), |a| = 2, 5vU(b<), 1 g i <, 3} , 

where bt- is the mid-point of the side aiai+1. 
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Let the Airy stress function U e PK be given in the form: 

(2.38) U = p2l + & 0 x . + 019*2 + \pYx\ + \$2x\ - p3xlX2 + \pAx\ + 

+ "iPsXlX2 ~ ~2~P6X1X2 + ^PlX2 + T2P8X1 + ~^P9X1X2 ~~ '2.PlOXlX2 ~~ 

~~ l&Pllxlx2 + l2,Pl2X2 *+" 2 0 ^ 1 3 X 1 "~" 1 2 ^ 1 4 * 1 * 2 ~~ ^PlSXlX2 ~~ 

"~~ 6 ^ 1 6 X 1 X 2 ~~ T2~Pl7XlX2 + ~2oPl%X2 > 

where /?m, m = 1,..., 21, are real constants. 

From (2.1) we have 

(2.39) J K = { r e H(Div; K) | T e (P 3(K)) 4 , T = T T } . 

Clearly, the space ̂ ^ is an eighteen-dimensional linear set. 

Definition 2.5. A reference conforming equilibrium triangle stress element is 

a triple (R,J?K, l | ) (see Fig. 7), where JlK is defined by (2.39) and IK is the set 

of linear functionals defined onJiK as follows: 

For any side didi + l, 1 ^ i ^ 3, select an outward normal ft1. Then for %eJiK 

put 

(2.40) TV = tsm(dt), 1 = i S 3 , 1 rS I = 3 ; s, m = 1, 2 ; 

j = s = m for j = 1, 2 ; j = 3 fOr s < m , 

(T i > r), = « ^ ' - r ) ft%, 1 = . = 3 ; r = 1, 2 ; j = 1,2, 

where Ql,r, r = 1,2, denote the points which partition the side didi+1 into three 

equal parts. • 

Л 

7; 
A 

л~ , / 2 

",* 
Л 

T,2 
Á 

o$ 

Ф&Л,,), 

\(f,A Шôг 

(îi,i)г (%l7)г 

Fig. 7. 

'łji 
fг,г 
л 

Tг,з 
x, 
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Lemma 2.3 Let teJiz and let twenty-one degrees of freedom be given by (2.40). 
Then the following three conditions of the overall equilibrium hold: 

(2.41) - t u l - T1>3 + 3(f1>1)1 + f2>1 + 3(fi>2), + 3 V(2)(t2>1)1 + 

+ 3 V(-)(-2.2)1 + -Ys + 3(T3>1)i + 3(T3>2)i = 0 , 

(2.42) - T1>3 - tu2 + 3(T14)2 + 3(f1>2)2 + T2>3 + 3 V(2) (T2>1)2 + 

+ 3V(2)(T2>2)2 + T3>2 + 3(T3>1)2 + 3(T3 2)2 = 0 , 

(2.43) 2tul - 2f1>2 + 9(7^)2 + 36(T1>2)2 - 2T2>1 + llf2>3 -

- 9V(2)(T2>1)1 + 36V(2)(T2>1)2 - 36V(2)(f2,2)1 + 9 V(2)(f2>2)2 + 2f3>2 -

- 11T3.3 - 3 6 ^ , , ) , - 9(f3>2)i = 0 . 

Proof. On any side di&i+1 of K we introduce a sys:em of basic functions l'k e 
e P3(a ;a ;+1) k = 1,2, 3,4 such, that 

^(s) = i-Tso,)"1 + 9n/i)"
2-is3(/,-r3. 

4 ^ = 9f(/;)-
1-iff

2(/;)-
2 + fi3(/;)-

3, 

AW = f ^ r 1 + i8i2(/;)-
2 - ^ ( / . r 3 , 

A^) = i(/;)-1-|52(/;)-2+p3(/;)-3, 

where the parameter s has the starting point in a; of the side didi + 1. As an outward 
normal hl we choose the unit outward normal v' for any side didi+1 of K. On any 
side didi +1 of K, i ~ 1, 2, 3, let us express the stress vector in the following manner: 

n(s) = (-u*i + t,A)W) + (T;>1)i 4(s) + (ri>2)i 4(s) + 
+ (T; + 1>1v« + ti+1,3i>2)^(S) 

ti(s) = (ttA + t;>2vi)Ai(*) + (TM)24(s) + (ti<2)24(t) + 
+ (ti+1,3n + fi+1j

i
2)m 

where f + 1 = 1 for i — 3. 
Now the proof is analogous to that of Lemma 2.2. Q 

Theorem 2.3. Let twenty-one degrees of freedom be given, which satisfy (2.41), 
(2.42) and (2.43). 

Then there exists a unique stress field xeJi^ such that the equations (2.40) hold. 

Proof. To prove the regularity of the matrix of the linear system obtained we write 
the system (2.40) for any f = 1, 2, 3 and insert the equations for xeJ(K into it. 
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We obtain a system of 21 equations for 18 parameters $h 1 ^ / ^ 18, i.e. 

(2.44) CP = f . 

Due to the equations (2.41), (2.42) and (2.43) we can omit three equations of the 
system. The remaining system has the form 

r 
where 

det# = ,27 

Consequently, the system has a unique solution ft e R1S. • 

Remark 2.2 As in Remark 2.1, we define the components of the main stress 

vector acting on the arc Os. Thus 

dvU = d1Uv1 + d2Uv2 = -T2vx + Ttv2 + c ~ Tv, 

dxu = -O\Uv2 + d2uvt = T2V2 + r l V l + c - r v , 

Now, using Theorem 1.4, we deduce that the tangent and normal components of the 
main stress vector are continuous across any side didi+1 of fL and we can define the 
set Z | of linear functional defined o n ^ ^ (see Fig. 8) as follows: 
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For any side âtâi+u 1 = •• = 3, se/ect an outward normal ñ\ Then for xeЛк 

put 

(2.45) ŤitJ * tшiât) 9 l й i й $ ; l й j ѓ З ; s,m = 1,2; 

j == s = m fOr j = 1, 2 ; j — 3 fOr s < m , 

(̂ i)v = í (i(tn*í)d 
Já(6, * = 1 

•V , 

( - U - ( I (-iУ(м%яО«w. 
a i 6 i V ф

= i 

(r ;>2)v = í ( Z (*«*(* ••*)«-*. 
Jaiáí+i ř ; = 1 

(T,2X = Í (Í(-lf(iň%fi^áš, 
Ja (a i + . V = 1 

z = 1, 2, 3; i + 1 = 1 for z = 3, fif denotes the mid-point of the side didi + i. 

Xtk 

hA 
A 

WU 

(%l7h 
A 

hi) 
A, 

hi 
A 

Tl,3 
Û; —Г*(Гt,i), 

rôд 
(U 

Fig. 9. 

If we take into consideration the cartesian's components of the main stress vector, 

we can define the set 1% of linear functional defined onJiK (see Fig. 9) as follows: 

For any side dldi + 1, 1 ^ i g 3, select an outward normal h\ Then for xeM^ 

put 

(2.46) fifl = f s w (a ,) , 1 g i = 3 ; 1 ^ j g 3 ; s, m = 1, 2 ; 
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j = S = m for j - l , 2 , ; j = 3 for s < m, 

(?M)* = f (**% d s ' - = ' = 3 ; fc = -• 2. 

(-Va)* = [ («0* ds . 1 = i = 3 ; A; = 1, 2 , 

where i + 1 = 1 for i = 3, Si denotes the mid-point of the side didi+1. 
It is easy to verify the ^^-unisolvability of both sets IK, defined in (2.45) and 

(2.46), in a way analogous to that used in the proof of Theorem 2.3. 

3. APPROXIMATION PROPERTIES OF EQUILIBRIUM STRESS ELEMENTS 

From now on, let Q be a bounded polygonal domain in R2 with a Lipschitz bound­
ary F. Let the boundary F be divided into mutually disjoint parts F°, Tu, Ftf such 
that 

(3.i) r°vruvrff = r, 
where F° is the union of a finite number of points and Fu and Ta are open in F. L e t ^ 
be a decomposition of Q into convex polygons Kh i.e., we write Q = uKh For their* 
mutual position precisely one of the following relations holds: 

- KtnKj = 0, i =¥j, 
— Kt n Kj = K', where K' is either a common side or a common vertex of the 
elements Kh Kj. 

Definition 3.1. Let F°, FM, F^ of the boundary F satisfy (3.1). Then a decomposition 
<Th of Q is said to be consistent with Tu and Ta if the interior of any side of any 
Ke^Th is disjoint with F°. • 

Henceforth, we shall suppose that any decomposition 3Th is consistent with Ftt 

and Fa and the family of decompositions {^~h} *5 regular (see [2]). 
The approximation properties of the C1-elements for the Airy stress function U, 

generated by the elements from Section 2, are characterized in [2], Chap. 6. 

Lemma 3.1. Let the operator TIK of the P^interpolation on an element K be such 
that nKp = p \/p e Pk a PK. Then there exists a constant c, independent of the 
element K and such, that for the elements of class C1 from Section 2 and a regular 
family of decomposition {&"h} the following inequality holds: 

(3.2) ||U - nKu\\mX = chk^-m\u\k+UK VUGHfe + 1(K) 
and for all 0 = m = k + 1 for which PK <= Hm(K) holds; k = 3 for H - C - T and 
Ahlin's elements and k = 5 for Fellipa's element. • 
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Let us denote 

(3.3) Q(K) = {TE H(Div; K) | Div T = 0} . 

Then for any TE Q(K) f) (H*_1(K))4 we can define the matrix function nKT, the 
^^-interpolation of the function T, by 

(3.4) IV = Q(IIKU) , 

where H^U is the P^-interpolation of the function U e Hk + l(K) and U corresponds 
to T by Theorem 1.3. 

Then the approximation properties of the conforming equilibrium stress elements, 
discussed in Section 2, are characterized by 

Theorem 3.1. Let the operator nK of the P^-interpolation be the operator from 
Lemma 3.1. and let the operator nK be the operator from (3.4). Then there exists 
a constant c > 0, independent ofKe 3Th and such, that for all elements C—E—S—I 
to III and a regular family of decomposition {&~h} the following inequality holds; 

(3.5) ||T - fiKx\\0tK ^ chk-l\x\k_lx ^xeQ{K)^(Hk-\K)f, 

where k = 3 for C — E — S—I and II elements and k = 5 for a C — E — S—III element. 

Proof. First we note, that by virtue of Lemma 3.1 and Theorems 1.3, 1.4, the 
interpolation matrix function IIKT is fully determined by the inclusion (Hfc_1(K))4 c: 
<= (C(K))4, where k = 3 for C - E - S - I and II elements and k = 5 f o r a C - E - S -
— III element. On the other hand, we cannot have the inequality of the type (3.5) 
for the left hand side for the || • ||m ^-norm, m ^ 1, because we have only the inclusion 
JiK c= (L2(K))4 for all types of the finite elements mentioned above. 

Now, from Theorem 1.3, definition (3.4) and Lemma 3.1, we have 

||T - nKT\\0X = \\eu - Q(nKu)\\0iK = ||U - H^Ul^ s chk^\u\k+UK = 

= chk-1\TlUK. a 

4. DUAL VARIATIONAL FORMULATION OF THE LINEAR BOUNDARY 
VALUE PROBLEMS OF ELASTOSTATICS 

Making use of the superposition of a particular solution of the equations of total 
equilibrium and the general solution of the homogeneous equations, we may assume, 
that the body forces are zero. Let a surface load vector Te ( L 2 ^ ) ) 2 and a displace­
ment vector u0 e (H1(Q))2 be given. In the case Fu = 0 (the so called first basic 
boundary value problem) we always assume that the conditions of total equilibrium 

(4.1) | T . d 5 = 0 , f (x x T)ds-= 0 , f = l , 2 , 

are satisfied. 
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Let us consider the generalized Hook's law in the form 

(4.2) xu = cijklakl, 

where cijkl are measurable bounded functions in Q, mostly constant or piecewise 
constant in practice, and a repeated index means summation over the range 1,2. 
Assume that 
(4-3) cijkl = cjikl = cklij 

and that the corresponding quadratic form is uniformly positive definite in Q, i.e. 
there exists a constant c0 > 0 such, that 

(4.4) ciJklSifikl = coe^. 

is valid for all symmetric tensors B (see (1.7)) and almost every xe Q. It is known 
that the generalized Hook's law can be inverted, i.e. 

(4.5) Sij = Aijklxkl, 

where the coefficients Aijkl are bounded and measurable in Q and satisfy the condi­
tions analogous to (4.4). 

Let us introduce the bilinear form on H x //(for H see Section 1) 

(4.6) o(ť, ť') = í Amx\ 
Jsi 

; , < ( d x . 

From the properties of the coefficients of the generalized Hook's law we conclude, 
that this form is symmetric and uniformly positive definite. The form a(x\ x") is 
a scalar product on H. Now let us define the set of statically admissible stress fields 

(4.7) QT = | T e H(Div; Q) \ (x, s(v))0>Q = f Ttvt ds \fvev\, 

where 

(4.8) V = {v E ( H 1 ^ ) ) 2 | y0v = 0 on FM} , 

It is known, that x e QT iff Div x = 0 in Q and TV = Ton Ftf. 

Definition 4.1. The dual variational problem of the linear elastostatics consists 
in finding a which minimizes the functional of the complementary energy \j/: 
H -> R defined by 

\l/(x) = \a(x, x) - <yvT, 70^o>T > ^ e H 

over the sel QT- D 
It is known [1], that this problem has a unique solution. As in [7], the variational 
problem from Definition 4.1 can be transformed into the following one: 
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Given a e QT fixed [11], find a which minimizes the functional 

(4.9) <2>(T) = ia(z, T) + a(r, a) - <yvT, y0u0)r 

over the space 

(4A0) Q0 = {T e H(Div; Q) \ (T, s(v))0fQ = 0 Vv e V} . 

The stress tensor a + <T is considered to be the solution of the dual problem of linear 
elastostatics and for any a e Q7 there exists precisely one solution a. 

Then, as in [7], we may replace the minimum problem from Definition 4.1 by 
an equivalent problem: 

(4.11) find T° e Q0 such that 

<2>(T°) ^ <P(T) V T G Q 0 . 

Now, let {Qh} be a family of finite-dimensional subspaces of Q0. We define the follow­
ing approximate problem: 

(4.12) find zh e Qh such that 

* ( T ° ) ^ <P(T) VTEQ„. 

In [7] the following lemma (analogous to Cea's lemma-see [2]) was proved. 

Lemma 4.1. There exists h0 such, that for any h e (0, h0) exists precisely one 
solution of the problem (4.12). Moreover, the following inequality holds; 

(4-13) ||T° - 4\\H ^ inf ||T° - T|H . • 
reQh 

5. ORDER OF CONVERGENCE IN THE L2-NORM 
OF THE DUAL FINITE ELEMENT ANALYSIS 

Let us consider the variational problem (4.11). Let us define the set of admissible 
functions of the variational problem for the Airy stress function, dual to (4.H), by: 

(5.1) W = {U e H2(Q) | U = dvU = 0 on FJ . 

Now, the following theorem generalizes Theorem 1.3 to the case, when the stress 
vector is zero only on part of the boundary of the domain investigated. 

Theorem 5.1. Let Tu and I\ be connected. Then 

(5.2) Q,=QW. 

For the proof see [17] p. 50. • 
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In an approximate problem for the Airy stress function the spaces of finite elements, 
without boundary conditions, denoted by Xh9 are defined via the following sup­
positions; 

i) the corresponding family of decompositions {$~h} is regular; 
ii) the finite elements are of the class C1; 

hi) PK^H2(K). 

Then i) to iii) imply Xh c CX(Q) n H2(Q) (see [2]) and we define the finite — dimen­
sional subspace of admissible functions for the Airy stress function by 

(5.3) Wh = Xh n W = {UhE Xh \ Uh = dvUh = 0 on r&} . 

Next, the operator rh of the ^-interpolation is defined for 2Th E {$~h} by 

(5.4) (rhU)\K = nK(U\K) VKE^h9 

where nK(U\K) is the P^-interpolation U\K on K and PK is the space of polynomial 
(or piecewise polynomial) functions on K from Section 2. Let 

(5.5) dom rh = Wn Hk + 1(Q) c Ck~\Q), k = 2, 3 , 

be the domain of the operator rh. 
The operator rh of the X^-interpolation corresponding to an arbitrary element 

of the class C1, mentioned in Section 2, satisfies the implication 

(5.6) U E dom rh => rhU E Wh . 

Now, due to Theorems 5.1, 1.4 and 1.5, we are justified to choose in the approximate 
problem (4.12) 

(5.7) Qh = QWh. 

We say, that the space Qh is conjugated with the space Wh in the sense of slab analogy 
if (5.7) holds. 

Then for any T E Q0 n (Hfe_1(iQ))4 we can define the matrix function r̂ T by 

(5-8) (f„T)|K = fiK(x\K) V X e ^ , 

where IJK(^\K) is lbe ^^-interpolation of the function T L on K, the operator flK is 
from (3.4) and MK is a finite-dimensional space of functions defined on K (see Section 
2 for individual elements). The function fhx will be called the Qh-interpolation of the 
function x. 

Lemma 5.1. Let the operator fh be given by (5.8). Then 

(5.9) hreQh. 
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Proof . Due to the suppositions (5.5), (5.6), the definitions (5.8), (3.2) and (5.4) 
we can write for v e Vn (C°°(.Q))2 

f (?AT) e(v) 6x = £ f 17^) e(v) dx = £ f ^(IT^U^)) e(v) dx = 

= I f ^ U ) | ^ ( ^ ) d x = f O^U)£(v)dx = f (-d2(rhU)dtvx + 

Ke^"h J x J Q J r 
+ G^U) O>2) dS = 0 

for dTv, = 0 on Tu and dj(rhU) = 0 on Ta, j = 1,2. D 
The next theorem yields the order of convergence in the L2-norm of the dual 

finite element analysis. 

Theorem 5.2. Let the supposition of Theorem 5.1 and the relations (5.8), (3.5) 
be satisfied. Then, if the solution T° e Q0 of the problem (4.11) belongs to Q0 n 
n(Hk-\Q)f,for k = 3fOr C-E-S-I and II elements and k = 5 for a C-E-
— S—III element, there exists a constant c > 0, independent of h and such that 

(S 1fA IIT° — T°II < rhk~l\r°\ 
v 3 - 1 ^ | | T T ^ ||o..Q _ c n \T \k-l,Qi 

where T^ e Qh is a solution of the approximate problem (4.12). 

Proof. Making use of Lemmas 4.1, 5.1, equivalence of the norms \'\H
 a n d 

IHIo,fl> t n e relations (5.8) and (3.5) for k = 3 for C - E - S - I and II elements and 
k = 5 for a C - E - S - III element, we obtain 

||To _ T 0 | | < ri -Jnf IITo _ || < || 0 __ ~ 0|| _ 

||T Th\o,n = c i n i ||T T | | H = C\\T rhT \\o,n — 

- r( V ||-7-0 _ ry 0112 \ i / 2 < rUk~\( y I 012 \ l / 2 _ , . ! , * - 1 | T 0 | p i 
~ H z L llT JiKT l|o,K) = cn \ L \T |fc-i,K; — cn \T \k-i,Q- U 

KeJ'h Ke^h 

The following result concerns all the types of finite elements taken into account: 

Theorem 5.5. (on the convergence). Let the supposition of Theorem 1.3, the 
relations (5.5), (5.6), (5.7) and the suppositions i) to Hi) of this section be satisfied. 
Let the sefV = W n C°°(Q) be dense in W and let Ta be connected. 

Then 

(5-11) l im | |T° - T J | | 0 , O = 0 . 
h-+0 + 

Proof. From Lemma 4.2, equivalence of the norms on H and the suppositions 
of this theorem we have 

||T° ~ Th\\o,c> = c inf | |T° - Th\\0M = c inf \\QU - gUh\\0yQ = c inf |U - Uh\2tQ . 
tueOu UueWu UueWu 
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The density of V in W implies that there exists U e W such that ||U — U || 2 ji2 ^ £e . 
Due to V cz dom rft it follows from Lemma 3.1 (for m = 2) that there exists a con­
stant c > 0 independent of h and such that || U - rhC\\2jQ S chk"1\V\k+lfQ9

 t n e n 

V8 > 0 3h0(e): ||U - r^U||2j0 g i-g V/i <; h0(
e)- Due t 0 t n e supposition (5.6) we have 

rbUe Wh and thus \\U - rhU\\2)Q g ||U - C\\2>i2 + || U ~ rhŮ\\2>Q for sufficiently 
small h. Then, finally, we have 

| |T° - z°h\\o,až c | | U - rhC\\2tO->0 for ft-* 0 + . D 
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Souhrn 

DESKOVÁ ANALOGIE V TEORII A PRAXI KONFORMNÍCH 
ROVNOVÁŽNÝCH MODELŮ POLÍ NAPĚTÍ 

PRO ŘEŠENÍ ROVINNÉ PRUŽNOSTI METODOU KONEČNÝCH PRVKŮ 

MIROSLAV VONDRÁK 

Pro jednotlivé trojúhelníkové resp. obdélníkové prvky lze uplatnit metodu Airyho 
funkce napětí, odtud vyplývá, že apriorní odhady známé z teorie kompatibilních 
prvků pro rovnice čtvrtého řádu zároveň poskytují odhady v L2-normě pro aproxima­
ce pole napětí. Je odůvodněn pojem „desková analogie" a podán rozbor souvislosti 
Airyho funkce — pole napětí ve vztahu k přechodovým podmínkám na styku dvou 
prvků. Jsou navrženy unisolventní množiny stupňů volnosti pro prvky sdružené 
ve smyslu deskové analogie s některými kompatibilními prvky a odvozeny aproxi­
mační vlastnosti těchto rovnovážných prvků. 

Pro všechny tyto typy prvků je dokázána konvergence v L2-normě pro dostatečně 
hladká řešení. 

Authofs address: Ing. Miroslav Vondrák, CSc, Vývojová konstrukce letadel n. p. Rudý Letov, 
Beranových 65, 199 02 Praha 9-Letňany. 
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