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I. NOTATION AND OVERALL ASSUMPTIONS

M will denote a Borel measurable function M: R? - R? or a function M: Z7 — R?,
where ZP is the set of all integer points in RP. M is assumed to be unknown; it is,
nonetheless, observable at integer points. More precisely, at each point x e Z”
and at any time-instant n € N, an observation can be made yielding M(x) + ¢,(x),
where e, = (e,(x), x € Z?) is a p-vector valued random function on Z” such that e,
n e N, are independent, and E e,,(x) =0, xeZ?, ne N. If all the random functions
e, n € N, have the same distribution, we shall consider them as copies of a random
function e = (e(x), x € Z*).

We assume that the equation M(x) = 0 has a solution 0, if R? is the domain
of M; our aim is to approximate 6 by integers, i.e. to find a cube with intcger vertices
containing 0. If, however, Z? is the domain of M, then it would not be realstic to
postulate the existence of a solution of M(x) = 0 in Z” (though we do not exciude
this possibility). A more natural formulation of our goal is to find the point 6* € Z?,
that realizes min {IM(‘(}I :x eZ.

Iterative procedures, which materialize the just formulated aims and are nonpara-
metric both with respect to M and to the distribution of the e,’s, will be called pro-
cedures of integer stochastic approximation (including related procedures, as appro-
ximating the point of the maximum of a function M : R” — R! by integers).

2. ONE-DIMENSIONAL PROCEDURES OF INTEGER STOCHASTIC
APPROXIMATION

In this section, we give a review of various approaches to integer stochastic appro-
ximation and a few comments on them.

Derman-type procedure. Assume M is defined on R', 0 is its unique zero point;
let ¢,, n e N, be all distributed as e = (e(x), x € Z'), let P(M(x) + e(x) = 0) = 0,
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xeZ'. Denote p, = P(M(x) + ¢(x) > 0), x€Z'; assume that p, is nondecreasing
on Z' and such that

Pror-1 < Pro1 = 3 = Proj+1 < Proj+2 s

where [0] denotes the integer part of 6. Choose X, as an arbitrary integer; for
n e N put
Xn+1 = Xn - Sign (M(Xn) + en(Xn))

and define 6, as the most frequent value among X, X,, ..., X,, if this is uniquely
determined, or as the average of such values, if not. Then we have

(1) P([0] < 0, < [0] + 1eventually) = 1.

Remark. Assume M is nondecreasing everywhere and strictly increasing in
[0 - 1,0+ ]]; let the random variables e(x’) be identically distributed for all x € Z!,
with a symmetric positive probability density function. Then the convergence asser-
tion (1) holds true.

Alternatively, assume that Z,, ne N, are independent identically distrituted
random variables with the distribution function F strictly increasing in [0 — I,
0 + 1], 0 being the unique median of F. Let 1 .. x € Z', te the indicator of the
event in the brackets. Choose X; € Z' arbitrarily and put

X,+1 =X, — sign (][z,,gx,.] — %), neN.

Define 0, as above. Then the assertion (1) holds true. (To sec that, we have only
to identify M(x) with F(x) — % and e,(x) with 1;; <.y — F(x). This is actually the
case considered by Derman (1957). The proof of our version of his result is, however,
identical.

Mukerjee's procedure. Assume M is defined on R', sup,.o_, M(x) <0, inf,.4,
M(x) > €, Ve > 0. Let ¢, neN, be all distributed as e = (¢(x), x € Z'); define
G(1) = sup, P(le(x)| = 1), assume G(1) > 0 for t —» oo, [§* 1|dG(1)| < co. In the
first step, choose integers X, X,, ..., X, arbitrarily; observe M at these points,
denote the observations by Y, Y, ... Y, (ie,Y;=M(X,) + eX;) After
n steps, let (X,, X,), ..., (X,,. ¥;,) be all pairs of observational points and observa-
tions obtained up to time n. Define M, (x) for xe{X,, ..., X,,} as the isotonic
regression of Y on X, i.e., as the Icastsquaresfit of the observed values subject to the
constraint that M,(x) is nondecreasing. Extend M, to a continuous polygonal non-
decreasing function on R'. Denote by X, and x,,,, the minimum and maximum
of {X\,X:,..., X, }. Put 0, = xp;, — 1 0r 0, =x,, + 1, if M(x) is positive or
negative everywhere; put 0, = (a + b)/2, if M (0) N [Xmins Xmax] = [a, b], possibly
with a = b. In the (n + 1) st step, take an observation at 6,, if 6, € Z', or two ob-
servations, at [0,] and [6,] + 1, if 0, ¢ Z'. For this procedure, the assertion (1)
holds true again, as proved by Mukerjee (1981).
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Robbins-Monro procedure applied to the interpolated function and rounded off.
Assume M is defined on Z' and satisfies either

30: M(0) =0, M(x) <0Vx <0, M(x)>0Vx>0

or
30" :M(x) < M(0) <O <M +1)<MX)Vx <0, x >0 +1,
|M(0)] + |M(0" + 1)|.
0*, the point of the minimum of |[M|, equals 0 in the former case and equals 0 or
0" + 1 in the latter case, according to whether [M(0')| < |[M(0" + 1)| or vice versa.
Assume M?(x) + Eel(x) < K(1 + x?), xeZ', K a positive constant. Let U,

n e N, be random variables, uniformly distributed on [0, 1], all U,, e,, n € N, inde-
pendent. Define M(x) on R! as the linear interpolation of M, i.e.

M(x)=(1 —x+ [x)M([x]) + (x = [x]) M([x] + 1), xeR'.

For each x e R' and neN, define an observation M(x) + ¢,(x) in either of the
following two ways:

(i) take observations at points [x] and [x] + I and put
M(x) + é,(x) =
(0 DD M) + D)+ (c— DM@ + 1) + af(x] + 1);

(ii) take one observation at point [x] or at point [x] + 1 according to whether
U, 2 x — [x]orU, < x — [x], and put

M(x) + &,(x) = lw,>c-pn(M([x]) + el[x]) +
+ L, <e-penM([x] + 1) + e,([x] + 1))

Choose an arbitrary integer as X ;. For n € N define
Xpo1 =X, — g(1\7(X,,) + ¢é,(X,)), a > 0constant .
n

Finally, define 0, as that of the two points [X,] and [X,] + 1 which is nearer to X,
Then we have
P(6, = 6* eventually) = 1.

See Dupac, Herkenrath (1982) for the proof (in a little different set up).

Remarks. In fact, all three procedures have been studied for a more general
lattice of points {a + hn, n € N} for some a € R', h > 0; the third method also for
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a non-equidistant lattice. Here, we have confined ourselves to Z! for convenience.
Moreover, Mukerjee has proved his result under the assumption that M"(O) is
a finite interval, not necessarily a single point. However, both the Derman-type
procedure and the interpolated and rounded off Robbins-Monro procedure can be
modified so as to cover this situation as well.

Mukerjee also pointed out that in the Derman-type procedure some fraction
of observations is necessarily taken far away from 6 as n — oo, owing to the fact
that (X,, n e N) is a Markov chain on Z' with all states recurrent and non-null,
whereas in his method this loss of efficiency is not incurred. Infact, he proved not
only P([0] =0, <[0] + 1 eventually) = 1 but also P([0] < X, < [0] + 1 even-
tua]]y) = 1. Let us point out that the third procedure possesses the latter feature
as well, with [0] and [6] + 1 replaced by the two successive integers, in which M
changes its sign.

The error probabilities P(6, ¢ [[6], [0] + 1]) or P(0, + 6*) could provide a useful
information about the performance of the listed procedures. However, the only
result known to us is their exponential rate for the third procedure, i.e. P(B,, + 9*) <
< e, neN, under some additional assumptions; see [2]. From the algorithmic
point of view, the third procedure is memoryless (in the one-dimensional case),
while the first two procedures are not.

The idea of interpolating and rounding off has been applied also to the Kiefer-
Wolfowitz procedure for approximating the point of the maximum of a function
R' - R', see Herkenrath (1983). A Derman-type procedure applied to the same
problem has been investigated by Kirchen (1982).

3. A MULTIDIMENSIONAL PROCEDURE

In [2], Sect. 5, an attempt has been made to generalize the Robbins-Monro
interpolated and rounded off procedure to the multidimensional case. An extension
of this result will be given now, and at the same time, an error made at the cited

v place will be corrected. Some lemmas on minima of quadratic forms on integer
points will be made use of; they are listed separately in Section 4.

We shall confine ourselves to the two-dimensional case for convenience; see also
the remark at the end of this section.

We introduce the following notation: For x € R?, x = (xy, x,)", the points ([x,],
LD ([xa ) [x2] + DT ([xi] + 1, [x2]D" ([xi] + 1 [x2] + 1)" will be denoted
by x', x?, x*, x*; the products (1 — x; + [x;) (1 — x; + [x2]), (1 — x; + [x(])-
A2 =[], (o= D (0= x4 ], (o= [a]) (32 = [x2]) by e g,
%2, ut. The closed sphere with a center x and a radius r will be denoted by S,(x);
the square with sides [[x,] — R, [x,] + R + 1] and [[x,] — R, [x2] + R + 1]

by Qk(x). We shall drop the subscript if R = 0. Hence, Q(x) is the unit square with

vertices x!, x2, x3, x*.
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Let M be either M: R*> — R? (observable, however, at the integer points oaly)
or M:Z* —» R2. Assume

(N M(x)| < K(1 + |x]), Elex)]* = Ki(1 + |x]*),

for all x € Z* and some K > 0, K, > 0. Define the interpolated function M by
4
M(x) =Y ©iM(x*),, xeR?.
k=1

For each x € R* and n e N define an observation M(x) + ¢,(x) by the following
rule #: Take observations at points x', x2, x*, x* and put

M(x) + é,(x) =k€élx§(M(x") + e,(x4)).

Choose an arbitrary X, € Z* and put

Xpu1 = X, — S(M(X,) + &(X,)), neN,
n
with a > 0 constant.

Assumption A(R). There is 0 € R* and an r = 0 such that
(2) inf {M(x)"(x = 0):x¢S,,,(0)} >0, Ve>0.
R denotes the smallest nonnegative integer such that S, (0) = Qg(0)for somee > 0.

Theorem 1. Under (1) and A(R), we have

P(B e int Qk(X,) eventually) = 1.
Define
4n 4n

(3) O, =arg min{|}) Y, l[gi:x,vk]” Y lp=x)

15ks4 i=1 i=1
where (¢;, Y;), 1 £ i < 4n, are pairs of observational (integer) points and the corres-
ponding observations (i.e., Y, = M(E) + e(&), i=4j—3,...,4j,j=1,....n)
made up to the time n. Any of its elements may be chosen for ©,, if the “arg” consists
of more than one point; the minimized ratio is considered to be + oo, if its denomina-
tor is 0.

Recall that 0* = arg min |M(.\')|; we will assume that 0* is a single point.

Assumption B. 6* € {0', 07, 0°, 0*}.
Theorem 2. Under (]), A(0) and B, we have

P(®@, = 0* eventually) = 1.
First we give a lemma.
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Lemma 1. Let M : R? —» R” be BP-measurable, let &, = (&,(x), xeR?), ne N,
be B" x §F,-measurable p-vector valued random functions, where §, = c{é(x),
xeR" 1 < k < n}, & independent of §,_;, Eé(x) =0, xeR? neN. Assume
there is a € R” and an r = 0 such that

inf (M(x)"(x = 0):x¢5S,,,(0)) >0, Ve<O;

further assume

|M(x)| = K(1 + |x]).

Ele,(x)|* £ K,(1 + |x]*), xeR’, neN.
Lcl X, be arbitrary, X,HL1 =X, — a,(M(X,) + &(X,)), neN, with constants

a, > 0, La,,— + 00, Za < + 0. Then we have

n=1 =
P(X, € S,.,(0)eventually) = 1, Ve >0.

Proof of Lemma 1. Assume § = 0 without loss of generality.
Put V(x) = (|x|* = r*)? 1>y Find L, V(x) = E(V(X,.,) — V(X,)|X, = x), the
generating operator of the Markov sequence (X, n € N). We easily get

L, V(x) < azK(l + V(x)) — da,(

(Ix|* = r2) M(x)" x 1y +
)_

- 4an(lx|Z - rZ) E(én(x)r X ][[x—.a,,lfl(x)—a,,é,,(x)]>r]‘) 5

2 .2
I l - !][|X—Bnﬂ(x)~ané,‘(x)|>r] - ,[le>rl

and, after some calculations, we verify that both the two last terms on the right are
bounded by aZK(1 + V(x)) Then the assertion of the lemma immediately follows
from Theorem 2.7.1 in Nevel’son, Has’'minskij (1972). .

Proof of Theorem 1. As follows from their definitions, M, 8 and &, ne N,
satisfy all assumptions of Lemma 1 (playing the role of M,  and é,)- Hence. P(X, €
€5,..0) eventually) =1, V,.,, which (ntails P(X,eint Qg(8) eventually) =
_and, in turn, P(0 € int Qx(X,) eventually) =

Proof of Theorem 2.From Theorem 1, we have P(X,, € int Q(f)eventually) =
Thus, observations are taken only at points 8, 1 < k < 4, eventually, the arithmetic
averages of their outcomes tend to the corresponding values M(6), 1 < k £ 4,
respectively, and this enables us to find 6* in a finite (though random) number
of steps.

Remark 1. Let 0 have the same meaningas in(2). Let there be a & > 0.known
to us, such that for each j = 1, 2, the following implications hold: 8; — [0,] < & or
0; — [0;] > 1 — simplics 07 = [6;] or 07 = [0,] + 1, respectively. Modify the defini-
tion (3) of O, as follows: If X, is nearer than & to a side [to two sides] of the square
Q(X,), then take the minimum in (3) only over the vertices of that side [the common
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vertex of those two sides]; otherwise let the definition (3) unchanged. Then the asser-
tion of Theorem 2 remains valid, this time under (1), A(5, — J) and B, where A(8, —3)
stands for “either S,,,(0) = Q_4(0) or S,.,(0) = 040) — Q_40)".

Remark 2. Both Theorems 1 and 2 as well as Remark 1 remain valid, if the rule
R is replaced by the following rule £, : Take one observation at only one of the points
x*, 1 < k < 4, chosen with the respective probabilities x%; i.e., define M(x) + &,(x)
as M(x*) + e,(x*) with the probabilities x%, 1 < k < 4.

In what follows, F will always denote a symmetric positive matrix (not depending
ON X), Amin and Ap,, its eigenvalues, H a nonlinear mapping R?* — R?, o the Euclidean
distance in R?, 0Q the boundary of Q.

We will give sufficient conditions for A(R), A(0) and B to be fulfilled.

Lemma 2. Let M:R? > R? or M :7%* - R?, 0eR2 For an r > 0 and each
x ¢ S,(H) let be either

4, M(x*) = F(x* — 6) + H(x"),
where

|H(x")| < min(max {r, 00, O(x))} — &), 1S k<4,
(5) M(x)T (x* = 0) > ¢,

max lM(x"') - M(x")l |x" — 9| < M(xT(x* - 6) — %1, 1<k<4,
1<k’<4

for some g, < 0. Then A(R) is fulfilled with 8 = 6.

Note that (4,) may be valid for some points and (5) for the others. (It is, however,
impossible to satisfy (5) for x = 0.) The inequality in (4,) says how small the non-
linear part of M should be; (5) requires the projection of M(x") onto x* — 0 to be
positive and the differences between M(x*) and the values at the other vertices of
Q(x) to be less than the length of that projection. Notice that,in general, the restricti-
veness of both conditions (4,) and (5) decreases for points more remote from 6.

Let us specialize for A(0).

Lemma 2. Let M : R*> > R*> or M : Z*> > R?, 0 € R*. Let M(6*) = F(6* — 0) +
+ H(6), |H(0")| < Amin 0(0, 2Q(0)), 1 < k < 4. Further, for each x € Z*, x * 0",
let either (4,) or (5) hold true. Then A(0) is fulfilled with 6 = 6.

Remark 3. For all xeZ*( Q,(0) let M(x) = F(x — 0) + H(x), |H(x)| <
< Amin|® — (0, 2Q(0))| for some & > 0. Further, for all x € Z* except those which
are left lower vertices of unit squares whose union is Q,(6), let either (4,) or (5)
hold true. Then A(8, — 6) is fulfilled with § = 6.
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Lemma 3. Lert M :R* > R?> or M :7*> > R?, e R* Let M(x) = F(x — ) +
+ H(.\'), xeZ?% ).n,ax/).min <1+ V/2;
(6) arg min |F(x — 9)] = arg min |[F(x — 0) + H(x)| .

xel2 xed 2

Then B is fulfiled with 8 = 0.

The condition (6) means that the presence or absence of the nonlinear term in M
does not influence the location of the minimum of M over the integer points. Note
that no other condition is imposed on H; thus, Lemma 3 can be combined in an
obvious manner with Lemma 2’ (or with Remark 3).

Proof of Lemmas 2, 2’ and 3. Take an x* ¢ S,(6). Assume (4,) holds true for
this x* and hence for all x e Q'(x*), where the prime means “without the upper
and right sides”. The linear map F(x — 6) remains unaffected by linear interpolation;

4
that is, M(x) = F(x — 0) + H(x), Vx € Q'(x*), where H(x) = ) x% H(x*). Hence
k=1

M(x)" (x = 0) 2 (Jgwin|x — 0] — max [H(x")|) [x — 0], Vxe Q(x*),
which entails o
M(x)"(x — 60) >n forall xeQ'(x*)— S,,(0), ¢>0,
n=mn)>0.

Now, assume that (5) holds true for x*. Then we have, for all x € Q'(x*) — S,(0),

M(x)" (x — 0) =k,4;1x’;' M(x"')iil;ff((x" - 0) gkglxi{M(x")T (x*—0) -

— max [M(x") = M(x*)| |x* - 6]} > o
1<k’<4 2

Lemma 2’ and Remark 3 follow similarly. Lemma 3 is a consequence of Lemma 2
of Section 4.

Remark 4. All the results of this section hold true for p > 2 as well, with obvious
notational changes only; Lemma 3, however, only in case that our Conjecture (of
Section 4) is true.

4. MINIMA OF QUADRATIC FORMS ON INTEGER POINTS

Let ® < R2*2 denote the class of all symmetric positive matrices; let G = (: Z)

be an clement of G, let A = Agqy/Amin be the ratio of its eigenvalues. Let fg o(x) =
=(x - 0)T G(x — 0) be the corresponding quadratic form, centred at 6. Let|x|,,
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denote the maximum-norm in R?, j.e., |x|,, = max {|x,|. |x,|}. For an f: R? - R!
possessing a unique minimum (and possibly a nonunique one over Z%), consider the
inequality
(1) larg min f(x) — arg minf(x)lGc <1.

R: z

x:[R2 xel.2

We say that (1) holds true, if it holds true for each x € arg min f(x).
xel?

Lemma 1. (1) holds true for every f€ {f¢ o : 0 € R*} if and only if|c| < min {a, b}.

Lemma 2. (1) holds true for every fe{fg,:Ge®. A < Ay, 0 R?} if and only
it Ay = (1 + 2)%

Proof of Lemma 1. Denote I = [0, 1] x [0, 1], 1* = {(0,0)", (0, )" {1.0)".
(1. 1)7}. The property (1) is obviously invariant under the transformations x — ¢
—T(x—0),T= <—(]) ?) T= <? :)) i.e. under replacing G by TGT, i.e. under
replacing ¢ by —c¢ andfor intefchanging a and b. It is also invariant under a shift
X x + ¢ by an integer vector &. Hence, for the proof it is sufficient to consider
a=b,c=0,0el?

(i) Assume (0<)c¢ < b(<a). Divide Z? into four parts, Z, = {x:x; = 1, x, = 1},
Zy={xix; 2 Lx; 0}, Zy={xix; £0,x, 0}, Zg={x:1x, 20,x, 2 1}.
Obviously, f; o isincreasing in Loth variables x;, x, in Z; and decreasing in Zj;
hence, min f; o(x) = f5 (1, 1) and ‘min f¢ o(x) = f¢ (0, 0). In Z,, the function f; ,

xeZ, XeZy
is everywhere increasing in the direction of (1, —1)". In fact, /g 4(x; + 1,x, — 1) —

— foo(X1x3) =2(a = )(x; — 0,) = 2(b — ¢)(x, = 0,) + (@ = ¢) + (b — ¢) >0,
Vx € Z,. Hence, it remains to investigate the points x € Z, with x; = 1 or x, = 0.
For x; = 1, fg 4 is increasing in the direction (0, —1)” for all x, £ —1 and any 0,
and also at the point x, = 1, x, = 0, if 6, = 1/2 or 0, = 1/2 (as is easily seen
from fg o(1, x; — 1) — fg4(1, x2) = b — 2b(x, — 0,) — 2¢(1 — 0,)). In the remain-
ing case (0; < % for both i = 1,2), however, f;o(1, —1) < f5.(0,0). Similarly for
x; = 0, f 4 is increasing in the direction (1, 0)" for all x; = 2 and any 0, and also
at the point x; = 1, x, = 0, if ; £ 4 or #, < 1. In the remaining case (6; > %
for both i = 1, 2), however, fg 4(2. 0) < f4(1, 1). Hence, min fg 4(x) = min fg o(x).

).

2
2

xeZz xel2
As the situation is quite analogous in Z,, we finally get min fg o(x) = min fG,,,(x
xed 2 xell2
At the same time, the strict monotonicity (fulfilled in all the above cases) implies
min fg4(x) > min fg ¢(x). Hence, (1) is proved.

(ii) Assume (0<) b = ¢(<a). To find a 0 for which (1) fails to hold true, it suffices
to put 0 = (4, 0)". The values of fg, at (0,0)" and (1,0)" are then equal to }a, at
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(0,1)" and (1, —1)" equal to }a + b — cand at (1, 1)" equal to a + b + c. Hence,
min Jgo(x) = f6.o(0, 1) = fgo(l, =1) = min fg4(x), i.e., (1) does not hold true.
xell2 xeZ2-12

Remark. The strict inequality min f; (x) > min fg4(x) holds true, if max .

xell2 xeZ2-12
-{a, b} > |c| > min {a, b} and if, at the same time, max {a, b} + 2|c|.

To verify that, assume again a = b, ¢ = 0 without loss of generality and put
0=(3+¢&0)Tifa>2co0r0=(—¢0)7if a <2 with ¢ > 0 small enough
to avoid a minimum at (1, 0)” or at (0, 0)7, respectively. Then, in either case, we have
min fg o(x) = f6.0(0, 1) < fgo(1, —=1) = min fg o(x).

xell2 xel2-12

Proof of Lemma 2. The property (1) is invariant also under the mapping x —
— 0+ k(x — 0), k > 0, i.e., under replacing G by k2G; this does not change the
ratio A. None of the maps listed at the beginning of the proof of Lemma 1 changes
it, either. Hence, we can confine ourselves to a = b, ¢ = 1, 6 € I?, without loss
of generality. We have to find the maximal A, such that A < A, = 1 < b; that is,
we have to find min {4: Ge &, ¢ = 1,a > 1 2 b}, or explicitly

min{a+b+"/[(a~b)2+4]:b51<ab}.
a+b—J[(a-b?+4]

An easy calculation shows that this is realized by a = 3, b = 1, and is equal to
(1 + /2)>. (The number 6 has been erroneously given as this minimum in [2].)
For the “only if” part of the assertion, the same example can be made use of as
in the proof of Lemma 1.

Lemma 3. Consider the class {fgo: Ge ®, 4 < (1 + /2)*, 6 € R*}. For every
0 > 0, there exists a maximal number Az with the following property: If A < A
and the distance of 0 from a side [two sides] of the square Q(O) is less than 6, then
arg min f¢ o(x) is equal to one or both endpoints of that side [to the common end-

xel?

_ point of those two sides].

Proof. Again, assume a = b > ¢ = 1, 0 e I?, without loss of generality. Intro-
duce D =4(a — b), E =4(b — 1). Consider the set {0:f;4(0,0) = f5,40, 1)};
it turns out to be the line 6, = 4 — 0,/(1 + 2E). Similarly, {6: f 4(0, 0) = f¢ (1, 0)}
is the line 0, =%+ D+ E — (1 + 2D + 2E) 0, etc. Denote the intersection
of both the lines mentioned as (&, 5)"; our assumptions imply that 0 < 5 < &
As the situation is quite symmetrical with respect to (0, 0)" and (1, 1)”, the following
holds true: If the center 0 of the quadratic form f 4 lies at a distance smaller than g
from a side of the square I?, then arg min f¢ 4(X) equals one or both of the end-

xel?

points of that side. Now, it remains to find for 0 < & < 4 a A, such that 4 < A; =
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=1 >0d,1e,n=0=/1A 2= A; In other words, we have to find
(2) As=min{A: D2 0,E=0,n =9},
where — as immediately follows from their definitions —
2
A= ADE)=1+ SN U0
I + D +2E— /(1 + D?

n = )](D E) = _E(I+£D+2E)
o 2(D + 2E + 2DE + 2E?)

The set defined by the constraints in (2) can be rewritten as

(3) {D >0.E20:0<E< %[- <;{j§ + D> + Ja(D)]}’

where
— S 2 N
Jo(D) = / ] 4(? + D) + ——40— D|.
Vi\2 - 4o 1 —25

As (8[CE) A(D. E) < 0, V), g, the minimum (2) must lie on the boundary of the set (3),

that is, A; = min LyD), where
Dzo

1 1 — 46
LyD)=A(D,~| ==+ D)+ JyD)|).
=423 - (25 7))
The equation

iLB(D) =0 reads DJ, =1 L3z
dD 2 — 46

it has a unique solution D, on the set {D = 0}, which can be found as the unigue
real positive root of the cubic equation

41 — 20) D* + 20D* — (3

D — D?*:

85) D — (1 —28) = 0.

Then A, = Ly(D,).

For a few values of 4, A; are tabulated in Table 1, together with their square
roots (as the matrix F of Section 3 plays the role of G'? of Section 4). With
a little bit of inconsistency in notation, we have used the symbol 4, for (1 + /2)?

here.

Table 1

B Ay A4/2
0 5-8284 2:4142
0-01 5-7185 2:3913
005 52794 2:2977
0-1 4-7318 2:1753
0-2 3-6435 1-9088
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The following assertion seems plausible to us. although we do not-have a formal
proof.

Conjecture. Lemma 2 remains valid for any integer p = 2 instead of p =2
(4 denoting again the ratio of the maximal and minimal eigenvalues of G).
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Souhrn

O CELOCISELNE STOCHASTICKE APROXIMACI
VAcLav DuUPAC, ULRICH HERKENRATH

Funkce M :R — R necht je pozorovatelnd, s experimentdini chybou, pouze
v celoCiselnych bodech; jinak neni zndma. Iteracni neparametrické metody pro
hleddni nulového bodu funkce M se nazyvaji metodami celoCiselné stochastické
aproximace. Jsou popsdny a vzdjemné porcvndny tfi takové metody: Dermanova,
Mukerjeeho a autortt ¢ldnku. Je navriena a vySetfovdna dvojrozmérnd analogie
tietiho z téchto piistupli; je vyslovena domnénka o jeho vicerozmérném zobecnéni.
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