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of his birthday
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INTRODUCTION

The problem of optimal domain in elliptic boundary value problems has been
studied thoroughly on a simple model by Begis and Glowinski [1] It is the aim
of the present paper to extend their results to two further types of cost functionals,
namely to those involving the gradient of the solution of the state problem. Thus
we minimize (i) the internal energy (i.c., the Dirichlet integral) and (ii) the norm
of the outward flux.

A dual variational formulation of the state problem (in terms of gradients) is used
for the numerical solution and finite element subspaces of divergence-free (solenoidal)
piecewise linear functions are employed (see [2], [4]). The existence of an optimal
domain is proved and an analysis of the convergence of piecewise linear approxima-
tions presented.

Let us mention that the state problem with unilateral boundary conditions has
been studied by Necas and the author in [6] and by Haslinger and coauthors in

[5] [8] (see also [9]).

1. FORMULATION OF THE OPTIMIZATION PROBLEMS

Let us consider the following model problems: Let Q(v) = R* be the domain
(see fig. 1) X
Q) = {0 < x; <p(xy),0 <x, <1},

where the function v is to be determined from one of the two problems

(1.0) Jiy@) =min (i =1,2)

over the set of ve %,,.
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Here

U,y = {v e C([0,1]) (i-e. Lipschitz function),
1
0<a<v= B, |dfdx,| £ Cy, Jv(xz)dxz = Cz}
0

%

4
with given constants «, f§, C;. C,;
(1.1) Fi0) = |[Vy()] dx,
2(v)
(12) F2(¥(v) = ||ay(”)/’a"||2—1/2,r(v) ’
and y(v) denotes the solution of the following boundary value problem:
(1.3) —Ay=f in Qv),

y=0 on I(v),
% _0 on aa() - I().
v

The function f € I*(Q;) is given, @, = (0, B) x (0, 1), dy/dv denotes the derivative
with respect to the outward normal to I'(v) and the norm in (1.2) will be defined
later. In the following, we denote by H*(Q) the Sobolev space W$’(Q) with the usual
norm n”kﬂ and the scalar product (.,.),q H° = I’. For vector-functions, the

notation )
Jaleo = (3 a2

2
(q’ P)k.n = Z (‘Ii, pi)k,!)
will be used. i=1
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It is well-known that the state problem (1.3) can be formulated in the following
variational way. Let us introduce the subspace

V(v) = {we H'(Q(v)) :yw = 0 on I'(v)},

where v is the trace operator, y: H'(Q(v)) » H'/*(0Q(v)).
The weak solution of (1.3) is the function y = y(v) € ¥(v) such that

j Vy.Vwdx = fwdx VYweV(v).
2(v) Q(v)

There exists a unique weak solution for any v € %,,.
Next we explain the sense of the functional ¢, in (1.2).

Definition 1.1. Let us introduce the subspace
Ve ={weH'(Q):yw =0 on 9Q — I'y}

where Iy, is an “extension” of I', such that I' = I'y = 89, I'; is connected and open
in 0Q and denote
HY2(r) = 4(79).
For @ € H''*(T') we define the norm

(14) [@lizr = inf o]0
yo=g
veVe
For the linear continuous functionals ge H™'*(I') = [H'*(I')]" we define the
usual norm

(15) lo] ooy = sup 222

pelAD) lolz.r .

Lemma 1.1. Let g € H™"*(I') be given and let u € V° be the solution of the follow-
ing problem

(1.6) j (Vu . Vw + uw)dx = {g,yw) YweV".
Q

Then it holds
(1.7) lg]l=1/2.0 = 4] 1.0

Proof. From the relation (1.6) we obtain, using (1.4)

<. 0> = ] va inf [w]ia = [u[i0 0l

welVe

Consequently, by means of (1.5) we can write
(1.8) loll-1/2.r < lul10-
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Inserting w = u in (1.6) and using (1.4), we obtain

[ullf.e = <a. 10> = gl -spar [l srar = gl -sr2r .-

Cancelling and combining the result with (1.8), we are led to (1.7.) Q.E.D.

Definition 1.2. Let y € H'(Q) be such that Ay € I*(Q) exists (in the sense of distri-
butions).
We define a functional 6y/('1‘v € H““Z(F) by the following relation

(1.9) <@, w> - L(Vy Vo + wAy)dx,

ov

where w is any element of V° such that yo = w on I',.

Next let y = y(v) be the weak solution of the state problem (1.3). Since Ay =
= —f e I}(Q), we can apply the Definition 1.2 and Lemma 1.1 to define a function
u = u(y(v)) as a solution of the following problem:

find weV(v) such that

(1.10) (Vu . Vw + uw)dx = (Vy.Vw + wAy)dx VYweV(v).
2(v) 2(v)

Using Lemma 1.1 we can write

(111) Z20(@)) = [u@)]3 20 -

The latter relations will be used instead of (1.2) for the definition of the cost
functional #,. Henceforth let us choose 02 — I', independent of v.

2. EXISTENCE OF THE OPTIMAL DOMAIN

In the present Section we shall prove that at least one solution of the problems
(1.0) exists.
The solution y(v) of the state problem for any v e %,, can be extended by zero
to a rectangular domain
Q;=(0,6) x (0,1), 6> B.

The extended function will be again denoted by y and obviously y € H'(Q;) holds.
The function f will be extended to Q; by zero, as well.

Lemma 2.1. Let {v,} be a sequence of v, € U,y Vn. Then a subsequence {v,} and
element v € U,y exist such that

(2.1) y(v,) = y(v) in HY ),
u—v in C([0,1]).
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Proof. Let us denote y(v,) = v, V(v,) = V,, Q(v,) = Q,. Since
(Vym VZ)O,D,I = (f$ Z)O;Qn VZ € I/n
follows from the definition of y,, inserting z = y,, we obtain

“Vyn“g,ﬂ,. = (f: yn 0,2, é “f“o,gp ”ynu1,gn .
For all v e %,, we have the generalized Friedrichs inequality
V]300 Z Clz]? 00 Vze V().

with C independent of v.
Consequently,

(22) [l = €7 lo.0 [92l1.0,

so that the sequence {y,} (extension) is bounded in H*(®;). Hence there exist a sub-
sequence {y,} and an element y* € H'(2;) such that

IIA

(2.3) yi— y* (weakly)in H(®,).
Since %, is compact in C([0, 1]), a subsequence {v,} of {v,} and ve %,, exist
such that
v, > v in C([0,1]).
We shall prove that y* is the weak solution of (1.3), i.e., y* = y*(v).
First we prove that y* = O a.e.in Q; — 5_2(1)—) In fact, let y* = Oonaset E « Q; —

- Q—(v), the measure of E being positive.

Let Q, denote the domain bounded by the graph of v + & Obviously, there exists
¢ > 0 such that

mes(EnQ; — Q) >0.

We have Q,, = , for m great enough and therefore

(24) J‘ (Y — y*)*dx = f (Y — y*)*dx = J (y*)*dx > 0.
Qs En(Qs—2¢) En(Rs=2¢)

On the other hand,

(2.5) ye—= y* in IXQ;), k- o

follows from (2.3) and the Rellich’s Theorem for a subsequence {y,}. We arrive
at a contradiction with (2.4).
Consequently, we have

Yaw e V() -
Let a we V(v) be given. There exists a sequence {¢,}, ¢, € C*(Q(v)) such that
supp ¢, N I'(v) = 0,
¢, —»w in HY(Q(v))

(or in H'(Q,) if the extensions of w and ¢, are considered).
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We may write
(Vym’ V@’n)o,nm = (f9 (pn)O,!)m

for all m great enough. Passing to the limit with m, we obtain
(Vy*a qun)O,Qd = (fa (Pn)O,Q‘s .
Passing to the limit with n, we are led to the relation

(V9*, VW)o,00) = (fs W)o,o0) 3

consequently, y* = y*(v) holds.
Since the definition of y,, implies

HAy"'”é,ﬂm = (fa ym)o,g,,, s

using the extensions and the weak convergence, we obtain

(2:6) [V3ul .00 = (s ymlosos = (12 ¥)o,0, = [ V¥, -
From (2.5) and (2.6) the convergence of norms in H'(®,) follows. Consequently,
the strong convergence (2.1) holds. Q.E.D.

Theorem 2.1. There exists at least one solution of the optimisation problems (1.0),
i=1,2.

Proof. Let us consider a minimizing sequence for #,, i.e., v, € %,
(2.7 J1(v,) » igf F10), n—>ow.

Let us apply Lemma 2.1 to obtain a uniformly converging subsequence {v;} with
a limit v, such that

(2.8) Z1(v@) = [V3il3.0. = [Vy0)]5.00) = £1(0(0)) -

Combining (2.7) and (2.8) we arrive at the following relation
inf 7,((1) = £1((v)) -

Consequently, v is a solution of (1.0) for i = 1.

The case i = 2. Let us denote by u, the solution of the problem (1.10) on the
domain Q(v,) = @, where y = y, is substituted on the right-hand side. Inserting
w = u, in (1.10), we obtain

(2:9) ]| 00 =J (Vye - Vu + Ay, - u) dx.
2
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Every function u, will be extended onto the rectangle Q; as follows: we define for

u(x;) < x5 < 2u,(x,)
(2.10) i (x1, x;) = w,(20,(x;) — x4, x3) -

Thus the extension #, is “symmetric”’ with respect to the graph of v,. It is easy to
derive the following estimate for x € Q(2v,) — Q;:

(2-11) [Vit(x)]> < (2 + 4(0)?) [Vu(x*)]?
where x° is the “symmetric” point with the coordinates
x3 =20(x,) — x;, X =Xx;.

For points where x; > 2v,(x,), we define # = 0. Then using (2.11) we can write

»

j V2| dx gJ Va2 dx < cof |Vu,? dx,
25— Q(20) — 2

where C, does not depend on k and u,, if v, € %,,.

Since
f @2 dx < f u? dx ,
Q5— 2 2

we arrive at the estimate
(2-12) ”ﬁk“f,m—gk = Co””k“%,gk .

Inserting Ay,, = —f in (2.9), we obtain
luell? = [vils.on el o0 + 17 ]o.00 [uelo 0 -
Using the boundedness of norms of y, (cf. (2.2)), we deduce
(2.13) lu] 1,00 = C VK.
Combining (2.12) and (2.13), we obtain
(2.14) la]3 .0, = C(1 + Co) -

Consequently, a subsequence of {#} (which will be denoted by the same symbol)
and a function u € H'(®;) exist such that

(2.15) # —u (weakly)in H'(Q;), k— .
Next let us seek the limit of the right-hand side of (2.9) for k — o0. We can write
(2'16) (Vyk, Vuk)O,!)k = (Vyka Vﬁk)o,m - (Vy*, Vu)o,m = (Vy*a V”)o,n(u) »

where the strong convergence of { i} and the weak convergence (2.15) has been used.
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Moreover, one easily finds that

(2.17) Ay, = Ay* (weakly) in I*(Q,).

In fact, for any w e I*(Q,) we have

—(Ayis Wo,, = (fs Who.a, = (fs Wo,om = —(AY*, W)o,a) -

From (2.15) and the Rellich’s Theorem it follows that

(2.18) @ —>u in I}Q,), k- .
Thus we may write
(2.19) Ay w0 0 = (Avis B)o 0, = (AV*, )00, = (AV*, )o,00) -
If we substitute (2.16) and (2.19) into (2.9), we obtain
(2:20) Jul| 3 0 aj (Vy*. Vu + Ay*u) dx.
Let us vermify that .

ulow) = u(y*)
in the sense of the definition (1.10).
First we shall prove that

(2:21) j (Vu . Vw + uw) dx = j (Vy*.Vw + Ay*w)dx Ywe V(v).
Q(v)

2(v)

In fact, let a w e V°(v) be given. Let W e H'(Q;) be the extension of w constructed
in the same way as in (2.10). Then

Wo, € V(v) Vk.
By virtue of (1.6) and (1.9), we have
(2.22) J‘ (Vuy . VW + uv) dx = j (Vyi - VW + Ay,#) dx .
2% [

Using the convergence (2.1) and (2.17), we obtain that the right-hand side tends to
j (Vy*.Vw + Ay*w) dx.
Q(v)

For the left-hand side of (2.22) we may write

j (Vi . VW + &%) dx — j‘ (Vu . Vw + uw)dx| £
(27

2(v)
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= +

f (Vi . VW + @) dx — (Vi . VW + @) dx
Qr 2(v)

+

J Vi, . Vw + @w — (Vu . Vw + uw)] dx
Q(v)

= Iy + Iy

On the basis of (2.15) and of the uniform convergence of {v,}, it holds

I = I(aka W)l,A(Qk,rz(u))” = u ﬁkH1,Qé HWHI,A(.Q,(,Q((;)) -0,
where

A(4,B) = (4 — B)U (B — 4)

denotes the symmetric difference of the sets 4 and B. The weak convergence (2.15)
implies that also

I,,—0.

Consequently, passing to the limit in (2.22) we obtain (2.21).
The subspace V(Q,) is weakly closed in H'(,). Since # € V(Q2;), the weak
limit u € V(;) and therefore

ulow €V(v) -

From the uniqueness of the solution of (1.10) we conclude that
ulowy = u(y*).

Inserting w = u(y*) into (2.21) we obtain

[u(®)| 00 = f (Vy* . Vu(y*) + Ay* u(y*)) dx .

2(v)
From (2.20) and (1.11) it follows that |
F20(®)) = [ul? 0 > [u*)[ .00 = £200(0)) -

Since {v,} is a minimizing sequence, v is a solution of the optimization problem
for i = 2. Q.E.D.

3. DUAL FORMULATION OF THE STATE PROBLEM

Since the cost functionals are expressed in terms of the gradient Vy and not in terms
of the function y itself, it seems to be advantageous to employ the dual variational
formulation of the state problem. Thus we shall calculate the gradient Vy directly.
To this aim we have to introduce the space of solenoidal (divergence-free) vector
functions

Qo(v) = {qe[IX(Q())]* :divg =0 in Q(v),
qg.v=0 on Q(v) — I'(v)}.
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We shall use also the following equivalent definition

0(t) = {q e [(@W)]* j

2(v)

q.Vwdx =0 Vwe V(v)} .
Let us construct the vector field 1 = (4, 1),
G.1) T(ns x2) = _J (6 xa)dt, T, =0,

0

assuming that the integral has sense for x, = 0, x, = 1 and almost all x, € (0, 1).
It is readily seen that
div i =0l [ox, = —f in &,

A.v=XAv, =0 on 09— T,

where I'y = {(x1, x,) :xy = B, x,€(0,1)}.
Then a suitable dual formulation of the problem (1.3) is: to find q(v) € Qy(v)
such that

(32) (9(v), Plo,owy = —(4 Po,awy VP € Qo(v) -
There exists a unique solution of (3.2) and
(3.3) L+ q(v) = Vy(v)

holds. (Henceforth 1 denotes everywhere the restriction of the vector field (3.1) onto
the domain under considerations and y(v) is the weak solution of (1.3)).
The cost functional #; can be rewritten as follows

Z100) = |2+ 40)[3.00) = #5(90) -
Using (3.3) in (1.10), (1.11), the cost functional #, can be transformed into

Z3(q(©)) = [u(q@)]}.00) 5

where u = u(q(v)) is the solution of the following problem

(3.4) (Vu.Vw + uw)dx = [(Z + q(v)). Vw — wf]dx VweV(v).

2(v) J )

Obviously, Theorem 2.1 yields the existence of a solution of the equivalent optimiza-
tion problem

(3.5) Fi(q(v)) = min (i =1,2)
over the set of v e %,
In fact, for all w e %,; we may write

771(q[) = () = £iy(w)) = £7(q(w)) -
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4. APPROXIMATION OF THE DUAL STATE PROBLEM

Let N be a positive integer and h = 1/N. We denote by e;, j = 1,2, ..., N, the
subintervals [(j — 1) h, jh] and introduce the set

Upg = {4 € Uga : vy, € Py(ej) Y},

where P; denotes the set of linear polynomials. Let €, denote the domain bounded
by the graph I', of the function v, € %%, i.e. Q, = Q(v,)-
The domain €, will be carved into triangles by the following way (see fig. 2).

M,

1117
[ /7
[ [ //

|
[11/
[177

a

a

o

.
!
!
|
|
I
|
!
I
|

p

4
Fig. 2.

We choose o, €(0,«) and introduce a uniform triangulation of the rectangle
Z = [0, a9] x [0, 1], independent of v, if h is fixed.
In the remaining part 2, ~ 2 let the nodal points divide the intervals [aq, v,(jh)]
into M uniform segments, where
M=1+[(B— a)N]

and the square brackets denote the integer part of the number inside. One can find
easily, that then the segments parallel with the x;-axis are not longer than h and
shorter than h(o — a,)/(B — o).

One also deduces the following estimate for the interior angles w of the triangulation

tgo g;—?—“‘?(l +C 4+ C)7

Consequently, one obtains a regular family (7 ,(v,)} of triangulations, with

max (diam K) < h/sin o, .
KeT n(vn)

w, = arctg (; — % a+cy+ Cf)'l).
)

-
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Let us consider the space 4",(v,) of piecewise linear solenoidal (divergence-free)
functions on the triangulation 7, (see [2], [4]) and define

Sy = N4(vy) 0 Qo(vy) = {gueN(v)) 1 qy-v =0 on 9Q, — I',} .

Instead of the problem (3.2) we shall solve the following approximate problem:
to find q"(v,) € S, such that

(4.1) (" (vs)s "o, = = (% P00, VP" €S-
There exists a unique solution of (4.1) for any h and any v, € %%,
Lemma 4.1. Let {v,}, h > 0, be a sequence of v, €y, converging uniformly

10 a function v.
Then

q°(v)) > q(v) in [IX(2)]* for h—0,

where q°" is the solution of (4.1) extended by zero to the domain Q5 — @, and q(v)
is the solution of (3.2), extended by zero to Qs — [E(z;)

Proof. We find easily that the limit v belongs to %,,. It follows from (4.1) that

|95.0. = [Zo.0, - [4]o.01

consequently,

thHo.m = ”ZHOJ?A =C
and
(4.2) 19”00, = C Vh

holds for the extension q°".
Therefore a subsequence of {g°"} exists (and we will denote it by the same symbol)
such that

(4.3) q” > q (weakly)in [I}(2,)]* for h—0.
We can show that

(4.4) qlow) € Qo(v) -

In fact, let us consider a w e V(v) and denote by W its extension to Q; by means
of zero. A sequence {w,}, x — 0, exists such that

w,eC(Q), w,=0 on Q,— Q@),
supp w, N I'(v) = 0,
(4.5) w,—> W in HYQ,).
There exist a ho(x) such that w, vanishes on I'(v,) for h < hy(x) , so that

wx‘Qh € V(U;,) Yh < ho(%) .
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Since q" € S, = Qo(v,), we have

(9" VW, )00, = 0.
Using (4.3), we obtain

0 = (9", Vw,)o,0, = (9. AW,)o 0, -
Passing to the limit for % — 0 and uding (4.5), we arrive at
(q, VW)O,Q(U) = (q, VW’)O,% =0

and (4.4) is verified.
Next we show that

(4.6) q=0 aein Q,— Q).

In fact, let ¢ &= O on a set E = Q, — Q(v), mes E > 0.
Let  be the characteristic function of the set E. From (4.3) it follows for h — 0
that

(9%, %69)0,0, = (9> 7£9)0,0, = ||]3,c > O

On the other hand, we may write

(q,?, %£9)0,0, = (71", q)O,Q;.nE = HqOhHo,gh Hquo,sz,.n)s -0,

since (4.2) holds and
mes (2, N E) > 0.

Thus we come to a contradiction.
Let us show that q solves the dual problem (3.2). Let us consider a p e Qo(v)-

From Theorem 3 in [3] and from its proof we deduce that a sequence {p}, %> 0,
exists such that

p* e [C™(Q) . #"|aw € Qo(v) ,
supp p* 1 (0Q(v) — I'(v)) = 0,
o, € Qolvs) Vh < hy(x),
4.7) p > p in [IX(Qv)]* for x—0.
In the paper [2] (see also [4]) a projection operator
i [CP(25)]* 0 Qo(vn) = A h(vs)
has been introduced. The properties of p* and r, imply that

rp* € Qo(v,) Vh < hy(x).
By virtue of (4.1) we have

(4~8) (qhs thK)o,sz;. = “‘(L "hPx)o,n,, .
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Let us extend r,p" by means of zero and denote the extension by the same symbol.
We may write

|(q0h, )00, — (9 P“)o,gdl = 1(°, rib*)o,0, — (9, PX)O,Q&I +
+ l(qOh, P")o.0, — (q, Pz)o,.%l .

The second term tends to zero by virtue of (4.3). The first term can be estimated
as follows:

(", 7™ — 20,0, = |9 0,05 [740* = P*[0,0. = O,
where (4.2) and the following result (see Theorem 2.2 in [4]) has been used:
(49) [r#” = #*0.0, < CH?[p]2.0, -

Consequently, using also (4.6), we obtain
(4.10) (q°", "P)o.0, — (4, P)o.owy» h—0.

Furthermore, we can write
(@411) | 70,0, = (2 Po,0m| = (4 7™ = P00 + |(4, $7)o,0, —

= (% P)o,0m| = 0
for h — 0, if we make use of (4.9) and
mes A(Q,, Q(v)) - 0.
Passing to the limit in the equation (4.8) and using (4.10), (4.11), we obtain
(@, 2")o,00) = — (% P")o.00) -

From the convergence (4.7) the equation (3.2) follows. Since the solution of (3.2) is
unique, we arrive at q = q(v).
On the basis of (4.1), we have

(4.12) 14"]3.0, = —(4. 4")o.0, -

Consequently, using the weak convergence (4.3) and (3.2), we obtain

”qOh”g,Q‘s = _(Z: qOh)o,Qd - —(Z, q)O,Qa = _(I’ q)O,Q(V) =
= [lq(v)

Combining the weak convergence and the convergence of norms, we arrive at the
strong convergence in [I*(2;)]*.

Since q(v) is the unique solution of (3.2), the whole sequence q°"(v,) converges
to q(v).

5,000 = ll5.0.
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5. APPROXIMATIONS OF THE FIRST OPTIMIZATION PROBLEM

Lemma 5.1. Let {v,}, h — 0, be a sequence of v, €U, converging uniformly
to a function v. Let q"(v;) be the solution of (4.1).
Then

Zi(q' () > #3(q(v) Jor h -0,
where q(v) is the solution of (3.2).
Proof. By virtue of (4.12) and Lemma 4.1, we have

/T(qh(vh)) = HZH(ZLQ;, + (Z, qh)o,g,‘ - HIH(Z),Q@) + (Z, q(v))O,!?(v) = fT(q(”)) >

where the last equation is a consequence of (3.2).

Theorem 5.1. Let {w,}, h — 0, be a sequence of solutions of the following appro-
ximate problem

(5.1) J1(q"(w,)) = min, w,euh,.
Then a subsequence {w;} exists such that for h — 0

w; > o in C([0,1]),
and

(5.2) 9% (w;) > q(w) in [IA(Q,)]?,

where q°" are the solutions of (4.1), extended by means of zero, q(w) is the solution
of (3.2), extended by means of zero and  is a solution of (1.0), i = 1. Any uniformly
convergent subsequence of {w,} tends to a solution of (1.0) and (5.2) holds.

Proof. Let us consider a ve %, There exists a sequence {v,}, h — 0, such that
vy € Upy, v, > v in C([0, 1]), (see e.g. [1], Lemma 7.1).

Since %,y is compact in C([0, 1]), a subsequence {w;} and w € %,, exist such that
w; = o in C([0, 1]) for h — 0. By definition, we have

F1(q'(on) £ F1(q'(on) VE.
Applying Lemma 5.1 to both the sequences {w;} and {v;}, we obtain
F14(@)) = #1(q(v)) .

Consequently, w is a solution of the optimizétion problem (3.5), which is equivalent
with (1.0). The assertion (5.2) follows from Lemma 4.1.

The rest of the Theorem is easy to prove by the argument used above.
Remark 5.1. The problem (5.1) has at least one solution for any h.
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6. APPROXIMATION OF THE SECOND OPTIMIZATION PROBLEM

We have seen in Section 3, that the second cost functional can be written in terms
of the solution u of an auxiliary problem (3.4). We shall solve instead an approximate
problem, corresponding to (3.4), using the subspaces

Vi e C(2,) n V<(v,)

of standard piecewise linear finite elements on the triangulations 7 ,(v,).
We define the following problem: to find u, € V} such that

(6.1) j (Vuy - Vw, + uyw,) dx = j 2+ ¢").vw,ds Vw,eVj.

Qn I'n
Note that replacing Q(v) by 2,, q(v) by ¢" € S, and w by w; € Vj, the right-hand side
of (3.4) can be transformed to that of (6.1) by means of the integration by parts.
In fact, we have

(6.2) J. [(T+ q").Vw, — fw,] dx = 'f (2+q").vw,ds.
On Iy
The approximate second cost functional can be defined by means of (6.1) as follows
(6.3) Ty(v) = 23q"(v) = |un(q" ()3 2. =j (2 +q").vu,ds.
I'n

Then the optimization problem (1.0) for i = 2 will be replaced by the following
approximate problem:
(6.4) Jy(vy) = min, v, ey.

To find the relation between the solutions of (6.4) and of the problem (1.0), we first
have to analyze some properties of the solution of the problem (6.1), namely its
dependence on the “control variable” v,

Lemma 6.1. Let {v,}, h > 0, be a sequence of v, € Uh, converging uniformly
to a function v.

Then a subsequence {uz} of solutions {u,} of the problem (6.1) exists such that
forh -0
(6.5) d; —~u (weakly)in H'(%,),

where i@; is the extension of uj according to (2.10), “symmetric” with respect to the
curve I'y, and the restriction

(6.6) ulawy = u(¥(v)) = u(q(v))

is the solution of (1.10) or (3.4), respectively.
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Proof. Inserting w,, = u, into (6.1) and using (6.2), (4.2), we obtain

lta %00 = 17+ 00,0, [Vitsllo,00 + [/ ]l0,00 [1ta]l0.00 = Clun] 1,0, »
so that

(6.7) [ua] 1,00 < C-

For the extension i, we may write, using an analogue of (2.11), (2.12) and (6.7),
the following estimate

(6.8) |3 0, = (1 + Co) C2.

Consequently, a subsequence of {#,} exists (and we shall denote it by the same
symbol) such that

(6.9) @, =~ u (weakly)in H'(Q;), ueHY(Q,).

Let a w e V() be given. There exists a sequence {w,}, ¥ = 0, w, € C*(Q;), w,|ow) €
€ VC(U) s
suppw, "Iy =0, I, =0Q)—T,
w,—>w in H'(Q(v)) for x—0.

Let m,w, denote the Lagrange linear interpolate of w, over the triangulation J7; -
consequently, m,w, € V(v,) N C(2,) Vh.

Let x be fixed, for the time being. Obviously, we can insert m,w, into (6.1) and use
(6.2) to obtain

(6.10) (s 7)1 0, = j [+ q) . Vg, — frgw,] dx.
Qn .
We shall pass to the limit with A — 0 in (6.10). Denoting by m positive integers and
G, = {(xl,xz):O < xy < v(xy) ——1~, 0<x, < 1},
m

G,, = Q,for h < ho(m). Then we may write

m
o1 (i 7 — 03] =
= |(ups W)1,6m F (Ui TaWo = W) 1 6,0 + (i TWWa)1 0 -G —
~ (u, wx)l,GmI = |(“h —u, Wx)l,cm[ +
+ (> 1w — W) 16, + (i T 100Gl -

Consider a positive &. From (6.9) it follows that the first term on the right-hand
side of (6.11) is not greater than &/6 if h < hy(e, m).
To estimate the second term, we employ the well-known inequality

(6.12) [we = 1w 1,0, < Ch|wils.0, < Ch|wy|5.0, -
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Combining (6.7) and (6.12), we obtain

(6.13) (s, T, = w1 6.l < Ch|wiz,0, < €[6
for h < h,.
It remains to estimate the third term. For all triangles K € 7, and h we have

”T[hwxul,l( = C“quz,x .

Let G" be the smallest union U of triangles K € 7, such that U o Q, — G,
Obviously, we may write
(6.14) mes Gi, < L + 2h + los = o] »

m

where | - |, denotes the norm in C([0, 1]).

Consequently,

[mwdt o = [mimwd Lo = 3 [mwelia = € % Il = Cwalz o

KeG,," KeGmh

Using again (6.7), we may write

(6.15) s 9.1 00 = unl] 1,00 [ 109 100610 = C[[W] 2,6,

Combining (6.11), (6.13) and (6.15), we derive for h < h;(e, m)

I(“h’ nth)l,Q,, - (“» Wx)l,Q(v)‘ = |(uh» T‘th)l,Q,. - (“’ Wx)l,Gml +
+ |(“, Wx)x,Q(u)—G,,.l = 5/3 + C”waZ,G,,." + HUH1,9(.;) waHI,Q(v)—Gm .

By virtue of (6.14), we conclude for h — 0 that

(6~16) (uh’ nth)l,szh - (u, Wx)l,!)(v) .
Furthermore, we have
(6.17) (X + q" Vmw,)o.0. — (2 + q(v), VW.)o.00) <

< I(I + q", VW — Vw,)o.0, + (2 + ¢", VW,)0.0, —
— (T + 4", Yw)oq, + (2 + 4" VW06, — (2 + q(v), VW.)o,00)| =
< 1+ 4 V(mwe = w))oal + (2 + 4" Vo g,
+ |2+ 4 Vw)o6., — (2 + 9(v), ¥W)o.00)| = Tt + Tzn + Lz -
Using (4.2) and (6.12), we can write .

+

(6-18) Iy = (”Z“o,nﬂ + ”’-1"“0,9,1) “nhwx - Wx"1,n,, -0,
for h — 0, .
(6.19) Loi = (|Xo.2, + [4]0,2) [V¥slo.00-c = 0

for m — o0, h < ho(m), h - 0.
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Finally, making use of (4.3), we obtain
(6.20) Ly < |2 + ", V)06, — (2 + 9(v), VW.)o,6,.] +
+ |2 + 9(0); VWo,em-6l =
= 1(q" = q(v), Vw,)o,c,.| + |(Z + 4(v), VW.)o,00)-6,,| = O

for m —» o, h < hy(m), h - 0.
Combining (6.17)—(6.20), we deduce for h — 0

(6.21) (T + 9", Vo,w)o.0, — (4 + q(0), VW, )o.00) -
We also have
(6-22) I(f , TW)o.a, — (/s Wx)o,.o(v)l =

é I(fa W, — Wx)O,Q,.' + I(fa Wx)O,Qh - (f> wx)O,Q(v)I é
< | £llo.0l mwe — wilo.2n + I(/: W.)o, amawy| = 0

for h — 0, where (6.12) has been used.
Passing to the limit with h — 0 in (6.10) and using (6.16), (6.21) and (6.22), we
derive the equation

(4, w100y = (1 + q(0), VW.)o,00) — (/s W)o,00) -
Passing to the limit with » — 0, we obtain
(“’ W)I,Q(v) =@+ Q(U)’ V“’)o,n(v) - (f’ W)O,Q(u) >

i.e., (3.4) is fulfilled by the restriction uo()-
The space V(;) is weakly closed in H'(£;). Since @, € V(2;,), u € V(2;) follows
and u|o(,) € V(v). The uniqueness of solution of (3.4) implies the assertion (6.6).

Lemma 6.2. Let the assumption of Lemma 6.1 be satisfied. Then a subsequence
{h}, h - 0, exists such that

Z3i(q"(vp)) > #3(q(v)) for h—0,
where q(v) is the solution of (3.2), #3, is defined by means of (6.3).
Proof. On the basis of (6.3), (6.2) we may write
(6.23) S () = J [+ ). Vi — ju] dx,
2n
where u, is the solution of (6.1).
Henceforth, we shall denote all subsequences of {h} by the same unchanged

symbol. .
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First we have
(%, Vun)o,0, = (f2 un)o,0, = (2 Vit)o, 0 + (/s )o,00| =
< (A Vu)o.g, — (2, Vii)o,om| + (A, Vil, — Vi)o o +
+ (/s tno.on = (s B)o.ow| + (s B — w)o00)| =
=1, + 1y + 1y, + 1y, -

Using (6.8), we obtain
Ly < (. Vit)o, scnown| = [0 Ao, scnown = 0-

From the weak convergence (6.9) it follows that

I,,-»0, I,,-0.
Furthermore, we have

I = H ﬁh”o,s’zd “fHO,A(!?;.,Q(u)) - 0.
Altogether, we can write
(624) (Z’ Vu’l)O,-Qh - (j’ uh)onh - (I, Vu)O;Q(u) - (f’ u)O,Q(u) .
Next we shall estimate (for q(v) = q)
[(qh, V”h)o.n,, - (q’ V”)O.Q(v)l = I(qha V“h)o,nh - (q, Vuh)O,Q;.l +
+ I(q, V“h)o..rz,, - (q, Vﬁh)O,Q(v)l + I(qa Vﬁh)o,g(u) - (q, V“)o,!z(u)l =
= Isy + Iy + I+
By virtue of Lemma 4.1 and (6.7) we may write

Is, = [4" = qfo.0, [un]i,0, = 0;

using also (6.8), we obtain

I, = ”qHO,A(Q;.,Q(u)) “ﬁh” 1,0, 0.
Finally,

I, -0

follows from the weak convergence (6.9).
We combine the latter three results to obtain

(6-25) (qh’ V“h)o,n,. - (q, Vu)O,Q(v) :
Making use of (6.23), (6.24) and (6.25), we arrive at

ffh(qh(vh)) - (I + Q(U), V“)o,g(u) - (f, “)o,mu) .
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By comparison of the limit with the right-hand side of (3.4), one finds the assertion
of the Lemma 6.2.

Remark 6.3. The problem (6.4) has at least one solution for any h.

Theorem 6.1. Let {v,}, h — 0, be a sequence of solutions of the approximate
problem (6.4). Then a subsequence {v;}, h — 0, exists such that

v;—»v in C([0,1]),

where v is a solution of the problem (1.0), i = 2.

The corresponding solutions qﬁ(v,;) of the approximate state problem (4.1) and
the solutions ug(q'(v;)) of the problem (6.1) converge in accordance with Lemma
4.1. and Lemma 6.1, respectively.

Any uniformly convergent subsequence of {v,} has the properties mentioned
above (the limit is a solution of (1.0) a.s.0.).

Proof. Consider an arbitrary 5 e %,, and a sequence {r,}, h — 0, such that
N € Ung, 1, — 1 in C([0, 1]) (see [1] — Lemma 7.1).

Since %,, is compact in C([0, 1]), a subsequence {v;} and v € %, exist such that
o" - vin C([0, 1]).

By definition, we have (see (6.3), (6.4))

(6.26) (o) < Ji(na) VR

Applying the Lemma 6.2 to both sequences in (6.26), we arrive at

F3(a(v)) = 72(q(n) -

Consequently, v is a solution of (3.5), which is equivalent with (1.0). The rest
of the Theorem is obvious.

7. SEVERAL REMARKS ON THE NUMERICAL SOLUTION

To solve the approximate optimization problems (5.1) and (6.4), respectively,
one has to apply some algorithm of nonlinear programming (see [10], [11] et al.).
It is well-known, that an efficient algorithm requires the knowledge of the gradient of
the cost functional.

To calculate the gradient, one can use the method of an adjoint problem. We shall
sketch the latter approach briefly on the example of the problem (5.1).

We may write

qh = Z le//j,
i=1
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where {i)’}] are the basis functions of the space S,, x; are real coefficients and denote

v(ih)=v;, i=0,1,....,N.
Then
£HG@) = il x() = I0), veR™

and the approximate state problem (4.1) takes the form of the following system
of n linear equations
(7.1) A(v) x = F(v)
(see [7] — Lemma 2.2).

The problem

(72) AW & = 2 (v, xv)

is called adjoint to (7.1). It is not difficult to derive that

V) = 2 o x(w) + [%]Tf - [%ﬂ x(v)]T Z,

where ¢ is the solution of (7.2).
The matrices

%y dF  dA(v)
ov’ dv’  dv

can be assembled from “local” increments, i.e. from those parts connected with
single triangular elements. For details, see e.g. [9], where an analogous optimization
problem has been solved.
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Souhrn

OPTIMALIZACE OBLASTI V ELIPTICKYCH ULOHACH
DUALNI METODOU KONECNYCH PRVKU

IvAN HLAVACEK

VySetfuje se uloha najit optimdlni ¢dst hranice oblasti pro kombinovanou okrajo-
vou tlohu s Poissonovou rovnici. Utelovy funkciondl je bud (a) vnitini energie, tj.
Dirichletiiv integrdl nebo (b) norma vn&jsiho toku hranici.

K numerickému feSeni stavové ulohy se uZivd dudlni variaéni formulace — pro-
stfednictvim gradientu feSeni, a prostory solenoiddlnich po ¢dstech linedrnich funkci.

Dokazuje se existence optimdlni oblasti a nékteré konvergenéni vysledky.
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