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1. INTRODUCTION

This paper deals with a bivariate model in relation to life tests and in particular, to
a series system with two dependent components. Univariate exponential and gamma
distributions have been extensively used as life test models. For example, in Lin-
gappaiah [6], [7] and Lawless [5], univariate exponential and gamma models are
used to predict the future lives in a life test with available lives and the approach in
these works is based on the classical sampling distributions of statistics. Similarly in
Lingappaiah [8], [9], these two models are used for the same purpose of prediction,
but here, the approach is Bayesian. A vast amount of literature is available regarding
the applications of univariate and gama distributions in life tests as suitable models.
Recently, bivariate exponential and gamma distributions have been getting more
attention as suitable models in life tests. Works by Al-Saadi, Scrimshaw and Young
[1] and also Al-Saadi and Young [2] deal with the bivariate exponential and its
properties in much detail. Downton [3] derives a bivariate exponential distribution
from a simple failure model and uses it in reliability context by considering that the
shocks a component receives, are independently distributed and the number of
shocks itself is a random variable. Mukherjee and Sasmal [10] use a bivariaie expo-
nential model for life distribution of coherent dependent systems and treat three
different cases of the parallel system, standby system and series system. Moran [l 1]
and Vere-Jones [12], on the other hand, give various properties of the bivariate
gamma distribution. From the above references, it is clear that a bivariate distribution
does indeed serve as a suitable model for life tests. Since the bivariate exponential
may either turn out to be too simplistic or inadequate, in this paper, the bivariate
gamma distribution, based on Gumbel’s [4] model, is considered in the life test
context. The object of this paper is threefold. Firstly, to obtain the distribution of
a function of x and y, where the joint distribution of the couple of random variables x
and y is the bivariate exponential. Minimum (x, y), denoted by the variable U is

182



chosen for this purpose. Secondly, the reliability function is being evaluated and is
also tabulated for various values of the parameter and those of u. Finally estimates
of the parameters are also obtained using Bayesian method. The paper also includes
a separate table for the values of the mean and the variance of U corresponding to
various values of the parameter. Since, in life tests, both these quantities U and the
reliability are of considerable importance, their analysis is undertaken here.

2. RELTABILITY

According to Gumbel [4] the joint distribution of (x, y) has the density
(H f(x, 9,0, 0) = g(x, a) g(y, o) [1 + 0{2G(x, o) — 1} {2G(y, o) — 1}]
where g(x, o) = e *x*"![I(x)

(1a) G(x,-oc) =1 —aile“’“x"'/k!

k=0

X, y, >0, o a positive integer and —1 £ 0 < 1.
From (1) and (1a), we get

2 f(x,p,0,0) = (1 + 0)e” " (xyy =¥ (o) +

+ [40226*(2.\‘+2y1.\,k+z-— lytJrz—l/k! 11] [ 1 ] _
k t

Ir*(w)
— 20 F’:(e—z"x“"“[/k!) (e72y* I (o)) (1T {2)) —

=20 (e” Py e) (e () (1/T(=)) -
t

Throughout this paper, the upper limit of ) is o — 1 unless otherwise specified and
the lower limit i1s 0. Now min (x, y) has the distribution

(3) S(u, 0, 0) = J‘f/(\, u, 0, 0)dx + J‘mf(u. v, 0, 2)dy

u u

from (2) and (3), we get the first integral as

(4) wa(x, u,0,0)du = (L + 0) Z Ak, o) [e™2u* I (k + )] +

u
kta—1

+ 40 Z Z Z A(k, o) A(t, o) [8_4"u‘+'+’*1/r! 2k+1~r1~(a T I)] _
kKt r=0

=203 Aty o + k) A(k, o) [e™ > u" ™ * 0 (r + o + k)] —
kT

k+a—1

=205 > Ak, o) A(r. o) [e7 2wt 2720 (r + a)] .
k r=0
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A similar expression is obtained for the second integral in (3). In (4)

{4a)

From (4) we have the reliability function in the form

(1)2) R(u, 0, %) = (1 + 0); ;) A(k, o) [e”2"(u)y|rt 227 —

A(k, o) = (

k+ o —1
k

> [A(k, o) A(t, o) A(r, t + a)] [674"(414)3/2" 8724 451 —

System Reliabilities

(5)
kta—1 t+r+ta—1
—
—403.% )
kot r=0 s=0
=2
0'u I 2 3 4 5
— 10 -5035 -1067 --0142 -0015 -0001
—8 -5111 -1183 -0193 -0028 -0004
— 6 -S5187 -1299 -0244 -0042 -0007
<4 5262 -1416 -0295 -0056 -0010
—-2 +5338 -1532 -0346 -0070 -0013
0-0 -5413 -1648 -0397 -0084 -0016
2 +5489 -1765 -0447 -0098 -0019
-4 -5565 -1881 -0498 -0112 -0022
<6 +5640 -1997 -0549 -0125 -0025
-8 +5716 -2114 -0600 -0139 -0028
-0 -5791 -2230 -0651 -0153 -0031
o= 4
0u 1 2 3 4 5
— 10 -9620 -7197 -3668 -1276 -0323
—-8 9621 -7227 -3772 -1397 -0399
-6 9622 -7257 -3876 -1517 -0475
—+4  -9622 -7287 -3981 -1638 -0551
—-2 9623 7317 -4085 -1758 -0627
0-0 -9624 -7347 -4189 -1879 -0702
-2 -9625 -7377 -4293 -2000 -0778
-4 ‘9625 -7407 -4398 -2120 -0854
6 9626 -7437 -4502 -2241 -0930
-8 9627 -7467 -4606 -2361 -1006
10 -9627 -7497 -4710 -2482 -1082

Table I: Values of R(u)

—1-0
-8
6
4
)

0-0
-2

4
6
-8
1-0

0/u

10
-8
6
4
2
0-0
2
4
-6
-8
1-0

1

-8404
8415
-8426
8437
-8448
8458
8469
-8480
8491
8502
8513

1

19927
-9927
19927
19927
©9927
+9927
19927
+9927
19927
*9927
9927

4100
4196
4292
4387
4483
4579
4675
4770
4866
4962
5058

-8950
8955
-8960
8965
8970
8975
8980
-8985
8990
-8995
-9000

<1195
-1314
1433
-1553
1672
1791
-1910
2029
2148
+2268
-2387

+6420
‘6465
+6510
<6556
+6601
<6647
<6692
*6737
+6783
+6828
6873

0238
0304
10369
-0435
-0501
‘0567
‘0633
-0699
‘0764
0830
-0896

3410
3519
3628
3736
3845
+3954
4063
4172
4281
4390
4499
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w

<0039
0060
084
(3108
(132
(i35
‘G779
0203
-0227
<251
-0274

<1333
<1454
<1576
1697
1519
-1940
2062
2183
23935
2426
2548



t+k+a—1
— 20 g; Z'o [A(t, o + k) A(k, o)) [e” (Buy[rt 37FF] —
k+a—1 r+ta—1

- 202& 'go Yo [Ak, o) A(r, 2)] [e”*(3u) (2]3)s! 24 67] .

5=0

Table I gives the values of R(u) for various values of 0 and «, and for u = 1,2,3,4
and 5 (though u > 0, integer values are chosen just for the table).

3. MEAN AND VARIANCE OF U

From (4), we get
(6) (1)2) Eu*y = (L + 0) Y [A(s, 2) Alk, s + 2) s![20] +
k
k+a—1
+403 5 Y [A(t 2) A(k, 2) A(r, ¢ + o + s) A(s, 1 + )] [5!/87 274775 24] —
kot r=0
- 3()2,‘2 [A(t, 2 + k + s) A(k, o + s5) A(s, 2)] [s!/3"7745] —
. 4
kt+a—1

- 3(); ;0 [A(k, o) A(s, ) A(r. s + 2) (2]3)7] [s1/3° 67 2] .

If s = 0 in (6), obviously we have R(0) in (5) which is equal to 1. From (6) we can
get the mean and the variance of U. They are tabulated for certain values of « and 0
in Table II.

Table II: Expectation and Variances of u

o= 2 o=13 o = o= o= o= 10

-0 E(uy Varu

—1-:0 1-1212

E(w) Varu Ew) Varu E(u)

Varu E(u) Varu E(u) Var u

4578 1-9002  -8284 2-7162 1-2296 4-4105 2:0849 6-1546 2:9829 7-:9300 3-9078

—-8 11470 -5064 1-9327 9036 2-7542 1-3315 4-4577 2:2398 6-2094 3-1905 7-9916 4-1682
—-6 11727 -5536 19651 -9768 2:7922 1-4304 4-5049 2-3901 6:2643 3-3921 8-0532 4-4209
—-4 1-1985 5996 1-9976 1-0478 2-8302 1-5265 4-5521 2-5360 6:3192 3-5877 8:1148 4-6660
-2 12242 -6442 2:0300 1-1168 2-8682 1-6197 4-5993 2-6775 6-3741 3-7772 8-1764 4-9035
-0 1-2500 -6875 2:0625 1-1836 2:9063 1-7100 4-6465 2:8145 6-4290 3-9608 8-2380 51335
-2 1:2758 7295 2:0950 1-2483 2:9443 1-7974 4-6937 2:9470 6-4838 4-1383 8:2996 5-3558
-4 1-3015 -7701  2-1274 1-3109 2-9823 1-8819 4:7409 3-0751 6-5387 4-3098 8:3612 55706
-6 1-3273 -8094 2-1599 1-3715 3-0203 1-9635 4-7881 3-1987 6-5936 4-4752 8-4229 5-7778
‘8 1-3530 -8474 2-1923 14299 3-0583 2:0422 4-8353 3-3179 6-6485 4:6347 8-4845 59774
1-0 1-3788 -8841 2:2248 1-4862 3:0963 2-1181 4-8825 3:4326 6-7033 4-7881 8-5461 6-1694
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4. ESTIMATE § IN f(x, y; 0, %, )

Now we consider the distribution of x, y involving 0, « and § where
(7) g(x. 0. 0) = e 2(0x)* "1 /I (o) x. 00, 6 > 0
and the corresponding distribution function
a—1
(7a) G(x:m o) =1—7Y e *(ox)[k!.
k=0
Estimation of 0 («, & known}:
In view of (1) and (7). the likelihood function with a sample of size n can be written
as
(8) L(x.y: 2. 0,8) =[] f(xiz0.0,0).
i=1
Using (1) again, (8) can be written as

(8a) L(x.y:0.0,0) = (B)[T(1 + 04,),
i=1

where x = (x,. ..., x,) and similarly y = (3. v, ..o 3)
(B) = H] [g(x‘-, o, (5) g()»i, a, <5‘)] ,

x—1 a—1
Ap=[1=2% e (ox )} [k] [L = 2) e ™(oy)11] .
k=0 =0
Now (8) can be written in the form
(8b) L(x,y;2.0,0) = (B) Y, > 0'1] 4,,
i=0 j=1

where r; = 1,2,..., n and Z is the sum over all combinations of r;, 75, ..., r;. For
example if n = 3 and i = 2 then ) is the sum (4,4, + A;A; + A,A4;). Now 0
in (8) is between —1 and 1 as seen from(1). Due to this fact, we take the prior for ¢
e.g. as

©) g0y=12, —10=<1.

One could take g(()) as onz chooses. However, from all the possible forms of g(()\,
(9) seems to be the simplest in its nature. After integrating with respect to 0 we get
from (8b) and (9)

(10) L(x,y;2,0) = JL(X, y: o 0,3)g(0)do.
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Now (10) becomes
(10a) Lix,y;0) = (B)Y. Y (efi + D]] 4,
i=0 j=1
with ¢; = 0 if i is odd
=1 ifiiseven.

From (8b) and (10a) we get the estimate of 0

JOL(X, y; . 0,0)g(0)do
(10b) Ef) =,

J.L(x, y; o, 0,8) g(0) do
and from (IOb) we have the estimate 0:
SYL0 - e+ 201114,
—i=0 =t

(1) 0 -
Z({i,-//i + I)H Ar,

M=

il

0

i

For example, if n = 1, (L1) gives

(11a) 0=1J34,
and for n = 2, we have
(1ib) 0= (1/3) (A + AZ)/[l + (1/73)'41142] :

Similarly 6 can be estimated as well, though it would require much more work.

5. COMMENTS

a) The bivariatc gamma model obviously requires more work and computation
as compared to the univariate case. However, the importance of the bivariate model
outweighs the problems encountered.

b) The analysis done here can easily be applied to find the distribution of max (x, y)
whose density can be written as

(12) (v, 0,0) = juf(x, v, 0, 0)dx + Jvf(o, y. 0.a)dy,
0 0

and again the reliability, mean and variance of V' can be tabulated. As the variable U,
that is min (x, y) represents the length of life of a series system, similarly, variable V,
max (x, y) is of equal importance since it represents the length of life of a 2-com-
ponent parallel redundant system.
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¢) From the system reliabilities, cf. Table 1, it can be seen that R{u) increases as «
increases for a given 0 and u and so is the case for increasing 0 and given « and u.

d) From Table I1 it can be easily seen that both the mean and the variance increase
for the case of increasing o as well as that of increasing 0.

(1
{21
13]
i4]
{5]
[7]

17

19]
[10]
(1]

[12]
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Souhrn

DVOUROZMERNE GAMA ROZLOZENI V MODELU DOBY ZIVOTA

G. S. LINGAPPAIAH

Dvourozmérné gama rozloZeni je uvazovdno v modelu dob bezporuchového pro-
vozu x, y dvou zdvislych prvku. V ¢lanku je odvozeno rozloZzeni doby bezporuchové-
ho provozu systému vzniklého sériovym zapojenim téchto prvka. Pro nékteré hodnoty
parametri dvourozmérného gama rozlozeni jsou tabelovdny hodnoty funkce spolehli-
vosti, stfedni hodnoty a rozptylu doby do poruchy systému. Ddle jsou uvedeny
bayesovské odhady parametri.

Author’s address: Prof. G. S. Lingappaiah, Department of Mathematics, Sir George Williams
Campus, Concordia University, Montreal, Canada.
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