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1. INTRODUCTION

In the whole paper, Vis a real or complex Hilbert space. The following theorem
was proved by Lucka [4, Lemma 4.2] in a different notation.

Theorem 1. Let Ae[V] and assume that P,, P, €[V] are orthogonal projec-
tions of V on finite dimensional subspaces such that P{P, = P,P, = P,. Suppose that
the equation w = AP,w + A(I — P,)z has a unique solution w for any z €V and that
a linear operator W, is defined by W,z = w so that W, e [V] and |[(I — P,)W,| =
= a < 1. Then W,z = w = AP,w + A(I — P,)z defines an operator W, € [ V| which
fulfils [(I = Py) W, < a.

In the present paper, we extend this theorem to nonlinear operators 4. The proofs
use contraction arguments and no differentiability is required.
Consider an operator equation

(1.1) x = Tx,

where T maps the Hilbert space V into itself. Given another Hilbert space }, and
mappings pe [V,, V], re [V, V,] such that rp = I on V,, define an iterative method

(1.2) X+ dp =rT(x, 4+ pdy), dieV,, xepq = T(x, + pdy),

which requires the solution of an operator equation in the space V,. After multi-
plying the first equation by p and substituting into the second, this iterative method
reduces to

(1.3) \ Xerr = T(xe + Plxer s — %)),

where P = pr is a projection in V. If the operator r is the adjoint of p, the projection
P is orthogonal.
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The iterative method (1.3) is essentially a nonlinear splitting for the equation (1.1),

Newr = Flx, X)),
where
F(x,v) = T(Px+ (I — P)y),
hence Tx = F(x, x).

Such nonlinear splittings were studied by Wazewski [12] and by Kurpel’ [2].
Another splitting was considered by Looze and Sandell [3]. There are relations
to the aggregation method of approximate inversion of matrices by Fiedler and
Ptak [1]: in the linear case Tx = Ax + f, A€ [V], the iterative method (1.3) is
equivalent to a linear stationary iterative method using a preconditioning operator
(I — AP)™'; cf. also Pokornd and Prdgerovd [9].

The closely related iterative aggregation method [8] can be stated in the form
(1.3) with P depending on x,. For relations to multigrid methods see [7].

2. PRELIMINARIES

For Hilbert spaces U and V, [U, V] denotes the space of all bounded linear opera-
tors mapping U into V. [V] stands for [V, V]. If T: V — Vs a mapping of V into
itself, its pseudonorm is defined as the minimal Lipschits constant of Ton V,

IT] = sup {ITx = |fx = »

s x,yeV,x %y}

If Te [V], the pseudonorm of 7 coincides with the usual norm induced by the
norm | -] on V.

A linear operator P e [ V] is an orthogonal projection if it is a projection, P> =P,
and P equals its adjoint. Then [10] we have |[P|| = 1 and

(2.1) [Px]* + (1 = P)y|* = |Px + (1 = P)y?

for all x,ye V.

The Banach principle of contraction will be used in the following form: If T: V — V
and |T| < 1, then for any x, € V the iterates x,,, = Tx, converge to the unique
solution of the equation x = Tx.

3. CONVERGENCE OF ITERATIONS

Theorem 2. Let T: V — Vand let P € [V] be a projection. Assume that the equation
(3.1) w=TPw+ (I —P)z)

for any z €V has a unique solution we V and following (3.1) define W:V — V by
Wz = w. Suppose that

(3:2) U —P)W|=a<1.

251



Then the equation x = Tx has a unique solution x* and for any sequence of
iterates Xy 41 = Wxy, xo € V, we have

(3.3) (= P)(xpsy — x*) [ Zal (I = P)(x — x¥)| .
If Wis continuous at x*, then x, — x*.
If in addition |W|| = b < + 0, then

(34) lxees = x* < BI(T = P) (v = x*)] -

Proof. Consider a sequence x,.; = Wx,, x,€ V, and denote z, = (I — P) x,.
By the definition of Wand by (3.1),

(3.5) Wl — P) =W,

hence z,.,; = (I — P) Wz,. By the contraction principle, the assumption (3.2)
implies that there exists a unique z* € V such that

(3.6) z* = (I — P) Wz*

and it holds

() Jces = =] < afz — =]

Denote x* = Wz*. Then z* = (I — P)x* by (3.6), and by (3.5), x* = Wz* =
= W(I — P)x* = Wx* From the definition of W we conclude that x* = Tx*.
On the other hand, if x = Tx, then x = Wx by the definition of W. Denote = =
= (I — P)x.Thenz = (I — P)W(I — P)x = (I — P) Wz as a consequence of (3.5),
and since z is the unique solution of the equation (3.6), z = z*. Consequently,
x=WI—- P)x =Wz = Wz¥ = x*.

The estimate (3.3) follows from the inequality (3.7) and from the equation z, —
— z¥ = (I = P)(x; — x*).

If the mapping W is continuous at the point x*, then z, — z* implies x, — x*,
for x4, = Wz,

The estimate (3.4) is obtained from (3.5) and (3.3), because x;4; — x* = Wx, —
— Wx* = W(I — P)x, — W(I — P) x*.

4. THE NONLINEAR SPLITTING THEOREM

Theorem 3. Let P,, P, € [V] be projection operators, P, orthogonal, and assume
that

(4-1) PPy = PP, =Py.
Let T:V — V and assume that for any z € V there exists a unique w € V such that

4.2) w=T(Pyw + (I — Py)z).
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Following (4.2), define W, : V — V by W,z = w and assume that
(4.3) [0 =P)W | =a<1l.
Then for any z € V the equation
(4.4) w=T(P,w + (I — P,)z)
has a unique solution we V. Let W, : V — V be defined by W,z = w — f. (4.4).

Then there exists a mapping H : V — V such that

(4.5) W, = WH, |[H]| < (1 —a®)7'?, Hx* = x*,

where x* is the unique solution of the equation x = Tx, and the estimate
(4.6) =Py sa<t

holds.

Proof. The assumption (4.1) implies that

P, = PZ(P, + (1 — Pl)) =P, + (l — P‘)PZ(I — Pl)
and
I — P, = (}I - P,)(l - Pz)-

It follows that for any z, we V,
Pyw+ (I — Py)z=Pw+ (I —P)(P,(I —P)w+ (I —P,)z).

Therefore, the equation (4.4) is equivalent to

(4.7) w = W,(P,(I = Py)w + (I — P,)2)
in virtue of the definition of the mapping W;.

Since P, is an orthogonal projection, we have ”P2 [[ = 1. The equation
(4.8) y=(-=P)W(Py + (- P,)z)

has a unique solution y for any z € V by virtue of the Banach contraction principle
and the assumption (4.3). Define Y: V' — Vby Yz = y — cf. (4.8).

We show that for any z e V the equation (4.4) possesses the unique solution
w € Vdetermined by
(4.9) w= W,(P,Yz + (I — P,)z).
If (4.9) holds, then by the definition of the mapping Y, Yz = (I — P,)w, and sub-
stituting Yz into (4.9) we find that w is a solution of (4.7), hence a solution of (4.4).
If W is an arbitrary solution of the equation (4.4), then by (4.7), j = (I — P,)Ww

satisfies (4.8), hence j = Yz. By (4.7), w = W.
Let y, = Yz, and y, = Yz,. The equation (4.8) implies that

Iy = vall = (0 = PY W[ [(Poys + (I = Py)z1) = (Pova + (I = P2) 2,)] .
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Using the equation (2.1) with P = P, and the assumption (4.3), we obtain

2)’

Iye = 22l = @(|yy = »a|* + 210 = 22
hence

(4.10) [Y]| = a(l — a?)~'2.

Since W, = W,(I — P,)and (I — P;) P,P, = 0, the equation (4.9) and the defini-
tion of W, imply W, = W, H, where

(4.11) Hz = P)(Yz + P)x*) + (I — P,)z,

where x* is the unique solution of the equation x = TXx, the existence and uniqueness
of which is implied by Theorem 2 and the assumption (4.3).

Since Yx* = (I — Py)x* in virtue of (4.8), the definition of Y and Wyx* = x*,
we conclude that Hx* = x*.

Let u; = Hz;, y; = Yz;, j = 1,2. Since P, is an orthogonal projection, we get
by (2.1), (4.11) and | P,|| = 1,

2
s

fur = ua]? < vy = v + 21 = 23]
and using the inequality (4.10),

fuy = ual|® = (@*(1 = @)™ + D) 2, = 2,

which implies that
”H” é (a2(1 - az)—l + ])1/2 — (1 _ aZ)—l/z ,

and concludes the proof of the proposition (4.5).
It remains to prove the estimate (4.6). Let w; = W,z;, j = 1, 2. The pairs (w;, z;)
satisfy the equation (4.7) and applying I — P, to (4.7) we get forj = 1, 2,

(4.12) (1 — PI) w; = (I — Pl) WI(PZ(I - Pl) w; + ([ — P?_) zj) .
Since the assumption (4.1) implies that
(I = P)=P,y(I—P,)+ (I = P,),
the left hand side of the equation (4.12) can be written as
(I — Py)w; = Py(I — Py)w; + (I — Py)w,.

Using (2.1) we obtain from (4.12) and the assumption (4.3)

[P = Py) (wy = wo)|* + (1 = P2) (wy = wa)[* =

< @*([Po(I = Py) (wy = wo)|* + (T = P2) (21 = 25)[?).
Since a < 1, it follows that
I = P2) (wy = wa)|* £ @?|(1 = P2) (20 — 2)|*

Taking into account that |[I — P,| = 1, we obtain the estimate (4.6).
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The following corollaries are obtained by combining the results of Theorem 2
and Theorem 3.

Corollary 1. Let the assumptions of Theorem 2 hold and let W, be continuous
at the point x*. Then W, is continuous at x* and for any x, € V the iterations
(4.13) Xer1 = T(Pyxpiy + (1 — Py)xp)
converge 1o x*.

Corollary 2. Let the assumptions of Theorem 2 hold and let |W, ” =b < 4.
Then the estimate

(4.14) [xeer — x*| < a*b(1 — a?)™ "2 x4 — x*|

holds for the iterations (4.13).

Corollary 3. Let |T|| = a < 1 and let P, be an orthogonal projection. Then
the iterations (4.13) converge to x* and the inequality (4.14) holds with b = a.

Proof. Use Theorem 3 for P, = 0, W, = T, and Corollary 2.

Corollary 4. Let Ae[V], |

A| = a < 1. Denote
W(P) = A(I — PA) ' (I — P)
for an orthogonal projection P € [V]. Then for any orthogonal projection P,

(W(P) = (1 = P)W(P)| = a,

where r denotes the spectral radius.

5. CONCLUDING REMARKS

It is easily seen that if the equation (4.2) or (4.4) possesses a unique solution,
so does the respective correction equation (1.2) under the assumptions stated in the
introduction.

The correction equation (1.2) is usually solved only approximately, which gives
rise to further problems, see e.g. [3], where this question was tackled for another
splitting, and also [2, 4], where a number of examples and applications of the present
method can be found.

Theorem 3 yields a comparison of estimates of the rate of convergence similarly
as the classical theorems about block iterative methods and their generalizations [ 11].

Corollary 4 was used in a local convergence proof for the iterative aggregation
method [8]. For its extensions see [7].
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The resuits presented here are contained in the author’s thesis [6]. Theorem 3
extends a similar result by Lucka [S, Lemma 4.3], which was brought to our atten-
tion in the proofstage.
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Souhrn

KONVERGENTNI NELINEARN[ ROZSTEPEN]
POMOCI ORTOGONALN[ PROJEKCE

JAN MANDEL

V préci se studuje konvergence iteraci v Hilbertové prostoru V
Xpr1 = WP)x,, W(P)z=w=TPw+ (I -P)z),

kde T zobrazuje V do sebe a P je projekce. Iterace konverguji k jedinému feSeni
rovnice x = Tx, jestliZe operator W(P) je spojity a Lischitzova konstanta zobrazeni
(I — P) W(P) je men3i nez jedna. Ukazuje se, Ze tyto podminky jsou spln&ny, jestlize
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T je kontrakce v normé a projekce P je ortogonalni. Splituje-li operator W(P,) vyse
uvedené pfedpoklady a P, je ortogondlni projekce takova, ze P,P, = P,P, = P,
pak je operator W(P,) definovan a rovnéz splituje tyto pfedpoklady.

Author’s address: Dr. Jan Mandel, CSc., Vypocetni centrum UK pfi MFF UK, Malostranské
nam. 25, 118 00 Praha I.
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