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A CONVERGENT NONLINEAR SPLITTING 
VIA ORTHOGONAL PROJECTION 

JAN MANDEL 

(Received February 21, 1983) 

1. INTRODUCTION 

In the whole paper, Vis a real or complex Hilbert space. The following theorem 
was proved by Lucka [4, Lemma 4.2] in a different notation. 

Theorem 1. Let A e [V] and assume that P1? P2 e [V] are orthogonal projec­
tions of V on finite dimensional subspaces such that PXP2 — P2^i = Pi- Suppose that 
the equation w = APtw + A(I — Pt)z has a unique solution wfor any z e Vand that 
a linear operator Wx is defined by W1z = w SO that Wt e [V] and ||(I — Pi)5Vj[| = 
= a < 1. Then W2z = w = AP2w + A(I — P2)z defines an operator W2 e [V] which 

fulfils \\(I~ P2)W2\\ = a . 

In the present paper, we extend this theorem to nonlinear operators A. The proofs 
use contraction arguments and no differentiability is required. 

Consider an operator equation 

(1.1) x = Tx, 

where T maps the Hilbert space V into itself. Given another Hilbert space Va and 
mappings p e [Va, V], re[V , VJ such that rp = I on Va, define an iterative method 

(1.2) rxk + <4 = r T(xk + pdk) , dk e Va , xk + 1 = T(xk + pdk) , 

which requires the solution of an operator equation in the space Va. After multi­
plying the first equation by p and substituting into the second, this iterative method 
reduces to 

(1.3) xk + 1 = T(xk + P(xk+1 - xk)) , 

where P = pr is a projection in V. If the operator r is the adjoint of p, the projection 
P is orthogonal. 
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The iterative method (1.3) is essentially a nonlinear splitting for the equation (1.1), 

Xk+ 1 = M X / c f 1? Xk) 9 

where 

F(x, y) = T(Px + (I - P) y), 

hence Tx = F(x, x). 
Such nonlinear splittings were studied by Wazewski [12] and by KurpeV [2]. 

Another splitting was considered by Looze and Sandell [3]. There are relations 
to the aggregation method of approximate inversion of matrices by Fiedler and 
Ptak [ I ] : in the linear case Tx = Ax + f, Ae [V], the iterative method (1.3) is 
equivalent to a linear stationary iterative method using a preconditioning operator 
(I — AP)_1; cf. also Pokorna and Pragerova [9]. 

The closely related iterative aggregation method [8] can be stated in the form 
(1.3) with P depending on xk. For relations to multigrid methods see [7]. 

2. PRELIMINARIES 

For Hilbert spaces U and V, [U, V] denotes the space of all bounded linear opera­
tors mapping U into V. [V] stands for [V, V]. If T: V-> Vis a mapping of Vinto 
itself, its pseudonorm is defined as the minimal Lipschits constant of Ton V, 

UTII = s u p { | T x - Ty\\j\\x~ y\\; x, y e V, x * y} . 

If Te [V] , the pseudonorm of T coincides with the usual norm induced by the 
norm || • || on V. 

A linear operator P e [V] is an orthogonal projection if it is a projection, P2 = P, 
and P equals its adjoint. Then [10] we have ||P|| = 1 and 

(2.1) ||Px||2 + ||(1 - P)y\\2 = ||Px + (1 - P)y||2 

for all x, y e V. 

The Banach principle of contraction will be used in the following form: If T: V -> V 
and || T|| < 1, then for any x0 e V the iterates xk+1 = Txk converge to the unique 
solution of the equation x = Tx. 

3. CONVERGENCE OF ITERATIONS 

Theorem 2. Let T: V -> Vand let P e [V] be a projection. Assume that the equation 

(3.1) w = T(Pw + (1 - P)z) 

for any z e V has a unique solution we V and following (3.1) define W: V-> V by 
Wz = w. Suppose that 

(3.2) ||(1 ~ P) W\\ = a < 1 . 
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Then the equation x = Tx has a unique solution x* and for any sequence of 
iterates xk + 1 = Wxk, x0 e V, we have 

(3.3) 1(1 - P) (xk+1 ~ x*) \\ga\\(I- P) (xk - x*)l . 

If W is continuous at x*, then xk -> x*. 

If in addition \\W\\ = b < +00, then 
j u 11 7 

(3.4) | | * * + i - * * | | ^b\(l~P)(xk-x*)\. 

Proof. Consider a sequence xfc+1 = Wx^, x0 e V, and denote zk = (I — P) xfc. 
By the definition of Wand by (3A), 

(3.5) W(l - P) = W, 

hence zfc+1 = (I — P) Wz^. By the contraction principle, the assumption (3.2) 
implies that there exists a unique z* e V such that 

(3.6) z* = (I - P) Wz* , 

and it holds 

(*\l\ II 7 — 7*11 < /7II 7 — 7*11 
V^-'j ||zfc+i z || == " | | z f c z || • 

Denote x* = Wz*. Then z* = (I - P) x* by (3.6), and by (3.5), x* = Wz* = 
= W(I — P) x* = Wx*. From the definition of W we conclude that x* = Tx*. 
On the other hand, if x = Tx, then x = Wx by the definition of W. Denote z = 
= (I - P) x. Then z = (I - P) W(I - P) x = (I - P) Wz as a consequence of (3.5), 
and since z is the unique solution of the equation (3.6), z = z*. Consequently, 
x = W(I - P) x = Wz = Wz* = x*. 

The estimate (3.3) follows from the inequality (3.7) and from the equation zk — 
- z* = (I - P) (xk - x*). 

If the mapping W is continuous at the point x*, then zk -> z* implies xk -> x*, 
for xk+1 = Wzk. 

The estimate (3.4) is obtained from (3.5) and (3.3), because xk+1 — x* = Wxk — 
- Wx* -= W(I - P)xk~ W(I - P) x*. 

4. THE NONLINEAR SPLITTING THEOREM 

Theorem 3. Let Pl9 P2e [V] be projection operators, P2 orthogonal, and assume 
that 

(4.1) P,P2 = P2PX = Pt . 

Let T: V-* V and assume that for any z e V there exists a unique w e V such that 

(4.2) w = T(Ptw + (I - Px)z). 
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Following (4.2), define Wx : V-> Vby Wxz = w Ond assume that 

(4.3) | | ( / - P 1 ) l V 1 | | = f l < l . 

Then for Otiy z e V the equation 

(4.4) w = T(P2w + (I - P2) z) 

has a unique solution we V. Let W2 : V -> V be defined by W2z = w — cf. (4.4). 

Then there exists a mapping H : V -> V such that 

(4.5) W2 = WjH, (IHII g (1 - O2)~1/2, Hx* = x* , 

where x* is the unique solution of the equation x = Tx, and the estimate 

(4.6) ||(/ - P2) W2|| < a < 1 

holds. 

Proof. The assumption (4.1) implies that 

p 2 = p2(Pt + (I - P J ) = p x + (/ - p>) p 2 ( / - p , ) 
and 

/ - P 2 = ( / - P 1 ) ( / - P 2 ) . 

It follows that for any z, w e V, 

P2w + (/ - P2) z = P.w + (/ - P.) (P2(/ - P,) w + (/ - P2) z) . 

Therefore, the equation (4.4) is equivalent to 

(4.7) w = Wl{P2{l -Pl)w + (l- P2) z) 

in virtue of the definition of the mapping Wx. 
Since P2 is an orthogonal projection, we have ||P2|| = 1. The equation 

(4.8) y = (I-P1)W1{P2y + (I-P2)z) 

has a unique solution y for any z e V by virtue of the Banach contraction principle 
and the assumption (4.3). Define Y: V-> Vby Yz = y - cf. (4.8). 

We show that for any z e V the equation (4.4) possesses the unique solution 
w e V determined by 

(4.9) w = Wx(P2Yz + ( I - P2)z). 

If (4.9) holds, then by the definition of the mapping Y, Yz = (I — P2) w, and sub­
stituting Yz into (4.9) we find that w is a solution of (4.7), hence a solution of (4.4). 
If w is an arbitrary solution of the equation (4.4), then by (4.7), y = (I — Px) vv 
satisfies (4.8), hence y = Yz. By (4.7), w = w. 

Let y! = Yzx and y2 = Yz2. The equation (4.8) implies that 

\\yi - J>2|| <. ||(7 - P t ) W, || I t e * + (I - Pi) 2,) - (P2J'2 + (I ~ P2) 22)|| . 
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Using the equation (2.1) with P = P2 and the assumption (4.3), we obtain 

\\yi - y2||
2 ^ a2(\\yx - y2\\

2 + \\zx - z 2 | | 2 ) , 
hence 

(4.10) |[Y|| S a(i - a2)~112 . 

Since Wx = WX(I - Px) and (I - Px) P2PX = 0, the equation (4.9) and the defini­
tion of W2 imply W2 = WXH, where 

(4.11) Hz = P2(Yz + Pjx*) + (I - P2) z , 

where x* is the unique solution of the equation x = FN, the existence and uniqueness 
of which is implied by Theorem 2 and the assumption (4.3). 

Since Yx* = (I - Px) x* in virtue of (4.8), the definition of Y and Wxx* = x*, 
we conclude that Hx* = x*. 

Let Uj = Hzj, yj = Yzj9 j = 1, 2. Since P2 is an orthogonal projection, we get 
by(2.1),(4.11)and||P2 | | = 1, 

IK - uif = ||yi ~ y2||2 + K ~ -^||2 -

and using the inequality (4.10), 

| t i . - a 2 | | 2 ^ ( a 2 ( l - a 2 ) - 1 + 1)|| z. - z2|| , 

which implies that 

UHII g (a2(l - a2)"1 + 1)1/2 = (1 - a2)~1/2 , 

and concludes the proof of the proposition (4.5). 

It remains to prove the estimate (4.6). Let Wj = W2zj7 j = V 2. The pairs (vvy, Zj) 
satisfy the equation (4.7) and applying I — Px to (4.7) we get for j = 1,2, 

(4.12) (/ - P t ) w, = (/ - P.) W,(P2(1 - P.) w, + (/ - P2) z,) . 

Since the assumption (4A) implies that 

(/ - p . ) = p2(/ - p . ) + (/ - p2), 

the left hand side of the equation (4A2) can be written as 

(/ - P.) w, = P2(I - P.) w, + (J - P2) w,. 

Using (2A) we obtain from (4.12) and the assumption (4.3) 

||P2(J - Pt)(Wl - w2)||
2 + 11(7 - P2)(w1 - w2)||

2 g 

g a2(||P2(7 - P.) (w, - w 2) | 2 + ||(7 - P2) (z. - z2) | |2) . 

Since a < 1, it follows that 

||(7 - P2)(w1 - w2)f rg a2j|(7 - P 2)(z x - z2)||2 . 

Taking into account that ||I — P2|| = 1, we obtain the estimate (4.6). 
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The following corollaries are obtained by combining the results of Theorem 2 
and Theorem 3. 

Corollary!. Let the assumptions of Theorem 2 hold and let Wx be continuous 
at the point x*. Then W2 is continuous at x* and for any x0 e V the iterations 

(4.13) xk+l = T(P2xk+l + ( / - P2)xk) 

Corollary 2. Let the assumptions of Theorem 2 hold and let \\WX\\ = b < -foe. 
Then the estimate 

(4.14) | |xk + 1 - x*|| g ak b{\ ~ a2)~l/2 \\x0 - x*|| 

holds for the iterations (4A3). 

Corollary 3. Let ||T|| = a < 1 and let P2 be an orthogonal projection. Then 
the iterations (4.13) converge to x* and the inequality (4A4) holds with b = a. 

Proof. Use Theorem 3 for Pj = 0, W1 = T, and Corollary 2. 

Corollary 4. Let A e [V], ||A|| = a < 1. Denote 

W(P) = A(I - PA)"1 (I - P) 

for an orthogonal projection Pe [V]. Then for any orthogonal projection P, 

r(W(P)) g 11(7 — P) W(P)\\ g a , 

where r denotes the spectral radius. 

5. CONCLUDING REMARKS 

It is easily seen that if the equation (4.2) or (4.4) possesses a unique solution, 
so does the respective correction equation (1.2) under the assumptions stated in the 
introduction. 

The correction equation (1.2) is usually solved only approximately, which gives 
rise to further problems, see e.g. [3], where this question was tackled for another 
splitting, and also [2, 4], where a number of examples and applications of the present 
method can be found. 

Theorem 3 yields a comparison of estimates of the rate of convergence similarly 
as the classical theorems about block iterative methods and their generalizations [11]. 

Corollary 4 was used in a local convergence proof for the iterative aggregation 
method [8]. For its extensions see [7]. 
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The results presented here are contained in the author's thesis [6]. Theorem 3 

extends a similar result by Lucka [5, Lemma 4.3], which was brought to our atten­

tion in the proofstage. 
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S o u h r n 

KONVERGENTNÍ NELINEÁRNÍ ROZŠTĚPENÍ 
POMOCÍ ORTOGONÁLNÍ PROJEKCE 

JAN MANDEL 

V práci se studuje konvergence iterací v Hilbertově prostoru V 

Xk+1 = W(P) xh, W(P) z - w = T(Pw + (I - P) z), 

kde T zobrazuje V do sebe a P je projekce. Iterace konvergují k jedinému řešení 
rovnice x = Tx, jestliže operátor W(P) je spojitý a Lischitzova konstanta zobrazení 
(I — P) W(P) je menší než jedna. Ukazuje se, že tyto podmínky jsou splněny, jestliže 
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Tje kontrakce v normě a projekce P je ortogonální. Splňuje-li operátor W(P{) výše 
uvedené předpoklady a P2 je ortogonální projekce taková, že P!P2 = P2Pi = Pí, 
pak je operátor W(P2) definován a rovněž splňuje tyto předpoklady. 

Authoťs address: Dr. Jan Mandel, CSc, Výpočetní centrum UK při MFF UK, Malostranské 
nám. 25, 118 00 Praha 1. 
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