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1. INTRODUCTION

Let P = (py, Pys--sPu)s 0 < p; <1, Y p; =1 be a finite discrete probability

T i
distribution of a set of n events E = (El, E,, ..., E,) on the basis of an experiment
whose predicted probability distribution is Q = (¢, 42, ..., 4,), 0 < ¢q; < 1,

Z q; = 1. Then Kullback’s measure of relative information [3] is defined as
i=1

(l'l) I(P/Q) =";Pi103 (Pi/Qi) , Pinqi>0.

The measure (1.1) depends only on the probabilities of the events and thus does not
take into account the effectiveness of the events under consideration. Belis and Guiasu
[2] introduced a ‘utility distribution’ U = (u, u,, ..., u,) where each u; > 0 accounts
for the utility of the ith outcome E,. :

Thus we have two utility information schemes:

'E, E, ... E,
(12) S = Py P2 ... Dn
W1 Uz .o Uy

of a set of n events after an experiment, and

(1.3) [E, E, ... E,]
S*=14, 92 ... 4qu
| U1 Uy ... Uy

of the same set of n events before the experiment.

In both schemes (1.2) and (1.3) the utility distribution is the same because it is
assumed that the utility u; of an outcome E; is independent of its probability of
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occurrence p;, or predicted probability g;; u; is only a ‘utility’ or ‘importance’ of the
outcome E; for an observer relative to some specified goal, cf. Longo [4].

The measure of relative ‘useful’ information that the scheme (1.2) provides about
the scheme (1.3), has been characterized by Taneja and Tuteja [5]. Tt is given by

(1.4) I(P[Q;U) = Y wp;log(pila;), uw; >0, 0<p;, g, <1.
i=1

The quantity (1.4) measure the average ‘useful’ information gain in predicting a set
of n events E = (El, E,, ...,E,,). In what follows, we shall denote the measures
(1.1) and (1.4) by I and I, respectively.

The maximum lokelihood estimators (MLE) of the quantities given in (1.1) and
(1.4), see Anderson [1], are given by

(1.5) I= Zlﬁi log (pi/a:)
and
(1.6) I, = 2. wipilog (pifas)

respectively, where p; is the MLE of p;, so that if N; is the frequency of occurrence
of an event E; in a random sample of size N, then

ﬁi=Ni/N, i=12,...,n.

It may be noted that here q;, i = 1, 2, ..., n, are the probabilities which the experi-
menter assigns to the various possible outcomes of the experiment. These are just
predicted probabilities and have not been obtained on the basis of any experiment.

The measures of relative information find wide applications in statistics and
economics, cf. [3] and [6]. Thus there is a need to study estimates of these measures.
In Section 2, we obtain the mean and the variance of the MLE of(l.l) and show that
it is biased and consistent. It is found that this estimate, in fact, overestimates the
ture value of I. In Section 3, we obtain the mean and the variance of the MLE of
(1.4) and show that it is also biased and consistent, and further that this estimate also
overestimates the true value of I,.

2. MEAN AND VARIANCE OF THE MLE OF I(P/Q)
The MLE of the relative information measure I(P/Q) is given by
(2.1) I=Yplog(pla),
=1

where p; = N,/N is the MLE of p, and N, the frequency of occurrence of an event E;
in a random sample of size N, follows multinomial distribution and thus the moment
generating function of the distribution of N;’s can be written as

(2.2) M(ty, ty, ..., t,) = (pye" + pae™ + ... + pe™)V.

167



In our study we shall need the central moments of p;, which can easily be obtained
from (2.2) by using

E(p) =N"" l:‘i].\f(’lz_tz’_'iﬂ]
t1=t2=..=t,=0

ot}
and
Ara w0 (M2, 1y, .0ty
(i) = N | T )
ort ot
for i + j.
The central moments of various orders of p; that we shall need are as follows:
(1 — p))
E H. — R 2 — pl( p'. ,
(b: — p) e
E(ﬁ. - P.')(ﬁj - Pj) = :&&a P#j
N
R 2p; = 3p; + p;
E(p; — p:)® =T N
a —pip(1 — 2p; ; ;
E(p; — p:)* (b; — p)) = —&1(;]2—'},—), PFj
E(p: - p)* = O(N7?%),

E(ﬁi - Pi)3 (ﬁ; - Pj) = O(N_z), iFj
E(p; — p)*(b; — p)*=O(N"?), i+]j

where O(N ~%) denotes the terms of magnitude N/, I > 0.

Theorem 1. Given a set of n independent events E,, E,, ..., E, with probabilities
of ocourrence py, Ps, --., P, and predicted probabilities q,, q,, ..., 4,, the mean and
the variance of 1, the MLE of the relative information measure (2.1), are given
respectively by

(2.4) El)=1+"=1 4 on-2)

and

(2.5) V(i) = J%] [i‘;pi log? (pi/q;) — I*] + O(N7?).
Proof. Let

(2.6) I(pi/q;) = pilog(pi/a:), Pigi >0
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and
(2.7) j(l’i/‘]i) = p,log (ﬁi/qr') >
fori=1,2,...,n
Then the derivatives of I(p;/q;) at p;, i = 1,2, ..., n are given by
ol
(2.8) 19(p,lq;) = (ap i49:) _ =1 + log (pi/q;)

i

and

I“(pilq;) = ﬂg’p‘/—q—f) =(=1y"2(r=2)p*, rz2.

Further, it is easy to show that the mixed derivatives of all orders of I(p /q )vanish,
and also that the derivatives in (2.8) are continuous at p > 0 fori =1,2,..., n.
Thus we can expand (2.7) in a convergent Taylor series about the point p; with
Lagrange’s form of the remainder (considering derivatives up to the fourth order
only) as follows:

(2-9) I(pi/Qi) = I(Pi/‘Ji) + (13.' - Pi) I“)(p[/q,-) + %(ﬁn - Pi)2 I(Z)(Pi/‘Ii) +
+ %(ﬁ; - Pi)1(3)(Pi/‘1i) + 4%(13. - P1)4I(4)[{P;‘ + G(ﬁi - Pi)}/‘]i] , 0<f<1.

By virtue of (2.8) this gives

(210)  I(pifa:) = I(pifa;) + {1 + log (p,/a,)} (p: — p:) + @%)L)Z _

i

H — . 3 A— — . 4
- (pl zpz) + (pl Apl) -, 0 < 0 <1
6p; 12{p; + 0(p; — p:)}

Summing this for all i’s, we get

(.11) 1(P|Q) = 1(P|Q) +.:i{1 + 108 (pa)} (i~ p) + 1 ;Zl (i — - (b:— p)* _
n @ p)s n (ﬁ, _ p)4 3 B
; P; 12;21 {p,+0(p,—p)}3’ 0<6<1.

Using (2.3), we get

ery  Eh =1+ S - 5 B (2 D) s

el -
+ LE[{P;-I-@(I? —p,)}3:|’ 0<0<1.
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A _4
The quantity E[ (P - P:) 3] is of an order less than N ~2, since
{pi + 0(p, — p)}

(ﬁ: - Pi)4 < (ﬁl - Pi)4 .
(p1 - 0) + 0 = pi(1 = 0

Thus (2.12) can be rewritten as

=14 201 o om0

i

or

. n—1
E(I)=1+—— + O(N7?),
(=1+21+ o2

which is (2.4).
Next we find the variance of the estimate I(P/Q). By definition,

v(I) = E[1 — E(I)]?
= E[i —1- ﬁlel + O(N‘Z):r.

Using (2.11) and restricting ourselves to derivatives up to the third order only,
we get

V(i) = [zmlog(p/q)}(ﬁ.—m RS

2i=1 D

le (=) n—t =i
6 2 {pi +0(p. — p)}> 2N o )] ’
(2.13) V() = Eél(ﬁi = p){1 +log(p,/a:)}]* + O(N?).

The first term of (2.13) is equal to
ELY (= 2 {1+ 1og (pifa)}?
+i*2(ﬁ,- — p) (65 — py) {1 + log (p/q:)} {1 + log (p;la,)}] =

=Jiv[=i L= p) {1 +log(pla)}* = ¥ pup;{1 +log (pfa))} {1 + log (p)fa;)}] =

n

N [lZpl + Zpllog (pila;) + ZZpllog (pifa) = ¥ pi ~i§21p? log? (pila;) —

i=1
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- 221}.’2 log (pifq.) — i;_p,-p,- log (p:/q:) log (p;[4;) —

= Zowstt +log(pfa:) + log (pyfa))}] =
= ]% [iipi log*(pifq:) — I”] + 1—3} [i;[m +2p;log(p [q,) — p? — 2p; log(pilg;) —

- p.élp,{l +10g (pifq:) + log (p,la;)} — pH{1 + 2log(p,/a)}]] =

n

= SLE piog*(pla) = 1+ L[ 30+ 2% pitox(pa) - (3 )(5 ) -

n

~(Z2) oo (vian} = (30 (3108 (fa))] =

=1
1 n
= —[Y pilog? (pila;) — I*] .
N “i=1

This proves (2.5).

In proving the above theorem, we have used derivatives of I(p,-/q,-) taking the
logarithms to the base ‘e’ and therefore the units of estimates in (2.4) are natural
units. However, if we consider ‘binary units’, then the biased information content
in this estimate of I is given by
n—1

2N

EI)-1= log,e + O(N7?).

Further, since n > 1, the estimate I in fact overstimates the true value of I.
We note that when N — oo, then E(I) - I and V(I) - 0. Therefore, we conclude
that I is a consistent estimator of 1.

3. MEAN AND VARIANCE OF THE MLE OF I(P/Q; U)
The MLE of the relative ‘useful’ information measure I(P/Q; U) is given by
(3.1) i, = Zl u;p; log (pilq:)

where p; = N;/N is the MLE of p; and N, the frequency of the occurrence of the
event E; in a random sample of size N, follows a multinomial distribution.

Now find the expression for the mean and the variance of I,. We prove the fol-
lowing theorem.

Theorem 2. Given a set of n independent events E, E,, ..., E, with probabilities
of oocurrence py, p,, ..., p, and predicted probabilities q,, 45, - -, 44, the mean and
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the variance of 1, the MLE of relative ‘useful’ information, are given respectively by

U-u

(3.2) E(l)=1,+

+ O(N7?)

and

(3.3) V(i) = Jiv [i;ufpi{logz (pila:) + loge(pi/q:)*} — %(1., +a)’ + O(N"?),

where n n
U =i§lu‘ and 1 =i;uipi.
Proof. Let
(3.4) I(pi/q:, w;) = wip;log (pi/q,), w; >0, piq;>0
and
(3.5) I(pilg:, ) = wip;log (pila:)

fori=1,2,...,n.
Then the derivatives of I(p;/q;, u;) at p;, i = 1,2, ..., n are given by
oI(pi/q;, w;
06 100fanw) = T < s+ 108 (0/a)
and
19(pifq; w;) = ?I(Lé/q,ﬂﬁ‘) = u(=1y"2(r=2)p;"*, rz2.
Di
Further, we note that the mixed derivatives of all orders of I(pi/4;, u;) vanish and
also the derivatives in (3.6) are continuous at u; > 0, p;, q; > 0, fori = 1,2,...,n.

Thus we can expand (3.5) in a convergent Taylor series about the point p; with
Lagrange’s form of the remainder as follows:

3.7) j(p,-/qi, ui) = I(pi/qis u‘i) + (ﬁ; - Pi) I(l)(Pi/‘Iis “i) +

1 1 :
* 2! (b: = p)* IP(pifqi, ;) + 31 (6: — p;)’ 1(3)(Pi/q"’ w) +

1, N
+ Z (Pi - p)* 1(4)[{Pi + 9(17.' - Pi)}/(h, ui] , 0<O<1.

By virtue of (3.6) this gives

(3.8) I(pifas, w) = I(pifas, w)) + (p: — Pi) wi{1 + log (pi/4:)} +
+ _];ui(pi - p)? _ i — i)’ uib:i — pi)* , 0<fd<1.
2 p, 6p2 12{p; + 6(p: — p))}*
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Summing this for all i’s, we get

(3.9) I(P|Q; U) = I(P|Q; U) + Z up; — pi) {1 + log(pi/a;)} +
1 _pL)___l_ ni“(pz p)3 “ u(ﬁ, p)4
+ii=21ﬁ— Di 6Z p‘ 12.1{p,+0(p,—p)}3’0<0<1.

Now using (2.3), we get

. . I 1 d 1
3.10 El)=I,+—>u(l—p)—— Yu(2—-3p;+—) +
LI EPL bR CEE Ry

i=1

é’: I:v(’i_l’_).__], 0<0<1.

{pi+ 0(p: — p)}°

As in Theorem 1, (3.10) can be rewritten as

N ) R 1 g 1
EI,, =Iu+_—— uil"“ i) T T u,-2—3‘-+— +ON_3
( ) 2N igl ( P) 6N? iZl ( P Pi) ( )

or

Bl =1, + 2% 4 on2),
which is (3.2).
Next we find the variance of the estimate [ (P/ 0Q; U). By definition,

v(1,) = E[1, - E(L)]?
= El:i,, -1, - U21~V ‘L O(N*Z)]z.

Using (3.9) and restricting ourselves to derivatives up to the third order only,
we get

V(ju) = El:iélui(ﬁi 2 {1 + log (p,./q,-)} + % S'ILL@LP——I)I)Z _

i

n A '3 i 2

- 1 Z “i(pi pz) _ U—-1u + O(N—Z)]
6 =1 {p; + 0(p. — p))}* 2N

or

(3.11) V(1) = E[,.zil“i(ﬁi = pi) {1 + log (p/q)}]* + O(N"?) .
The first term of (3.11) is equal to
EL (00— p)? {1+ log (pfa)}? +

+ l_;ju‘i“‘i(pi — p:) (B; — py) {1 + log (pilay)} {1 + log (pj/a;)}] =
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=1-V1~[é ipi(1=p) {1+ log(pifq:)}? ;uiu,-pip,-{“rlog(p.-/q.-)}{1+log(p,-/qj)}]=
= LT ulni+ Tutpilog? (pfa) + 2 S wimtox (o) - 3, utp? -

- Z u?pi log? (pila:) — Zi; uipi log (pilq;) —

= X wipip; 1og (pilai)og (pif4,) = X uapip;{1 + log (pilqs) + log (psfa,)}] =

i*j
1 n
=< [ Y ulp;log?(pifa;) — 17] +
i=1

n

i
+ L2 {uip: + 2uipilog (pila:) — uip? — 2uipilog (pilq;) —

— wp Zupill o+ log (pda)) + log (pifa)] + uipilt +2log (pfa]}] =
[ X uipilog (pfa) = 1] +

i=1

[:i u;ip; + 2 i “%Pi log (pi/qi) - (’; uipi) (Jé:l“-jpj) -
- Z ipilog (pifqs)] ( Z u;p;) = {.‘"L u;p; log (p;[4;)} (;Z'lumf)] =

i=1 Jji=1
R 1 & at  2al
=_ ;1o 2] + — Yulp{t + 2log(pifq)} — — — —¢ =
5 L uipilog®(pifq) — L] + o 3 wind e(pla)) — ==
1 n
= [ X uipilog’ (p/q)]+—[2u pLIOge(p/q)]—*[I-Jru +2al,] =
Lol o o, e nq I+ 8)
= N [igluil’ul‘)g (Pi/Qi} + log e(pi/qi) ;‘] - —N——

(Taking log e = 1, natural units.) Thus (3.3) follows.

Now in (3.2) we have U > i, thus the estimate I, overestimates the true value
of I,. Also it is clear from (3.2) and (3.3) that when N — oo, then E(I,) — I, and
V(fu) — 0. Thus we conclude that I, is a consistent estimator of I,. Further, when
u; = 1 for all i, then obviously (3.2) and (3.3) reduce to (2.4) and (2.5), respectively.
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Souhrn

O STREDNI HODNOTE A ROZPTYLU ODHADU
KULLBACKOVY INFORMACE A MIRY RELATIVNI
L UZITECNE*“ INFORMACE

HARrisH C. TANEJA

V ¢ldnku je odvozena stiedni hodnota a rozptyl maximédlné vérohodného odhadu
Kullbackovy miry informace a miry relativni ,,uzite¢né** informace.
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