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THE EXISTENCE AND UNIQUENESS THEOREM
IN BIOT’S CONSCLIDATION THEORY

ALEXANDER ZEN{SEK
(Received June 13, 1983)

The main aim of this paper is to prove the existence and uniqueness of the solution
of a variational problem corresponding to an initial-boundary value problem the
special case of which is Biot’s model of consolidation of clay [1]. The method of proof
is a modification of the compactness method used in [5] and [8]. The proof of
existence has a constructive nature: First a completely discretized approximate
solution is defined. The discretization in space is carricd out by the finite element
method using the simplest finite elements. For the discretization in time we use the
Euler backward method. It is proved that an approximate solution defined in this
way exists and is unique. Then it is shown that a sequence of approximate solutions
(extended to the whole time interval (0, T]) has a weak limit if I > 0, 4t — 0 and
that this weak limit is a solution of the problem.

Besides the existence and uniquencss theorem some error estimates are introduced.
The considerations are restricted to the two-dimensional casc. However, all results
introduced can be proved similarly in the three-dimensional case.

1. FORMULATION OF THE PROBLEM

Let Q be a bounded domain in the x;, x,-plane with a sufficiently smooth boundary
I'. We consider the following problem: Find a vector u(x,, x,, f) and a function
p(x1, x5, 1) which satisfy the following equations and boundary and initial conditions:

(1) kp.i+ Q =divi in Qx (0, T]

(2) o+ Xi=0  (i=1,2) in Qx(0,T]
(3) p=0 (t>0) on I,

4) kp,v; = b(xy, x5, 1) (t>0) on Iy,
(5) u=0 (t>0) on I,
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(6) o

Vi = qdxp, x5, 1) (1>0,i=1,2) on TI,,

(7) div a(xy, x5,0) = afxy, x5), (x5, x,)eQ
where

(8) F=r,Uly;="T,UTls

) 0ij = Dijumtin(u) — P3y;

(10) Dijim = Djim = Dimij

(11) eii(v) = (vij + 0,02

(12) Dijim€iiCm = 108y V& = &€ R

where jty = const > 0. The symbols I',,, [, (and similarly I',;, I',;) denote two
disjoint subsets of I' each consisting of a finite number of parts. We assume

(13) mes I,y >0, mesl, >0.

A summation convention over a repeated subscript isadopted. Acomma is employed
to denote partial differentiation with respect to spatial coordinates and a dot denotes
the derivative with respect to time ¢. The symbols Q, X, g;, « denote prescribed
sufficiently smooth functions, the symbol k in equation (1) is a positive constant.
In relations (4) and (6), v, and v, denote the components of the outward unit normal
to I'. In relation (9) §;; is the Kronecker delta and D, arc constants depending
on the material only. We shall consider isotropic materials only.

Remark 1. If we set Q =0, « = 0. b =0, then relations (1)—(7) represent
Biot’s model of consolidation of clay ([1], [2]). The vector u has the meaning of the
displacement vector of a compressibie solid phase and the function p is the pore
water pressure. Equations (2) are then Cauchy’s equations of equilibrium, where o ;
are the components of the stress tensor and X; the components of the body forces
per unit volume. As the vector v of the water velocity is given by the relation v =
= —k grad p, the physical meaning of the boundary condition

(42) pyi=0 (t>0) on I,

is that the part I',, of the boundary is impermeable (the normal component of the
water velocity is equal to Zero). The physical meaning of the initial conditicn

(7a) div u(xy, x,,0) =0

is that at the time ¢ = 0 the volume change ¢ = div u is equal to zero. (This is a con-
sequence of the assumption that the pore water is incompressible: There cannot be
any instantaneous volume change even though a load is applied suddenly.) Equation
(1) can be written in the form

(la) divo = —§
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and has the following meaning: As the pore water is incompressible the rate of the
volume decrease of an element is equal to the rate at which water is expzlled.

Before presenting a variational formulation of problem (1)—(12) let us introduce
some notation. The symbol H*(Q) denotes the usual Sobolev space,

HNQ) = {ve I’(Q): Dve L¥(Q) Y|o| < k},
equipped with the norm

Il = X 1%l

H{(Q) is the closure of the space C7(2) in the norm |- |,, H™%(Q) is the dual space
to the space Hg(). The symbols Wand V denote the spaces

(14) W= {weH'(Q):w=0onI,}.
(15) V="{veH(Q):v =0on I,}.
Let X be a Banach space normed by |[+|/yand let 0 < T < co. For p = 1 we denote

by I2(0, T; X) the space of strongly mcasurable functions f: (0, T) - X such that

' T . i L/p
“f!ELP((),T;X) = [J H/(t)“; dt] <
0

with the usual p = oo modification. By C([O, T]; X) we denote the space of conti-
nuous functions f : [0, T] — X normed by

1/l eo,rxy = max [ £(6)]]x -
1e[0,T]

The symbol AC([0, T]; X) denotes the subspace of C([0, T]: X) of all absolutely
continuous functions f: [0, T] — X.
The scalar product in L*(Q) will be denoted by (-,*),

(16) (v, w) = J vwdx, v,we Q).

In order to obtain a variational formulation of problem (1)—(12) let us multiply
equation (1) by w € W, integrate over Q, and use (4) and Green’s theorem. We easily
find
(17) D(p,w) + (diva,w) = (Q,w) + (b,w), Ywe W, Vie(0,T],

where

(18) D(v, w) = kJ v,w,; dx ,
o

(19) (b, w), :f bwds.
Iy

Multiplymg equation (9) by ;}(v), where ve [V]*> = V x V, integrating over Q
and using relations (2), (10), (11) and Green’s theorem we find
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(20) a(u,v) — (p,dive) = (X, v) + (gv), Yoe[V]*, Vte(0,T],

where
(21) a(v’ W) = j Dijkmui,jwk,m dx >
)
(22) (v,w) = J vw dx, (v, w), = f v;w; ds .
Q Ty

Let us multiply relations (17) and (20) by an arbitrary function f(t) e CZ((0, T))
and integrate the resulting relations in (0, T). If we use integration by parts we get

(23) '[TD(p, w)fdt — fT(div u,w)fdt = J‘T(Q, w)fdt + JT(b, w), f dt
Ywe W, VYfeCy((0,T))),
(24) JTa(u, v)fdt — jr(p, dive) fdr = JT(X, v)fdt + Jq(q, v), fdt
0 0 0 0

Voe[V]?, VfecCy((0,T)).

Now we can present the variational formulation of the initial-boundary value
problem (1)—(12) in the form of the following problem P:

Problem P: Find a vector we L*(0, T3 [V]?) and a function pe X0, T W)
with the following properties:

a) wand p satisfy relations (23) and (24);

b) for every we W the expression (div u(t), w) is equivalent to an absolutely
continuous function on [O, T] and the initial condition (7) is satisfied, i.e.

(25) (div u{0), w) = (e, w) Vwe W.

(As Wis dense in L*() relation (25) is equivalent to (7).)

Remark 2. In what follows we restrict our considerations to functions o with
the following property: To a given o there exists such a vector u, € [V1* n [H}(Q)]?
“that
(26) divu, = o.

If o = 0 then we can set u, = 0.

2. EXISTENCE AND UNIQUENESS OF THE SOLUTION

In this scction we give some sufficient conditions for the existence and uniqueness
of the solution of problem P.

Theorem 1. Let the boundary I of the domain Q be piecewise of class C?, let the
function o € I*(Q) have the property introduced in Remark 2 and let the functions
Q, b and the vectors X, q have the properties:
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(27) Qe L’(0, T; [(Q)), b e I2(0. T: IX(T,,)),
(28) XeAcC([o, T]; [IX(Q)]%), X elX0, T;[1X(Q)]?),
29) g e AC0. TT: [B(r)1). @ € 20, T: [(Fa)]?).-
Then there exists just one pair p, u which is the solution of problem P.

Proof. The proof is divided into six parts A)—F). In the parts A)— E) the existence
of the solution is proved; in the last part F) the uniqueness.

A) According to the assumption concerning I', the boundary can be divided into
a finite number of arcs each of which has a parametric representation

(30) xp=0(s), x=y(s), a<s=sb

with functions ¢(s), ¥(s) belonging to C*([a, b]) and such that at least one of the
derivatives ¢'(s), y'(s) 1s different from zero on [a, b].

Let us triangulate the domain Q, i.e. let us divide it into a finite number of triangles
(the sides of which can be curved) in such a way that two arbitrary triangles are
either disjoint, or have a common vertex, or a common side. Let every triangulation
7 have the property that each interior triangle (i.e. a triangle having at most one
point common with the boundary I') has straight sides and each boundary triangle
has at most one curved side. This side lies then on the boundary. Further we assume
that the domain Q is triangulated in such a way that the curved side of each boundary
triangle lies on one arc of the type (30). The curved triangles of the triangulation 7
will be called ideal curved triangles.

With every triangulation 7~ we associate two parameters /1 and 9 defined by
(31) h = max hy, 9% = min 9

KeT KeT
where hyg and 95 are the length of the greatest side and the magnitude of the smallest
angle, respectively, of the triangle with straight sides which has the same vertices
as the triangle K. We restrict ourselves to triangulations J satisfying

(32) 3=29,, 9 =const >0.

On every triangulation 7 we define the finite dimensional space Z, with the following
properties:

a) Z, < C(Q);

b) every function ve Z, is uniquely determined by function values prescribed
at the vertices of the triangles of 7 ;

c) the restriction of v € Z, to an arbitrary interior triangle is a linecar function.

In the case of a polygonal boundary I' the space Z, is formed by piecewise linear
functions. The definition of the restriction of v € Z, to an ideal curved triangle can
be found in [7].

Let V, and W, be subspaces of Z, defined by

(33) Vi ={veZ,:v =0on I',},
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(34) W,={weZ,:w=0o0n I,}.

It foilows from the properties of V, and W, that

(35) lim inf |u — o], =0 YueV,
h=0 veVj

(36) lim inf|u—w|, =0 YueW.
h—0 weWp

We introduce 4t = T|[r, r being a natural number, and consider the partition
of [0, T] with the nodes

(37) t;=idt (i=0,...,r).
We set
e R
(38) Qi = — O(x,1)dt, b'=— b(x, t)dr,
At ti—1 A ti—
(39) X' =X(x,t), ¢ =q(x,1)
and define Ple W,, Ue[V,]?(i=1,...,r) by
(40) At D(P', w) + (div U' — div U1, w) = 4(Q°, w) + 41(b', w),
Ywe W,,
(41) a(U'v) — (P dive) = (X, v) + (¢',v), Yee[V,]?,
(42) div U° = o, = div u}y,

where ug € [V;]? is the interpolate of the vector u, introduced in Remark 2. This
interpolate has the following properties:

(43) |4t = oy = Chljuolz,
(44) [div ufy — offp = ||div (e — u)]o < Cluly — wol, >0 if h—0,
(45) luolly = llug — o + woly = Clluo|, -

Now we prove that the solution P, U’ (i = 1, ..., r) of problem (40)—(42) exists
and is unique. As (40) and (41) represent a system of linear algebraic equation it is
sufficient to prove the uniqueness. Let Q' =b' =0, X'=¢' =0 (i=1,...,r)
and o, = 0. In the case i = 1 let us set w = P! in (40) and v = U" in (41) and sum
up the obtained relations. We get

(46) At D(P', P') + a(U', U') = 0.

Friedrichs’ inequality and Korn’s inequality together with (46) imply P! =0,
U' = 0. In the case i > 1 let as assume that we have proved U'~! = 0. Setting
w = P'in (40) and » = U'in (41) we obtain

At D(P', P') + a(U', U") = 0
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which implies U' = 0, P' = 0.

B) Now we prove estimates (59)—(61). Letus setw = PLo = AU = U'— U™,
where U® = u}j € [V,]?, add up (40) and (41) and sum the result from i = [ to i = j.
We obtain

(47) AtZDP'P)+2a(U'AU)—AtJZ( )+Ati‘l(bi,1)i)p+

+ Z(X’ aU') + Z(q au’), .
Using the relations

(48) 2 (U" AUY) = a(U', UY) = a(U™', U'™Y) + a(4U', AU'),
j-1

(49) (XL AU) = (W, U) = (X', u) = 5 (4X7, U

II[\/]\~

and Friedrichs’ and Korn’s inequalities we obtain from (47):

j . . 1 . .
(50) Aty [P+ U7 = {7 + (X7, U7) — (X', up) —
f=x}
i1
=Y (4xX", U + (¢, U7), — (4, u), Z(Aq’H U, +
iT1

+ A4ty (Q\, Py + 4ty (b, Py}
i=1 i=1
In (50) and in what follows the symbol C denotes a positive constant not depending

on h and At and not necessarily the same at any two places. We have

J j t; j t
cary (b, P), =CY <f b, P> <c¥ J T T Y
i=1 =1\ J,,_, i=1]),,_,

J ti 1/2 y
= (G, C A’mz {f 10l zar, d’) 1P = (Ci0) [1b] L0 miraryan +

i=1 ti-1
J i||2
+ 34ty | P
i=1
where we used Cauchy’s inequality, the trace theorem with the constant C, and the
inequality

(51) lab| < 1ya* + — b?
2y

with y = 2. Further,
i—1 j—1
— CY (AXLUY £ CY [ax, U,
i=1 i=1
j—1

R R A C N L

i=1
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The remaining terms on the right-hand side of (50) can be estimated similarly. We
obtain from (50):
j i1
(52) Aty [PF+ U7 s €+ 4y | UTT,
i=1 i=1

where the constant C depends on Q, b, X. X, q, q and wu,. Using the discrete Gronwall
inequality we obtain from (52)

j

(53) a3 P+ ol = .
Inequality (53) implies
(54) ary |Pi= .

i=1
(55) |U, £C (i=1,..,r).
It follows from (55) that
(56) Aty U = C.

i=1

Let us define extensions of the approximatc solutions P*, U’ on the whole interval

(0. T] by
(57) PP =P in (0] =L 8= (hdr),
(58) UP=U" in (-], i=1...,r: 0=(h4).
As Ple W, U'e [V]? relations (54)—(58) imply
(59) ”P"HLZ(O,T;W) <C,
(60) H v° L2(0-T;[V1%) =C,
(61) | 0T = €

where the norms of Wand [V]? are induced by the norms of H'(Q) and [H'(2)]*.
respectively.
C) Leth,, 41" > 0 forn = 1,2, ... and
h,—>0, 4"—->0 if n->ow

and consider the sequences { U’ 7\, {P* 7 with &, = (h,, A"). For simplicity
we leave out the subscript n and write 0, h and A4t instead of 0, I, and 4¢". Then
(59)—(61) and the compactness theorem (see, e.g., [3, p. 24]) imply: There exist
subsequences, denoted here again by U°, P, such that

(62) U’ - u weaklyin 20, T [V]?),
(63) P’ > p weaklyin L0, T: W),
(64) UYT)—g weaklym [V]*.

[t can be arranged that the set of indices {0} is the same in all the three cases (62) — (64).
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D) Consider a function f(t) e C*([0, T]). Let
=gy, i=1 e, f=fr = f(T)

and let us define two functions f,,, f,, by

(65) Fae= 7" in (tatiy,], i=0,.,r =1,

(66) Fae= (2 =Y At in (1, t:0,], i=0,..,r—1.
Using Taylor’s theorem we can prove

(67) 1fae = flizcor £ €At |Fae = fllizo.r < C 4t

We also define
(68) Qu =071, by =b"" X=X, qu=q"" in (1, 04,],
i=0,....,p— 1.
We set w = fz" e W, and v = )", y" € [V,]* in (40) and (41). respzctively,

and sum each relation fromi = 1toi = r. As

Y (div U — div U1 2 ff = (div U, 2*) 7 — (div uy, 2") f1 —
i=1 r—1

— .;(div U, Zh) U'iﬂ _ f’) ,

we obtain (due to (57) and (58))

(69) '{TD(P", M) 4 dt — Jr(div Ul, M) fo dt = J‘T(QA,, ) faedt +
0 0

0

+ JT(bA,, z")pfA, dr + (div ub, zh)f(At) — (div Ué(T), z")f(T) ,

T T
(70) J a(U‘S,yh)fA,dt —J. (P",divy")fA,dt =
0 0
T T
_ J Xy 3*) fardi + j (qare3")o far i
0 0

Let we Wand v e [V]? be given. We choose =" € W, and y" € [V, ]? such that
(71) [ =wli =0, [y =2l ~0.

According to (37), (38), such a choice is always possible. We want to prove that if
we pass to the limit for § — 0in (69), (70) then we obtain
T

(72) J'TD(p, w)fdt — j (div u, w) fdt = (o, w) £(0) — (div g, w) f(T) +

0 0

+ IT(Q, w)fdr + jr(b, w),fdt YfeC™([0,T]), Vwe W,

o] 0
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AT

(73) JOTu(u, o) fdr — [OT(p,divv)fdt=LT(X, v)fdt+J (g, v), f dt

0

o

Vfec=([0, T]), Vee[V]?,

where u, p, g are the weak limits from (62)—(64).
First we prove that the left-hand sides of (69) and (70) converge to the left-hand
sides of (72) and (73), respectively. To this end let us note that for given functions

fe C“([0, T]), we Wand a given vector v € [ VV]? the functionals
T T
Fi(z) :f D(z,w)fdt, Fy(z) =f (z, divv) fdt
0 0
are linear functionals on L*(0, T; W) and the functionals
T T
Gy(z) = f a(z,v)fdt, Gy(z) = f (div z, w)fde
0 0
are linear functionals on L*(0, T; [V]?). For example,

(z)] = {J z,vf)d f = J:”z“x lof |l dt = Cllz| o, rivvey [0 2o, riavyy -

Thus, according to (62), (63),
(74') Fi(P‘S) - Fi(p) s Gi(U’s) — Gi(”,) (i =1, 2) .
We have
T T N T
f D(P?, ") f 4, dt ~J‘ (div U°, ") [, dt =J D(P°, w) fdt +
[¢] 0

0

+ { J OTD(P", —w)fdt + f OTD(P", P (e~ f) dt} - f (div U2 w) fdr —

_ {J‘OT(div U, 2t —w) fdi +Lr(div U, = (fmo_ f)dt}.

It follows from (59), (60), (67) and (71) that the integrals in the brackets tend to zero.
For example,

Jrn(pé, 2 w)fdi] < k| - w|;,fr|;p6”1 /] dr <
| 0

0

< kC|j2" = wlly [f]20.m) =0
Thus, according to (74), the left-hand side of (69) tends to the left-hand side of (72).
Similarly we can prove that the left-hand side of (70) tends to the left-hand side

of (73).
Let us now consider the right-hand side of (69). According to (68), (38), (71) and

(67), we have



(75) LT(QA,: )fardt = i( "z")f‘Az:Z q Qdi, z )

ZJT(Q’ ) £, dt :JT(Q w) fdt +J —w)fdt +

(0] 0
T T _
¥ J (0. ) (fa — £ di > | (0. w)7dr.
0 0
Similarly (using in addition the trace theorem) we obtain
T T
(76) J (byes ), fr it — f (b.w), fdt
0 0
According to (46), (71) and (64), we have
(77) (div ub, z") - (2, w) ,
(78)  (div UXT). ") = (div UT), 2* — w) + (div UT), w) > (div g, w).
Relations (75)—(78) imply that the right-hand side of (69) tends to the right-hand

side of (72).
As to the right-hand of (70), we have

T r
(79) f (Ko fardt = (3 Xf7 41, 7).
0 i=1
T ‘ ) i
(80) j X7 o dt = [ X o rnmpe [ o
0

According to (80) and [4. pp. 108 —109], the Bochner integral of Xf exists and

T
(81) lim LXf At — det‘ =0.
t—-0 ||i=1 0 ’0
Relations (71). (79) and (81) imply
T ) T
(82) J (X0 3") S0 dt HJ. (X.v)fdi.
(0] 0
In a similar way we can prove
T T
(83) J (92003} s d ﬁf (4.0, dt.
0 0

It follows from (82), (83) that the right-hand side of (70) tends to the right-
hand side of (73). Thus we have proved that the weak limits pe L*(0, T; W}, ue
e L}0, T: [V]?) satisfy relations (72) and (73). If we restrict f to CJ((0, T)) in (72).
(73) we obtain relations (23), (24). Thus property a) of problem P is proved.
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E) Now we prove property b) of problom P. Let us define functions
(84) G(t) = (div u(t), w),
(89) H(t) = = D{p(1), w) + (Q(t), w) + (b(t), w),
where weW. As pel0,T: W), wucL¥0, T:[V]})., QeI*0.T1*Q)), be
€ IX(0, T, IX(I'p,)) we see that G(r)e I*(0, T), H(t)e L*(0, T). Thus the function

(86) F(t) = JrH(T) dt

0

is absolutely continuous on [0, T] and satisfics the relation
(87) F(t) = H(t) ae.in (0, T).
Using (23), (84)—(87) and intcgration by parts we obtain:

(83) J'(G ~F)fdi=0 viecy((0.T).
0

According to [6, pp. 251—252], relation (88) implies

(89} G(t) — F(t) = ¢, ae.in (0,T).

In order to determine the constant ¢, we choose in (72) a function f(t) e C*([0, T])
with f{0) = 1, f(T) = 0. Using (84) and (85) we can write (72) in the form:

(90) —jTHfdt ~J7-Gfdt = (o, w).

0 0

Integrating the second integral in (90) by parts and expressing G(t) by means of (89)
and (86) we come to ¢, = (a, w). Thus relations (84), (85), (86) and (89) imply

(O1) (div u(t), w) = (2 w) — f D(p(c), w) dr + f T(0(2), w) + (b(2). w),] de

Ywe W aec.in (0,T).

t

¢

This proves property b) of problem P.

F) Now we prove the uniqueness of the solution. As the problem is linear it suffices
to prove that the corresponding homogeneous problem (92)—(94) has only the trivial
solution:

(92) JTD(p, w)fdt — jr(div u,w)fdi=0 VYweW, VfeCg((0,T)),
0

0

(93) J‘Ta(u* v)fdr — Jr(p, divv) fdt
0

]

0 Vee[V]?, vfecF((0,T)),

(94) (div u(0), w)
It follows from (93) that

Il

0 Vwe W.
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(95) a(u(t), v) — (p(1),dive) = 0 VYee[V]*, VieE,,
where E; < [0, T], mes E; = T. Let us set v = u(t) (t € E,) and integrate relation
(95) in (0, t*), where 1* € [0, T]. We obtain

1%

(96) f a(u(t), u(1)) di — f (p(0), div (1)) dt = 0.
0 0
In order to express the second integral in (96) in a suitable form let us integrate

the second integral in (92) by parts. Then relation (92) implies
(97) D(p(r), w) + di(div u(t),w) =0 VYweW ae.in (0,T).
T

Integrating relation (97) in (0, t) and using (94) we obtain a relation in which we set
w = p(t) € W. Then we have
(98) — (div u(r). (1)) = f D(p(e). (1)) dr.
Let us define a vector z(r) by i
(99) Z(1) = thrad p(r)dr.
Then we can write, according to (18), '

(100) f D(p(e), p(t)) dt = k(z(t), (1)) ac.in (0.7)

0

and relations (96), (98) and (100) imply

(101) f Ca(u(t), u(0) dt + K f “(2(0). (1) dr = 0.

(0]
As the integrand of the second integral in (101) is equivalent to the derivative of the
function (z(t), z())/2. relations (101) and (99) give:

l’l
(102) f alu(t), u(t))dt + ZE“z(I*)HS =0.
0
As a(u, u) = 0 we get from (102) that
t*
(103) f a(u(t), u(1))dt = 0.
0
Choosing 1* = T in (103) and using Korn’s inequality we obtain
(104) l4] 2o, msgv12 = 0.
Relations (92) and (104) imply
(105) D(p(t),w) =0 VYweW Viek,

where E, < [0, T], mes E, = T. (Relation (105) follows also from (102), (103) and
(100).) Choosing 1€ E,, setting w = p(t), integrating (105) in (0, T) and using
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Friedrichs’ inequality we get

(106) 1Pl a0, rmy = 0
Relations (104) and (106) imply that problem (92)—(94) has only the trivial solution.
Theorem 1 is proved.

Using the same device as in [10, p. 215] we see that Theorem 1 implies following
corollary:

Corollary. Let the assumptions of Theorem 1 be satisfied. Then the sequences {P"}
and { U’} defined by (57) and (58), respectively, converge weakly (see (62), (63)) to
the exact solution p, u of problem P.

3. SOME ERROR ESTIMATES

For a greater simplicity we shall consider only the case of finite elements which
cover the domain Q exactly, i.e. in the case of curved boundary I we restrict our
considerations to Zldmal’s ideal curved triangular elements [7] Nor is the effect
of numerical integration taken into account.

The spaces V, and W, are now defined by

(107) Vi =1{vez” v =0onI,},
(108) Wy={weZ V:w=0on I,
where Z§¥) < C(Q) is a finite dimensional space constructed by means of triangular
finite elements generated by polynomials of degree k.

The discrete approximate solution of the problem of consolidation of clay (Q =
=0, b =0, divu(x,0) = 0) is defined in the following way: Find P'e W, and
Ue[V,]?(i =1,...,r)such that

(109) At D(P,w) + (div(U' = U™ ), w) =0 VweW,,
(110) a(U',v) — (P dive) = (X, 0) + (¢ v), Ywel[V,]?,
(111) div U° = 0,

where X', ¢" are defined by (39).
In order to obtain the maximum rate of convergence we shall consider the case
r,=1I.

Theorem 2. Let the assumptions of Theorem 1 be satisfied and let the exact solution
D, u have the properties

(112) pe AC([0, T]; H'(Q)), peI*0, T; HY(Q)),
(113) diviie AC([0, T]; C(Q)), diviie IX(0, T; I2(Q)),
(114) ue AC([0, T]; [H""'(@)]?), wue X0, T:[H" ' (2)]?).

Moreover, if n <3 let pe C([0, T]; C*R)) and if n <2 let also ue C([0, T];
CZ(Q)). Then
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(115) lp— Pl + |a = U, < Clh" a7 2,4, + " + 41}

(i=1,...,r)
where the constant C does not depend on h and At, u* = u(x, 1), p' = p(x, t;) and
the norm H '“,2 is defined by

(116) 1717 =4t 317 -

Proof. The cxistence and uniqueness of the approximate solution P', U’ were
proved in Section 2.
The function 7 € W, and the vector r € [V,]? satisfying

(117) D(p—n,w)=0 VYweW,
and
(118) alu — r,v) =0 Voel[V,]?

are called the Ritz approximations of p and u, respectively. The following estimates
are immeadiate consequences of interpolation theorems and Friedrichs’ and Korn’s
incqualities:

(119) lp =l = e pl.,
(120) , [u = vl = Cilafys
As we assume ', = I we can prove using (119) and Nitsche’s trick:
(121) Ip = nllo = Ci|p], -
Let us set
(122) e =r — U, ¢ =y — P,
(123) s=u—r, {=p—1.
Then
(124) p = Pl + o' = Uy = [, + s + Jel + (e =

S Ch + e, + |ef]

where the second inequality follows from (116), (120), (121) and (123). It remains
to estimate the last two terms on the right-hand side of (124).
Let us multiply (109) by —1 and to the both sides let us add the expression

A4t D(n', w) + (div (r' — o' "), w)

where ¢, = 0 and ¢; = 1 (i = 2). After simple calculations, in which we use (122),
(123), (1), (3), (18) and Green’s theorem, we obtain

(125) At D(e', w) + (dive', w) = —(divs', w) +
+ (div’a1 — Atdivi',w) YweW,,
(126) © At D(e', w) + (div (de’), w) = —(div (4s'), w) +

+ (div (4a') — Atdiva,w) YweW, (i=2).
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Let us multiply (115) by —1 and to the both sides let us add the expression
a(r', v) — (n', div v). After simple calculations, in which we use (2), (5), (6), (9)—(11),
21), (122), (123) and Green’s theorem, we obtain
(127) a(e’, v) — (¢',divo) = (¢, dive) VYee[V,]*.

In the case i = 1 let us set w = ¢' in (125) and » = €' in (127) and sum up the
resulting relations. We get
(128) At D(e', ') + ale', e') = (&', dive') + (div(4u') — Atdiva', ') —

— (divs', ¢")
because div u' = div (4a") if div «® = 0.In the case i = 2 let us set w = ¢’ in (126)
and v = de’ = ¢’ — ¢~ in(127) and add up the obtained relations. After summing
the result from i = 2 to i = j we obtain
J J

(129) Aty D(e', e') + Y a(e', de') = Zl: (&, div (de')) +

i=2 i=2 i=2

M&.

(div (4u’) — drdival, &) — i(dxv (4s), ¢").

i=2 i
We have

j j-1
Y (&, div (4€)) = (&, dive’) — (3 dive') — Y (4&'" ", dive'),
i=2 i=2

J

Y a(e', de') = 1 a(e’, ') — L a(e', e').

i=2

Thus, summing up (128), (129) and using Friedrich’s and Korn’s inequalities, we
obtain

J j—1
(130) Arz Jef]2 + e/]3 < C{(&, divel) = 3 (4& 1, dive') +

i=1

[\/‘\

(dlv(Au — dtdiva’, ') — (divs', ¢') — (dlv (4s), &)} .

II.[\/]&

11

i 1

Using the Cauchy inequality, Taylor’s theorem with an integral remainder, estimates
(120), (121) and inequality (51) with various y’s we can find

(131) |<<f.<nv o) = K| pl|2 + 3l

(1) [ dve)| £ a3 e + KhZ"Hﬁlliz<o.1~;w-(m>,

(132) ]i(dlv(du) — Avdivi', ¢')| £ K A2||div ]| }20, 710200y + 3 Arz €'l
(134) l [(divs', e')] < L Kn? A a2, + 4 413 <

< KIzZ"J l2, , di + KK 4 [u®2, ) + 3 de]e |3
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Fi‘

o + Kh?"|[it]|Za0, r,m+ 1000)

(135) [i:iz(div (As'), &) = 4 Atéz

where the constant K does not depend on h, At, u, u, div ii, p and p. Relations
(130)—(135) and the discrete form of Gronwall’s inequality imply

(136) 403 €2 + ]2 < Cihn e w2, + B2+ AR
i=1

where the constant C does not depend on h and 4t. As | £ j =< r relations (116),
(124) and (136) imply inequality (115). Theorem 2 is proved.

Remark 3. In [9] curved elements, numerical integration and two-step A-stable
difference methods are also considered.

Remark 4. It should be noted that the first term on the right-hand side of (115)
is a consequence of estimating in the first step (i = 1) only. Moreover, if h < C 4t
then h" At~ 12 < C At because n = 2.
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Souhirn

VETA O EXISTENCI A JEDNOZNACNOSTI RESEN]
BIOTOVA MODELU KONSOLIDACE ZEMIN

ALEXANDER ZENISEK

V &ldnku je dokdzdna véta o existenci a jednoznacnosti feSeni variaéniho problému
(23)—(25), jehoz specidlnim pripadem je variaéni formulace linedrniho Biotova
modelu konsolidace zemin. Ditkaz existence feSeni md konstruktivni povahu a je
proveden kompakinostni metodou. V druhé ¢dsti ¢lanku jsou uvedeny odhady chyb
pfi pfiblizném feseni problému konsolidace zemin kombinaci metedy konecnych
prvkl a Eulerovy zpé€tné diferencni formule.
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Obranct miru 21, 602 00 Brno.
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