Aplikace matematiky

Jaroslav Moravek
On hardly linearly provable systems

Aplikace matematiky, Vol. 29 (1984), No. 4, 286-293

Persistent URL: http://dml.cz/dmlcz/104096

Terms of use:

© Institute of Mathematics AS CR, 1984

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/104096
http://dml.cz

SVAZEK 29 (1984) APLIKACE MATEMATIKY CisLo 4

ON HARDLY LINEARLY PROVABLE SYSTEMS

JAROSLAV MORAVEK

(Received October 19, 1983)

A well-known theorem of Rabin yields a ‘dimensional’ lower bound on the width
of complete polynomial proofs of a system of linear algebraic inequalities. In this
note we investigate a practically motivated class of systems where the same lower
bound can be obtained on the width of ‘almost all’ 'non-complete’ linear proofs.
The proof of our result is based on the Helly Theorem.

I. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Let R" denote the n-dimensional vector space over R, where n = 2 is an integer;
without loss of generality we shall assume that the elements of R” are ordered n-tuples
of real numbers (n-dimensional row vectors).

For two real matrices (in particular, row or column vectors) having the same size,
M’ = (m] ) and M" = (m] ), we set

Mz=M if m;2m{;, and M > M" if m;;,>mj;,

for each pair of subscripts i, j.

The matrix transposition will be denoted by the superscript ...T. Symbol 0 will
denote the zero matrix (particularly, the zero vector); the size of 0 will be always
evident from the context. R", will denote the set {x € R"| x = 0} (the nonnegative
cone in R").

11, (A,) will denote the set of all polynomial functions f: R* — R (respectively
the set of all polynomial functions f : R — R having the degree at most 1).

The function sign : R — R is defined as usual:

sign x :x.lx]" if x+0; sign0=0.
In [1] the following result is obtained (we present it in an equivalent formulation):
Theorem 1. Let

(1) (fi.;)
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be a rectangular p x w-matrix of polynomial functions f; ;jelIl, (i =1,2,..., p;
j=1,2,...,w), where p and w are positive integers, let

(2) (x)20 (k=1,2,...,9)
be a system of linear algebraic inequalities, where q € {2, n) is an integer and
leA, (k=1,2,...,4q), and let C < R" be a nonempty convex set.
If
\ 4 w
(3) U NixeC

i=1 j=1

fox) 2 0} = 0 {xe C[1(x) 2 0},

k=

and if for each ordered q-tuple
(64,05, ...,0,)€{—1,0. 1} (cartesian power)
there exists x, € C such that

4) sign (I(xo)) =0, (k=1,2,...,9)
then
wzq. ]

The matrix (1) satisfying condition (3) is called a complete polynomial proof
of (system) (2) in C. The number w is called the width of the proof (1). Condition (4)
in Theorem 1 is called the condition of sign-independency of (2). So, if the condition
of sign-independency is fulfilled then the width of any complete polynomial proof
of (2) equals at least the number of inequalities in (2).

Theorem 1 can be applied in particular to f; ;€ A,. In this case we speak about
a complete linear proof.

In accordance with [ 1] we introduce now the concept of the (‘non-complete’) proof.
A w-tuple

(5) (f]:va"'rfw)
of polynomials of IT, will be called a polynomial proof of (2) in C if

0+N{xeC
1

v=

f.(x) = 0} gké{xe Cc [ l(x) = 0} .

The number w is called the width of (5). The polynomial proof (5) is called linear if
foed, (b=1,2,...,w).

Remark. While the concept of the complete proof corresponds to nondeterminis-
tic checking whether a given x € R" is a solution of (2) the concept of the (‘non-
complete’) proof corresponds merely to proving for each element x of some subset
of R" that x is a solution of (2).//

For (‘non-complete’) polynomial (even linear) proofs we have no such lowet
bound as in Theorem I. Indeed, (g,) with g,(x;. x5, ..., x,) = —Xx; — x; — ... — X

"
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is obviously a linear proof of an arbitrary sign-independent system (2) in C = R’}
provided [,(0) = 0 (k = 1,2, ..., q).

In this note we construct a practically motivated class of linear-inequalities systems
(2) for which one has the same lower bound as in Theorem 1 on the width of ‘almost
all’ linear proofs in C = R'}.

To this aim we shall write the system (2) in the matrix form

(2) x,a] + x,ay + ...+ x,a +af,, =0

or equivalently

A (x,x3,.00%,1)T 20

1\

>

where A = (aj,a],...,a;,06,,,) is a q x (n + l)-rectangular matrix with real

entries.
A linear proof (5) of (2) (equivalently, of (2’)) in C will be called full-dimensional if

dim (U{i{x eC ] f(x)=0})=n.

The system (2') will be called hardly linearly provable in C if each full-dimensional
linear proof of (2') in C has a width at least q.

Now we propose the following open problem: Find a ‘“‘good” characterization
of the set of allreal g x (n + 1) —matrices A such that (2’) is hardly linearly provable
in C = R,.

The main result of this paper is to give a sufficient condition for A under which (2)
is hardly linearly provable in C = R’, (Theorem 2).

A trivial sufficient condition for it is

dim {x € R,

A (X, X200 X )T 20} <.

(If this condition is fulfilled then there is no full-dimensional linear proof of (2’)
in R’} at all.) Thus, in the rest of this paper we shall usually assume that the follow-
ing condition is fulfilled:

(6) dim {x € R},

A (x, x5, .00%,1)T 20} =n.

Theorem 2. Let a real ¢ x (n + 1) —matrix A = (a; ;) satisfy the conditions:

(7) Each row of A contains at least one negative element.

(8) Each column of A contains at most one positive element.
Then (2') is hardly linearly provable in R’. O

Corollary. The system of n — 1 linear inequalities
‘ x—-—x,20 (i=12..,n-1)
(the proof of which is equivalent to the verification of x, = min(x, X, ..., X,))

is hardly linearly provable in R’ . O
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II. PROOF OF THEOREM 2

Theorem 2 will be proved by contradiction: Let us assume that conditions (7)
and (8) are fulfilled and there exists a full-dimensional linear proof (fi. fz, ... f.)
of (2)in R} with1 Sw<gq — L

We may assume without loss of generality that each f, (v = 1,2, ..., w) is non-
constant. (Observe that for each constant function f:R" - R we have either
{xeR" | f(x) = 0} = R" or {xeR" | f(x) = 0} = 0.)

Thus there exists x* = (x, x3, ..., x;) € R" such that

9) x* > 0,
and
(10) f(x*)>0 (v=1,2,...,w).

Let us write
(]1) fu(x) = cl}.lxl + (‘11.2'\.2 + ... + (.U,nxu + Cv,n+1
(x=(xp, X3 .0, 5, )ER v =1.2,..,w).

Now, it follows from condition (8) that there exists a (¢ + 1) -tuple (L, L, ..

..., L, L,,,) of pair-wise disjoint subsets of {1,2,....n + 1} such that
g Hq+1 1

(12) LivL,v...uL UL, ={1,2,..,nn+1},
and

(13) a,;>0<jel;, (I<i<qgl=<jsn+1).

(Some of the sets Ly, L,, ..., L,, L,,; may be empty.) In particular, it follows from
the definition of L;, L,, ..., L, and L, that

(14) a; ;<0 if jeL,,, I1<i=<q.

Using the coefficients ¢, ; from (11) and the sets L, L,, ..., L,, L,,, we introduce
g convex polyhedra Py, P,, ..., P, in R as follows: P, (k = 1,2,...,q) is the set
of ally = (y, 52, ..., »,) € R} such that

(15) Y ey S0 if jeL, UL,
v=1

and

(16) y1+y2+...+yw:I.

Let us observe that P, P,, ..., P, are subsets of the hyperplane

Hs{yeR“’,y1 + Yt ety =1}

in R”. Thus, we have ¢ 2 w + | convex sets P,, P,,..., P, lying in the (w - 1)-
dimensional affine set H.
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We shall apply the Helly Theorem (see [2], p. 117) to the g-tuple (P, P, ..., P,).
To this aim we shall verify that

(17) PiaP,n...oPynPyn..0P %0

holds for each ke {1,2, ..., q}.
Indeed, the k-th inequality

Xy + ApaXy + oo+ QX + Gy 20
from (2’) is a consequence of the consistent system of w + n linear inequalities

Cn.lxl + Cv,2x2 + ...+ Cn.nxn + Cu,‘n+l g 0 (1 é v § W) >
and
x; 20, x,20,...,x,

I

0.

Hence, using a well-known theorem due to Farkas (see e.g. [3], p. 108) we con-
clude: There exists z = (z,, z,, ..., =,,) € R such that

w

18 ity Sa; (1Zj<n+1).
() Z <J ,}(

v=1

It follows from (7) that a;; < 0 for some je {l,2,...,n + 1}. Thus we have
from (18)

(19) itz e+ 2,>0.
Further, it follows from (12), (13), (14) and (18) that

w

(20) Ym0

v.jcu
v=1

foreachjeL L, u...0L, ULy, u...0L UL, =({1,2...onn+ 1}~
N L)

Thus, for

(Vs Yo o V) = ( le,,)‘l A2y 290 ooty Z,)
we have

e S0 (Ge({l2onn + 11N LY),

v=1
and

)r’, + ,"2 + “on + _\'w = l 5

ie.

(VY2 Y)EPLAP, N OP AP 0 AP,
This verifies (17).
Now, using the Helly Theorem we have

PinP,n...0oP,+0,

290



hence, the exists y* = (y}, y3, ..., yb) € R such that

@ Ye i 0 (1jsn+1),
v=1

and

(22) VE+pi 4+ yE=1.

IT follows immediately from (22) that y* + 0. Furthermore, since x* > 0 (see (9)),
we have from (21)
Z x;‘ Z Cv.jy;k + Z Cu,n+1)’;k =0

i v=1

i=1 n=1

ie.

The above inequality contradicts the set of relations y* = 0, y* % 0 and (10),
which concludes the proof.

III. CONCLUDING REMARKS

(A) If a matrix A satisfies condition (6) then condition (7) is necessary for (2)
to be hardly linearly provable in R".. Indeed, each inequality a, x; + a; ,x, + ...
ot a, X, + ap 0 20 witha, ; 20,a,,20,...,4a,,,, = 01is a consequence
of the system x;, =20, x, 20,...,x, = 0.

(B) Condition (8) is not necessary for (2') to be hardly linearly provable in R’
even if condition (6) is fulfilled. Indeed, let us consider the example

I, 1, —1,0

The matrix A, satisfies condition (6) since A,.(1,1,1,1)T >0. We shall prove,
however, that the system (2') corresponding to A, is hardly linearly provable in R3.
Let us assume by contradiction that there exists a full-dimensional linear proof
of (2') corresponding to A, in R3 , the proof having the width at most 2.

Then (using the theorem of Farkas) there exist real matrices

u u
1,1> 1,2 N
U=|u u v = (Ut P2 Ui Vra
= Uz Uz afs =1 .
u u Uz 1y 02,2, V2,3, V2.4
3,1 3,2/

and a vector y = (yy, 2, ¥3, 1) € R* such that the following conditions are fulfilled:
(23) ux=o,
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(24) A,z U.V,
(25) V.y7>0 and y>0.

Now, it follows from (25) and from the well-known fact concerning the existence
of basic feasible solutions of linear optimization problems (see e.g. [4], p. [8) that
there exists a vector z = (z,, z,, 23, 1) € R% such that

(26) V.zT >0,

and exactly one of the components z,, z,, z5 is zero.

Since the matrix A, is invariant with respect to the simultaneous and equal per-
mutations of rows and the first three columns, we may assume without loss of genera-
lity that

(27) z; >0, z,>0, z;=0.

On the other hand, each row of A, contains a negative element. Hence, it follows
from (23) and (24) that each row of U contains a positive element. By combining
this fact with (23), (24), (26) and (27) we obtain

—zy + 22 Z Uy (01,121 + 0y 220 F 03 8) + Uy (02,021 F+ 02222 + 034) > 0

Zp— 2z 2 “2,1(')1,121 + 0y 52y + Uy 4) + “2,2(”2,121 + 03,7, +U,4) > 0.
This contradiction completes the proof.

(C) On the other hand, condition (8) is necessary for (2') to be hardly linearly
provable in R’} if ¢ = 2. (Thus, if condition (6) is fulfilled then (7) and (8) is the set
of necessary and sufficient conditions in this case.) Indeed, it is easy to see that
if condition (8) is not fulfilled then the system consisting of the single inequality

min (a; 1, a, ) X; + min(a, 5, a5 ,) X, + ... + min(ay ,, a,,) x, +
+ min (al,n+l’ Ayws1) 20
is a full-dimensional linear proof of the system

Xy + ;X + oo+ a;,x, +a;,, 20 (i=1,2)
in R"%.
(D) The concept of ““full-dimensionality”” can be in an obvious way generalized
to polynomial proofs. It is, however, easy to show that for each system (2) satistying
(6) there exists a “‘full-dimensional” polynomial proof having the width 1.

(E) A nontrivial generalization of Theorem 1 was obtained in [5].
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Souhrn

O TEZCE LINEARNE ODVODITELNYCH SOUSTAVACH
JAROSLAV MORAVEK

Rabiniv vysledek ddava ,dimensionalni‘ dolni odhad pro $itku Gplnych polynomi-
alnich dedukci dané soustavy linearnich algebraickych nerovnic. V poznadmce se
vysetiuje prakticky motivovana tfida soustav, pro které lze stejny dolni odhad ziskat
i pro $itku ,,skoro vSech* ,,netplnych** linedarnich dedukci. Dlkaz vysledku je zalo-
zen na Hellyové vété.
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