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1. INTRODUCTION

Singular and/or degenerate partial differential equations arise in an extremely
wide variety of physical situations. Problems with singularities or degeneracies in the
steady state part of the operator describe transonic flow in aerodynamics. They can
also arise in as simple a context as when the Poisson equation is written in polar
coordinates:

r2u,(r, 0) + ru(r, 0) + ugy(r, 0) = r* f(r, 0).

Associated time dependent problems also occur. For example, the equation describing
the vibrations of a homogeneous rod fixed at one end is

62

=2 (xZ (), 0sx<1, 120,
or ox\ 0ox
(see pp. 390—391 of Courant and Hilbert [7a]).

In this paper time dependent partial differential equations with degeneracies
in the time variable are studied. Such equations frequently occur in fluid dynamics
(see Weinstein [22a], Ames [1] for examples). The equation of this type about
which the most is known is the Euler-Poisson-Darboux equation

2p + 1
t

u, + du =0, u(x,0) = uy(x), u(x,0) =0,

1') The research described herein was supported in part by N. S. F. grant MCS 8202025.
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which describes the isentropic flow of a perfect gas (see Ames [1] pp. 83—90).
A similar degeneracy can occur if diffusion with a time delay effect occurs. The
simplest effect of this type is perhaps averaging, giving

ufx, 1) = }Jtdu(x, 1)dt, u(x,0) = up(x).

This averaging leads to the initial value problem
tuy, + u, = Adu, u(x,0) = uyx),

which is of parabolic type at 1+ = 0 and hyperbolic type for ¢ < 0. In this paper
a class of equations similar to the above is analyzed. Regularity results for the
homogeneous equation are proved, then a method of approximating the solution
to the inhomogeneous equation is analyzed.

The numerical method chosen in this paper for approximating the solutions
to such equations is the usual, semidiscriete finite element method. Specifically,
the semidiscrete finite element method is examined for the linear

(1.1) (tu), = —Lu + f(x,1), xeQ, 0Zt<T,
and semilinear
(1.2) (tu), = —Lu + f(x,t,u), xeQ, 05t=T,

degenerate hyperbolic equations. Here L denotes a second order uniforly elliptic
operator.

N - -
—Lu= ) o aij(x)ili) —ag(x)u, xeQ,
ij=1 0X; Cx;

where a,, a;; = a;; are smooth functions on @, a,(x) = 0 and
N N
" e2
N 2 ay(x) Gl z ey &
i, j=1 i=1

holds for some « > 0 and all ({,, ..., {y) € R". Equations (1.1) and (1.2) are subject
to the boundary and initial conditions

(1.3) u(x,C) = up(x), xeQ, u(x,1)=0, xedQ, t>0,

where 0Q is assumed to be C,,.

Let S" be a finite element space of functions in W*!(Q) vanishing on 9Q. The
Galerkin approximation to (1.1) and (1.2) is a differentiable map U : [0, T) — S"
satisfying

(1.4) ((tU), v) + a(U,v) = (f,v) forall veS",
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where f = f(x, t) or f(U), respectively. Here (-, -) denotes the usual I*(Q) inner
product and a(', ) is the bilinear form associated with L: :

N .
a(u, v) =j [ Y a; fi (—:—b + aouv:ldx.
o

ij=1 IX; OX;

U(0) will be taken as an approximation to u, in S*. Also f(x, t, w(x, t)) will frequently
be abbreviated as f(w).

For the linear problem (1.1) the method (1.4) is shown to be stable in W>'! and
convergent to the true solution. When U(0) is picked as the “elliptic projection”
of u,, U converges to u in I? with optimal order.

The analogous convergence result is shown to hold for the semilinear equation
(1.2) when f'is globally Lipschitz. It is then whown that this condition can be weakened
considerably. That is, in one space dimension U will converge to u optimally when f
is only locally Lipschitz. It is shown that the same result holds in higher space di-
mensions when S" satisfies an inverse assumption that is typical of piecewise poly-
nomial spaces under standard smoothness conditions.

Cahlon [6] has considered a finite difference method for approximating the Cauchy
problem for the homogeneous equation of the form (1.1). He shows the method
to be stable and convergent. Moreover, he uses an efficient method of discretizing
the time variable by means of variable time steps. Genis [14] has considered finite
element approximations for the related Euler-Poisson-Darboux equations and derived
error estimates for the resulting methods.

Since the equation (1.1) is of hyperbolic-parabolic type, it is necessary to combine
ideas used to obtain estimates for hyperbolic equations (as in Baker [3], Baker and
Dougalis [4], and Dupont [10] with those used in parabolic equations, e.g. Douglas
and Dupont [8], Fix and Nassif [11.a], Zldmal [25] and Thomée and Wahlbin [22].
In a previous paper [16] superconvergence estimates for solutions to the Cauchy
problem were obtained. Here, energy type methods are used to derive error estimates
for Galerkin approximations to solutions of initial boundary value problems for
(L.1). (1.2), (1.3).

For simplicity of analysis of the numerical method the inner products occuring
in the Galerkin equations (1.4) will be assumed to be evaluated exactly and the finite
element space S" will be assumed to satisfy the boundary conditions of the continuous
problem exactly. In practice, neither of these conditions are fulfilled. However, once
the basic algorithm is analyzed under these assumptions the ‘‘pollution effects”
caused by these ‘‘variational crimes” can be analyzed as perturbations of the basic
method. Based on the work in the present paper, this was carried out in Layton
[16a] and rates of convergence were obtained when the finite element space consists
of isoparametric elements (not satisfying the boundary conditions exactly) and the
integrals in (1.4) are discretized by a suitable quadrature scheme.

For s = 0, WZ""(Q) will denote the Sobolev space of real valued functions with s
weak derivatives in I?. The norm on W?(Q) is defined in the usual manner and
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denoted by |- |, ... The L (@) norm will denoted by ||, and |- | will denote the [*(Q)
norm |- |, will denote the norm on W*""(Q). Also ,if Vis a normed space with a norm
||l and f: [C, T] — V, then f € L*(V) will mean that

esssup || f(1)], < o0 .
0<1<T

First, the continuous equation will be considered with a view to elucidating the
special behavior caused by the degenerate term in (1.1), (1.2). Then, the Galerkin
method for the linear and semilinear problem will be presented.

2. THE CONTINUOUS EQUATION

In this section the properties of the continuous equation that are relevant to its
approximation are studied. In particular, the regularity and smoothing present
in the homogeneous equation are analyzed. These properties are different globally
(0 =t < oo)andlocally (0 < 1, < t £ T < w) because of the hyperbolic-parabolic
degeneracy at t = 0.

The nature of this dichotomy is most easily understood in the context of the
Cauchy problem, as in Layton [16]. First, these results will be presented to motivate
and provide insight into the later results for the boundary value problem. Consider
first the pure initial value problem

(tufx, 1)), = u(x, 1), u(x,0)=uy(x), xeR, t=0.

If Fu = @(0), F~'w = w(x) denote the Fourier and inverse Fourier transforms
respectively, the solution to the above is given by

u(x, 1) = F~1(Jo(2 0%1)) io(0)) ,

where J, is the Bessel function of the first kind of order zero, (see formula (3.3)
of [16] for details). Since Jo(z) = O(z™'/?) as z (real) > oo, the above formula
implies that for t > 0, 4(0, 1) decays as |0| — oo faster than #,(6) and thus u(x, t)
“is smoother than u(x), (the precise amount of smoothness gained is given in Theo-
rem 3.2 of [16] for the Cauchy problem and in Theorem 2.2 below for the initial
boundary value problem).

The previous formula provides more insight if it is transformed back into the x
variables. Using the formula

5] ‘(aZ_ﬂZ)—l’ 0<ﬂ<d,
J Jo(ax) cos fx dx = { a=p,
0 10, a<B,

it can be calculated exactly. The solution to the initial value problem is then given by

u(x, 1) = K(x, 1) » ug(x), (convolution over R),
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where
202m)~ 1 (4 - X770 x| < 2002,

K(x,1) =<, 2112 =

0, 212 <

A graph of K(x, t) illustrates the dual hyperbolic-parabolic nature of the equation.
At 1 = 0, K is a ¢ function. For t < 0, K * u, gives the solution to the initial value
problem as a weighted average of uo(x) for —2t'/? < x < 2¢'/2. The weights con-
verge to delta functions at +2¢'/2 as t — o0. Thus, as t grows, the domain of depen-
dence of the continuous equation “‘converges’ to two points.

1“

|
i
[
|
|
|

-17/2

(4t)_~

p—

Xj(4t)’/2 X=L(4r)f/2

Figure 1. A sketch of 27! \/(2n) K(x, ) for r< 0.

5

VX

<

We note here in passing that if K is extended to be zero for t < 0 then K satisfies
(tK,), — 4K =9

in the distributional sense, and thus, a particular solution to (tW,), — dw = f is
given by K = f (convolution over (x, t)e B x R).

Next, the initial boundary value problem will be considered. Regularity of solutions
to the homogeneous equation of the form (1.1) is given for t < 0 and for ¢ > 0.
Abstract differential equations of the form (1.1} were studied by Bernardi [4.a]
and by Povoas [19.a]. In these works, regularity results for the inhomogeneous
equation are given in an abstract setting by (essentially) combining Duhamrl’s
principle with regularity results for the homogeneous equation.

Let {4;},., and {¢;},5, denote the eigenvalues (in nondecreasing order) and
eigenfunctions of the elliptic operator L. The eigenfunctions are assumed to be
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orthonormal in [*(Q). For —o0 < s < oo define the space

oy = (XA [ (e @) [)? < o}
J

(@) = [ve (@) |

Following [25], [5] it is easily seen that for an integer s = 0,
H(Q) = {ve W*(Q) | Dv=0and Q,j <s/2},

and that the norms ||, and ||, are equivalent on H'.

The smoothness conditions upon the coefficients of Lcan be considerably weakened
in the definition of H®. In fact, following Aubin [1] pp. 244—251, the interpolation
spaces can be defined provided only that L maps H' in a continuous and 1 — 1
manner onto H™'. For conditions ensuring this see Gilbarg and Trudinger [15].

Using these H* spaces, the solution operator to the boundary value problem (1),
(3} is shown to possess a smoothing property analogous to the one derived in [16]
for the Cauchy problem for the constant coefficient equation (tu,), = Au. Regularity
results. both global and asymptotic, for the time derivatives of u are also given. Also,
nofe that the dependence of the smoothness of u(x, t) upon the boundary conditions
of u, is also incorporated into this approach in the definition of the spaces H*(Q).

Theorem 2.1. Assume [ =0 and uye H(Q). Then a unique solution to (1.1),
(1.2) exists that is bounded as t — 0. That solution u(x,t) is in H**'*Q) for
1> Oand

[u(®)ll+ 172 < CE™ ¥ uos -

Proof. Let u be the solution to (1.1), (1.2) with f = 0. Expanding

w= S0 w0 = (5. 0L,

and substituting u into the differential equation gives
o0
Y [(ruj), + 2ule; =0.
Jj=1
Thus, u (1) satisfies the differential equation
(2.1) w4+ u; 4+ 2u; =0, uf0) given, j=12 ...

Problem (2.1) has a regular singular point at t = 0. The Frobenius-Fuchs Theorem
implies that the differential equation (2.1) has a unique solution that is bounded
as 1 — 0 and that bounded solution is analytic. Thus, u;(t) = w,(t) u;(0) where

wi(t) =1 +§'la,,t"



satisfies (2.1) subject to wj(O) = 1. Differentiating w; and plugging into (2.1) gives
the recurrence formula for a,

a, = _)'j’ Apyy = —)‘j(n + 1)_2‘1"’
from which a, = (—1), A}(n!)"? and

(=1 (407
ol = 5, LG
Since 4; > 0, one can s¢t z = 2./(4;t) to obtain the Bessel function J,(z). Hence,
wj(t) = Jo(2/4;1) and

) = 3 902 VA (). o) o).

It is known (see the Batemann manuscript Project [11]) that for [arg (z)] < — &,
Jo(z) is asymptotic to z~ /% cos (z — I'/4). Thus,
lofn)| < Crr3i v, j=1,2,3,...,

where C is a constant independen: of j.
Assuming u, e H*:

Uo =_Z uo,; @5(x) 5 |uols =_Z A
j=1 j=1

consider the H**'/2 norm of u(x, 1):

| < oo,

Jutx, f)l[mz—, AT (O] u(n) = (ulx, 1), 0))

Z +x/zlw 1)‘2 ]uojlz < CZ,PH/Z "”21 1/2|u ‘ <

< Ct VP u,|2 < (for 1> 0). ]

Note that the proof of Theorem 1 gives an explicit representation for the sofution
operator of (1.1), (1.2) when f = 0:

(22) u(x, 1) =§:1-’ o2 VA1) (o, @) 91()

where J, is the Bessel function of order zero. Naturally, when f (x, t) £ 0 one also
obtains and explicit representation for the solution operator of the inhomogeneous
equation from (2.2) by using Duhamel’s principle.

For numerical methods to converge rapidly it will generally be necessary for time
derivatives of u(x, 1) to be smooth. Regularity results for u, and u, (and higher
time derivatives if necessary) follow from the representation (2.2). Noteworthy is
the fact that Ilu,, 1)|| must below up as t — 0, but ||1u,(t)| will remain bounded.
This fact is reflected in the estimates on the discrete equations: only smoothness
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of tu,, (rather than u,,) can be assumed. The next theorem contains global (including

1 = 0) smoothness results, and smoothness results for 7 > 0.

Theorem 2.2. Assume f = 0, then for —owo < s < 00, the following hold:

lu()]ls = Clluofss -
Jud0), = €34 ugfssra s
()| = 0, as 10,
laun(0)s = Clluolls+z >
JruDlls = €72 uol s

where C is a constant independent of u, and t.

The following lemma is useful for the proof of Theorem 2.2 and follows easily
from the three term recurrence relation satisfied by Bessel functions and the known
asymptotic expansions of J, and J,, see Erdelyi, Magnus, Oberhettinger, and
Tricomi [11].

Lemma 2.1. For real z,

|Jo(z)| R !J{)(z)l , |J(,’(z)| < Clzl_”2 .

Proof. The known asymptotic expansions for Jo(z) and J,(z) imply that the
above holds for J, and J,. J, satisfies

205(z) = J_y(2) = Jo4(2) = =2J4(2),
so that J¢(z) is bounded by Clz| /2. J§ is given by Bessel’s equation
Jo(x) = =x71Jg(x) = Jo(x),
so that Jg(z) will also be bounded by C|z|~*/? for  real. |
. Note also that x™'Jg(x) is uniformly bounded for x real.

Proof of Theorem 2.2. The representation (2.2) immediately gives that

o0

ux, 1) = ,ZIJE)(z NA) 22 g s 9 (x)
=

"

ug(x, 1) = _21[13(2 JA) AT = 12212732 g (2 A1) ] ug; @(x) .
J

where ug ; = (up, @}).

A simple calculation with the series for Jo(z) gives that Jy(z) = 0(z) as z — 0
and Jg(z) = —1/2 + 0(z?) as z - 0. Hence it is evident that |u,(r)| must blow up
as 1 — 0 only provided u, % 0.
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Next, consider [u(1)]?;
lu®)]S = Z[Jo@ V) (it) T2 A g
Since x™' Jy(x) is uniformly bounded for real x, it follows that
[u]? = CJZ?f”l'o,f = Clluo3+, -
For the estimate with t < 0, Lemma 2.1 is used. Indezd,

fun)]? = ZJO(Z AP AT <
< c'z(;.jt)% AR < CO P uo|2 s -

Consider now | tu,(1)|,:

(2.3) [[eu ()] Z [J7(2At) 2; = 1[22)207 2 T2 7)) Bug ;<

<cC i Jo(2 /4;1)? ’+‘u§j+CZl”‘"1J0(2\,}t uj ;.
Since Jg(x) and x~' Jy(x) are uniformly bounded, it follows that
a0 < € max 555 537208, + Cman ¢ 100 5 7573, 5 Cluofi...
= e
For ¢ > 0,(2.3) and Lemma 2.1 give that
el 5 CLE L0729 508+ & ™ 0 ]
=

=< Ct—’”“o”fﬂ . O
Zldmal [23], [24] has shown that the time derivatives of the solution of the singular
perturbation problem
ew, + w, + Lw = f(x, 1), w(0), w(0) given,

have boundary layers at t = 0 as ¢ — 0. It is interesting that u and u, do not, but
that u,, (and higher time derivatives) do share this feature of the above equation.

3. GALERKIN APPROXIMATIONS: STABILITY AND (LINEAR) CONVERGENCE
S" will denote a finite element space. That is, S" consists of functions in

W?1(Q) that vanish on 0Q that are typically piecewise polynomials on a tringulation
of Q satisfying a smoothness requirement across the edges. S is assumed to have
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the following approximation property. Given we H' n H*,

i (b — 2] + b — ) S bl 1S5S
xeSh

First, the stability of the Galerkin method will be considered. There are two
situations where a systematic treatment can be presented: the autonomous nonlinear
equation and the forced linear equation.

First consider the autonomous nonlinear equation written in the convenient form

(3.1 (tu), = —Lu + F'(u).

The initial and boundary conditions (1.3) are also imposed. In this case the non-
increasing energy of the continuous equation is easily found to be

(3.2) E(u) = -L[t(u,)z — 2 F(u)] dx + a(u, u).

Thus, it is easy to see that when F(u) is non-positive the continuous equation is stable:
(0 =) E(u(t) < E(up), 0S5t <.

The Galerkin approximation shares this feature of the continuous equation.

Proposition 3.1. Let U be the Galerkin approximation to (3.1). Then
E(U(1)) < E(U(0)), 0=t < .

Thus, if F <0 the Galerkin approximation is stable in the same sense as the
continuous equation.

Proof. Set v = U, in the discrete equations for U. This gives

1d , .
(IUIH UI) + (Un U,) + ,;_E; (l(U, U) = (F (U), L",) R
or
d

a 2<0. d
dt

For the error estimates the stability of the method in the case of a forced linear
equation is particularly important. Since the stability result in this case follows
in much the same way as the above, the proof of the next proposition will be omitted.

Proposition 3.2. Let U be Galerkin approximation to (1.1'). (1.3). Then
t
U] + aU(D). UW) < a(U(0). U(0) + j 1£C. 9 ds. 0
0

Since, in the linear case, the error in the method satisfies an inhomogeneous
equation of the form (1.1), error estimates follow from the stability result in Proposi-
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tion 3.2. The next theorem asserts that the Galerkin approximation is optimal ta f'.
When U(0) is taken to be the elliptic projection of u,, optimality in L will also
follow.

Theorem 3.1. Assume u € L*(H"), u,, tu, e L*(H"~"). Then N
ma Ju = U], 5 [l + fudyos + ] + CU©) = ol

O0<t=sT :

Proof. Let w be the elliptic projection of u into S”, i.e. w satisfies a(u — w. v} = 0,
forallve S".

Define ¢ = U — w, n = u — w. It is known that 5 satisfies the estimate (see
Babuska and Aziz [2])

(33) | Din|| + n||Din||, £ CK|Diuf,, j=01,2,, 1<s=<r.
¢ = U — w satisfies the equation |
(1) ©) + ale, v) = ((tn),» v) + aln, v)
for all v in S”. Since a(y, v) = 0 this becomes
(3.4) ((t¢,)is v) + a(e, v) = ((1n,),, v), forall veS".
Applying the stability result (Proposition 3.2), with identification ¢ = U, (.. = f,
we obtain

(3.5) WMP+MMéCM©M+CﬂWmW®-

This inequality, (3.3) with s = r and the triangle inequality, [U — u| < |lo| + |n].
yield the theorem. O

One choice of the initial data U(0) is the elliptic projection of u,:
(3.6) a(U(0) — ug,v) =0 forall veS".

Computationally, this represents no additional work over choosing U(()) to be the I*
projection of u,. Both choices involve solving a linear system for ¢(0) with matrices
S and M, respectively.

With this choice of U(0), the Galerkin approximation is optimal in 12,

Theorem 3.2. Assume that U(0) is chosen as (3.6) and that, u, u,, 1, € L"(H").
Then

max {1'2|U, — u,| + ||U — u||} < Ch" max {[u], + [u], + [ru,].} .
0=Zt=sT

osrs

Proof. Define w, @, n as in the proof of the previous theorem. ¢ satisfies the
equation (3.4):
((t(px)n U) + a(QDs U) = (("7!)1’ U) .
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This is an equation of the form (3.1) where ¢ = U and (,), = f. Proposition 3.2
gives

37 o0 + o] = C j I(en)|? g,

where the equivalence of a(, *) with |- |, and the choice (3.6) of U(0) has been used.
Since o], = |@|, the result follows. O

Remark. A close look at (3.7) shows that when U(0) is chosen by (3.7), then
|[U = w|, = 0(h7). In one space dimension (n = 1)L* estimates follow from
the fact that ||@], = O(h"), the known L”* estimates for the steady state problem,
and the Sobolev theorem.

In particular, in Douglas, Dupont and Wahlbin [9] it was shown that if S" consists
of CH0 < k < r — 1) piecewise polynomials of degree r — 1 on a quasiuniform
mesh then

Iu - wl < Ch'lu

Fe

Thus. in this case,

max ]U(t) - u(t)l < Ch" max [|u|, + llu], + [l + ruel,]
<T

0<t<T 0=t

holds and the Galerkin method is also optimal in L*.

4. THE SEMILINEAR EQUATION

In this section the Galerkin method for the semilinear equation (1.2), (1.3) is
considered; U : [0, T] — S" satisfies

((tU),v) + a(U,v) = (f(U),v) forall veS".

It is shown that when f is globally Lipschitz the Galerkin approximation U converges
to # optimally in H' and in I? when U(0) is chosen to be the elliptic projection of the
initial data.

The situation when f(u) is only locally Lipschitz is more delicate. In one space
dimension, H' estimates on the approximate solution are obtained. These imply
that the L” norm of U must be bounded so that the argument of the globally Lip-
schitz case gives that U converges to u with optimal rates. In higher space dimensions
this device is not available and L estimates require the use of inverse assumptions
on S*. When these hold, optimal rates of convergence can be shown.

Theorem 4.1. Assume f is globally Lipschitz and u, u,, tu,, € H". Then
max |u(t) — U(t)]|; < Ch*~" max [[|u(t)], + [udo)], +
0StsT 0<t<T
+ [t ] + Cluo = UO), -

361



When U(0) is chosen by (3.6), it follows that
Ju(t) = U] + [u() = v(] =

< Ch’()gaéxi“u(l)ﬂ, + Jul0)], + Hru,,(l)nr] .

max [/
0<I<T

Proof. As in the proof of Theorem 3.2, let w e S" satisfy a(u — w, v) = 0 for all
ve S” and define ¢ = U — w, n = u — w. Since a(y, v) = 0, @ satisfies the equation

(19 v) + ale, v) = (f(U) = f(w), v) +
(f(w) = f(u), v) + (), v), forall veS".
Setting © = ¢, € S" and using the Cauchy-Schwarz inequality we obtain

Ldy g, 1d i |
'S lod® + o + Sy a(p, @) = > [l (no)e]? + 17(U) = f(w)]? +
+ 1) =S + e

2

’

Jod? = 2 T2 + 2] + - 2ol + 2 e o,

where L is the Lipschitz constant of f. Picking ¢ = 1/3 and rearranging the left hand
side of the inequality gives

S lol® + ate. o)) = 3Tmd? + LilP] + 3Ljol

Since a(¢. ¢) = ||o||>, Gronwall’s inequality can be applied to the above to yield

tlo0)]* + a(e(1), o(1)) =
< a(p(0), (0)) + CorénraéxT [l + [n()]]-

The H! estimate now follows from the triangle inequality and the equality of a(-, *)
with the H! norm.

When U(0) is chosen as the elliptic projection of u,, then ¢(0) = 0 and L estimate
follows from the fact that a(-, *) = ¢| ] O

The next theorem cosniders the case of one space dimension and locally Lipschitz f.
The main problem is that of showing that |U| is bounded uniformly in h. Once this
is accomplished the proof of convergence in the globally Lipschits case goes over
to the present context.

Theorem 4.2. Assume u, u,, tu,,€ H for 0 <t < T, U(O) is chosen as the elliptic
projection of uy and f is locally Lipschitz. Then for 0 < h < h,,

max |u(r) — U(1)| < CW
0=<t=T
holds, where C depends upon T and the H* norms of u, u, and tu,,.
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Proof. Suppose that lu (x, t)| SKforO0=<t=T Let 6 <0 be a fixed positive
number. It will be shown that for h sufficiently sma]] |U(x,1)| K + 6for0 <1< T
Let A" denote {r:0 < 1 < Tand |U(x,1)| < K + d}.

Since U(0) is chosen to be the cliiptic projection of u,, U(0) satisfies

[U(0) — upll, = Ch 1.

Hence |U(0) — uo| £ Ch"™' < /2 for h < hy. Thus 0 e 4", and A" is nonempty.
Next suppose that r* is the largest ¢ such that [0,1*] = A". Thus, for 0 < 1 < ¥,
Theorem 4.1 shows that

U—u|2|U—-uf,sc(T)r~". 01 <1*.

Thus, for h < h, it follows that |U| < K + (6/2) < K + 6. By continuity, t*
cannot be the largest such ¢ unless t* = T.

The proof now follows the proof of Theorem 4.1, with all results holding for
h < min (hy, hy). O

Remark 2. In one dimension, the above estimates imply that the Galerkin appro-
ximation is optimal in L* when U(0) is chosen as w(0). The proof of this fact is
identical to the linear case, see Remark 1.

In higher space dimensions, following Thomée and Wahlbin [22], the following
two assumptions upon the space S" will be made. The first is a standard inverse
assumption and the second an approximation theoretic assumption concerning
the space S” and the smoothness of u(x, ).

A1 Forall yeS". |x| £ Ch™ |x] holds for h < h, and some v < r.
A2 lim[ sup [mf{lu(r) — x| + B u(t) — «]}]] = 0.

h—=0 O0=<t=<T yxeS§

When S" consists of piecewise polynomials of degree r — 1 satisfying certain regularity
assumptions on the triangulation the elliptic projection of the steady state problem
has been shown to converge in L* to u. Nitsche [18] has shown that if L= —4
and r < 2 then |u — w| < Ch'|u|,. Scott [21] has shown in the case of Neumann
boundary conditions (not consndered here) that for r = 2, “u - w] Ch? In (h) |ul,.
Analogous results have been shown to hold in the variable coefficient and nonlinear
cases, cf. among others the papers of Nitsche [19] and Freshe and Rannacher [12].
When any of these estimates apply, so that Iu - w[ —0as h— 0, A2 can be dis-
pensed with.

Theorem 4.3. Assume f is locally Lipschitz, u, u,, tu,, € H', A1 holds and either
|u - w| — 0ash — 0or A 2holds. Then, if U(0) is chosen by (3.6),

max u(t) - ()] =

Proof. As before, the result will follow provided an L” estimate can be obtained
for w and U. Suppose |u| < K and let 5 < 0 be given. If |u — w| — 0 as h — 0 then

ttijr
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<learly lw| < K + ¢ for h sufficiently small. On the other hand, suppose A 2 holds.
Let 7* be the largest t < 0 such that |w(t)‘ <K + 6 for 0 £t £ t*. In this case,
for y e S",

w—wl <l <lu—u +lx—wlslu—s + - w].
“Thus, since l[u - w|| = 0(h").
|u—w < |u—xf + Ch[Ju—z] +[n]] =
SCinfllu—y +h™u—y|]+r>ChH.

xeSh

Since r < u, A2 implies that |u — w| > 0 as h — 0 and, for h sufficiently small,
|w| < K + (6/2). Thus, 1* = T.

Next, it will be shown that ‘U(t)| < K + 6 for 0 £ t £ Tand h sufficiently small.
Indeed, |U(0) — uo| > 0 as h — 0 so that |U(0)| < K + (6/2) for h sufficiently
small. Let * be the largest ¢ such that |U(r)] < K + 6 for 0 < ¢ < r*. A 1 implies

[U—w| sCh|U—-w|sCh™ (r<v).
'Thus,IU—w|—>0ash—>0andt*=T. O

Thus, even when f is locally Lipschitz the Galerkin approximation will converge
to u optimally, locally in time. The situation for large time, 0 < t < o0, is much
more complicated. For example, when f(u) has the form f(u) = Au” with p < 1,
.and /4 < 0, then the true solution to

(tu), = Au + aw?, p<1, 2<0

.can blow up in finite time in L”. (Levine [17] has shown this for the Euler-Poisson-
Darboux Equation, an analogous result can be expected here, see also Reed [20]}.
For example, when p = 3 the nonincreasing energy of the continuous equation
-and the Galerkin approximation can easily shown to be (see (3.1), (3.2))

E(u(t)) = f ) I:t(u,)z T [Vaft — gu“:l dx .

When 4 < 0 the energy E(f) can become negative and thus the blow-up can be ex-
pected. However, when 4 < 0, both the continuous and discrete equation will not
blow up since E positive define (Proposition 3.1).

Thus, the good and bad points of the estimates in this section are apparent: they
hold for very general f(u) terms but are only local in ¢ (i.e. valid cnly for 0 < ¢t <
< T* < ). This reflects the state of the continuous equation. Estimates on semi-
linear evolution equations that are valid for all 1, 0 £ ¢ < o0, are much more difficult
to obtain than estimates valid for small time. As the above example indicates, a uni-
fied treatment of such problems for 0 < ¢ < oo is probably not possible, since the
specific form of the nonlinearity is critical to the behavior of the continuous equation
for large t.
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Souhrn

ENERGETICKA ANALYZA DEGENEROVANYCH
HYPERBOLICKYCH PARCIALNICH DIFERENCIALNICH ROVNIC

WILLIAM J. LAYTON

Je provedena energetickd analyza obvyklé semidiskrétni Galerkinovy metody
pro semilinedrni rovnici v oblasti 2

N
®) (1), = 3. (o) ), = o) + 1(0).
s okrajovou a po¢ate¢ni podminkou u = 0 na 0Q a u(x, 0) = u,. UvaZovana rovnice
je degenerovand pro ¢t = 0 a proto i v pfipadé f = 0 mohou Casové derivace u byt
neomezené pii t —» 0. V piipadé lokalné Lipschitzovské funkce f mohou feSeni
divergovat pfi t > 0 v nekone¢ném dase.

V linedrnim ptipadg je dok4zana stabilita a konvergence ve W' bez predpokladu
hladkosti u,, (ktera mdZe byt pfi ¢+ — 0). Konvergence aproximaci k u je dokdzina
v pfipadé€ nelinearni lokalné lipschitzovské funkce f. Konvergence nastava v oblasti,
kde u(x, 1) existuje a je hladka. Je uddna rychlost konvergence.

Author’s address: Prof. William J. Layton, Mathematisch Institut, Faculteit der Wiskunde
en Natuurwetenscheppen, Katholieke Universitiet, Nijmegen, Netherlands.
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