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SVAZEK 29 (1984) APLIKACE MATEMATIKY cisLo 2

SPECTRAL APPROXIMATION OF POSITIVE OPERATORS
BY ITERATION SUBSPACE METHOD

ANDRZEJ POKRZYWA

(Received March 21, 1983)

Let H denote a real or complex Hilbert space with a norm | - | and scalar product
{*, > and suppose that 4 is a bounded linear positive operator acting in H and X,
an m-dimensional subspace of H. Then the subspaces X, = 4A"X, are also m-dimen-
sional. Let P, denote the orthogonal projection on X,. We shall describe the behav-
iour of the spectra and the eigenspaces of the operators 4, = P,,A]X". We shall in-
vestigate what happens if instead of X, its subspace X, is taken, and a simple way
of approximating the spectra of the operators A4, will be given. The case dim X, = 1
was studied in the papers of Kolomy and others (see [2], [3] and references the ire in),
the iteration subspace method for matrices was studied in [4] and [5]

Let {E(4)} denote the spectral family of 4. We shall use the notation E[a, b] =
= E(b + 0) — E(a — 0), E(a, b] = E(b + 0) — E(a + 0), etc. Since dim E(1, o0) X,
is an integer-valued nonincreasing function of 4, the set of its points of discontinuity
is finite. Let oy > o, > ... > o, be all such points, we put in addition oy, = 0.
Let 4; (j =1,2,..., m) be such real numbers that

(1) dim E(4;, ) X, < j and dim E(4; — ¢, 00) X, = jforany &> 0.
Then 2; 2 4, = ... = 4, and {a,}} = {4,}7 = o(4) (the spectrum of A), since

E(2) is constant in some neighbourhood of any 1 ¢ a(A).

Lemma 1. Suppose that Y is a finite-dimensional subspace of H, 0 < oo < A and
E(4, ) y # 0 for all nonzero y € Y. Then there exists a positive number ¢ such

that CA"E(0, o] y, y> < c(af2) <A"y, y> (Vy e Y).
Proof. Since the unit ball in Y is compact we can find a positive number ¢, such

that | E(2, o) y|| = ¢, || (Vv € Y). This implies that for all y € ¥,

) vy = [ e dE@ 2 J' dCE@) y, yy =

(0,) (4,)
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=2

E(Z, o) y|* = ¢t 2" y]* .

In a similar way one can show that

@ CEO.4] 4y, > £ 2 EQ.2] 5] < #b]? (Ve V).
Dividing (2) by (3) we obtain the assertion.

Theorem 1. Let A, , = A, , = ... = A,,, be the eigenvalues of A,. Then A;, » 4;
withn - o (j =1,2,...,m).

Proof. The operator A4, is a selfadjoint operator acting in the m-dimensional
space X, therefore its eigenvalues satisfy the max-min principle (see e.g. [1], p. 60)

3 . . /1"+1X A'x

(4) Ajn = max min (Ax, x) = max min < A .
XX,  xeX Xxexo xex  [A"x|?
dimX=j [lx||=1 dimX=j x%0

Since (A™x, x> = (AM=D/2x 40F D282 < ”A("_“/zxﬂz ||A‘”“)/2x|!2 —

= (A" 1x, x> (A4""'x, x> for any x € H, we have, for all nonzero x e H, {(A"*'x,
AX[[[A"X|? = CAPFIx, xH[<Ax, x) = (AMx, xH[<AP T X, x) 2

> (A Ix, x)[<AP T 2x, x) = (A"x, A" 'x)[|| A"~ x| ?. This equality and (4) imply
that

(5) AjnZhjeq J=1,2,...m, n=12,....

Jsn

It follows from (1) that if X is a j-dimensional subspace of X, (1 < j < m) then
there is a nonzero x€X such that E(4;, ) x = 0, and then {A""!x, 4"x) =
= |AY2E(0, A;] 4"x||* £ [4'2E(0, 2;]]|* | 4"x||* = ;] A"x||*>. This inequality and
(4) imply that

(6) MnSA, j=12,...m, n=12,...

J

Jl

It follows from (1) that for each ¢ € (0, )Vj/2) there exists a j-dimensional subspace X
of X, such that E(4; — &, o) x # O for all nonzero x € X. By Lemma 1 we can find
a positive number ¢ such that |A"E(0, 4, — 2¢] x|| < ¢((4; — 2¢)j(4; — &))" [|4"x|
(Vx € X). Thus for any nonzero x € X we have

<A"+1X, A"X) ZJ. 62n+1 d<E(f)X, X> g
(0,)
> (4 — 2) EXACE(E) x, x) = (4; — 2¢) |A"E(2; — 2¢, 0) x||* =

(4j=2¢,0)

= = 20) (] = B = 2] 4nx]?) 2 Gy = 20) (1= (15 - 2>) )

j — €

x [l anx]®
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and using the max-min principle we get

_ 2n
Aiw 2 (4 — 2¢) x (1 - cc—zf) )
vj——

This inequality together with (5) and (6) implies that A; = lim A, , > 4; — 2¢ for
any ¢ > 0, and this completes the proof.

n

Let V;, be the subspace of X, spanned by those eigenvectors of A4, which cor-
respond to the eigenvalues of A, lying in the interval (aj+ 1> ;] In the case dim X, =
= 1 we obviously have V; , = A"X,. In general we cannot find a subspace Z; such
that V; , = A"Z;, nevertheless, we shall show that there are subspaces Z; which satisfy
this identity approximately.

For any two subspace M, N of H we set (cf. [1], §1V.2)

. O6(M,N) = max {5(M, N), 5(N, M)} .

§(M,N) = sup inf|x — y
xeM yeN
x|l =1
(M, N) is called the gap between the subspaces M, N and if P, Q are orthogonal
projections on M, N, respectively, then (M, N) = [P — Q|,3(M,N) = |(1 — Q) P|.
Thus § is a distance function. It is known that

) if (M,N)<1 then dimM <dimN

(see [1], Corollary IV. 2.6.) and (cf. [1], Th. 1.6.34)

() if dimM =dimN then &(M,N)=5(N,M)=5M,N).
We put

) Y; = Xo nker E(aj, ©) = Xo nran E[0,0;] (j=1,2,....,k + 1).

Then {0} = Y,; £ Y, & ... € Y, = X, and let Z; be a subspace complementary
to Y, in Y, ie. Z;n Y, ={0}and Z; + Y,,, = Y;. We also set Z;,, = A"Z;
then we have Z,, + Z,, + ... + Z,, = X

ne

Lemma 2. For any ¢ > 0 there exists a positive number ¢ such that

(10) Z;,m E0j — &,0;] Z;,) < (1 — gfaj).
Furthermore,
(11) “(A - aj) , Z,-,,,H -0 with n-> .

Proof. Lemma 1 applied to Y = Z;, & = a; — ¢, = «; implies the existence of
a positive number ¢ such that |A"E(0, «; — €] z|| < ¢(1 — gjo;)" A"z (Vz€Z)),
which gives [z — E(x; — &, ;] z|| = |E(0, 0; — ] z[| < (1 — ¢fa;)" torall z€ Z, .
Consequently, for large n, 6(Z; ., E(o; — &, ;] Z;,) < ¢(1 — ¢]a;)" < 1, hence, by
(7), dim Z; , < dim E(2; — &, %;] Z,, < dim Z;,, and applying (8) we obtain (10).
In virtue of the inequalities
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I(4 = %) [can aj-eian]l S & and (4 = «)) |z, ,
< A = @) |rymenzinll + 14 = 0] 0Z; 0 E(ey = 2,91 Z;,) <
e+ ol —gfay)

we have ”(A - “j) ’Zf,n

< 2¢ for sufficiently large n, which proves (11).

Theorem 2.
S(Viw Z;) 3 0 and (4 —aj)ly, [ 50
for j=1,2,.., k.

Proof. We put n = min (x; — a;,,) and p, = max (4; — 4;,), where 1,, are
155k 1<jsm
the eigenvalues of A, (cf. Th. 1). Assume that ze€ Z; ,, |z|| = 1 and v; are orthogonal
eigenvectors of A, such that A,v;, = 4; ,v;, z = vy + v, + . e Lhen

642 = ) =12 = [0y = ) X oil? = | (G — )0 =i§1u.~,n -t o

Thus, if n is so large that y, < :1/2, then

(4, - ,) |20l* 2 (40 = ) 2]* = (°]4) Z el =09l - ¥ ol
Vin vieVjin
In this way we have shown that
5(ZJ n> J") = 2“(’4 -« ) Zjn i/rl = 2H(A - ai) Zjn ”'7

for sufficiently large n. Lemma 2 implies that 5(Z;

s Via) < 1 for n large enough.
Then, by (7), dm Z;, < dim ¥}, and since

k k
mz;, = m
dim Z;, dim V;
j=1 i=1

+ we have in fact dim Z; , = dim V;, and in virtue of (8),
(12) HZs Vin) = 0(Z; Vi) < 2)(A = ) |2, [n

This together with Lemma 2 shows that 6(ZJ w Vin) 7 0. To complete the proof it
suffices to note that

”(A - O‘j)l".r,n

< (4 = o)z, + 14 = o 82 Vi) 2 0

We shall study now what happens if instead of the initial subspace X, some larger
or smaller space is taken Suppose that X, is an m-dimensional subspace of X,
and let P,, 4,, k, &, 1;, 7;,, mean the same for X, as the non-waved symbols mean
with respect to X .
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Theorem 3. Under the above assumptions the following statements hold:
s ~ k k
i) {&}i-1 {ajh':l_’
ii) the sequence {J;}7 is a subsequence of {1;}7,
) A, 242 Ao J = 1,2, .0,
V) A Z A 2 A J = L2, ity n= 1,2, ..,
v) if 171.’,, is a subspace spanned by those eigenvectors of A, which correspond
to the eigenvalues lying in the interval (a;,, o;] (non-waved!) then
§(V;

J

w Vin) 2 0.

Proof. Note that if o’ ¢ {o;}} then X, n ker E(a, 00) does not depend on o in some
neighbourhood of o, hence X, N ker E(oc, o) does not change in this neighbourhood
as well — this shows i).

Let ¥,=Y,nX, (j=1,2...,k+1) (cf. (9), then {0} = ¥,,, = ¥, =...

.c ¥, =X, Setting Z; =Y}, n¥, we see that Z;nY,,, = ¥, n¥;n
Y= Y5 0%, = {0} Since Z;nY;,, = {0} and Z; + Y}, Y, there
exists a subspace Z; complementary to Y;,; in Y; and containing Z;, i.e. Z; = Z,,
Z,+ Y, =Y and Z;n Y;,, = {0}. It follows from Theorem 2 that
8(Vjm A"Z;) > 0 and 8(V;,, A"Z;) - 0. This convergence and the inequality
(Vi Vin) < 8V A"Z;) + S(A"Z;, A"Z}) + 0(A"Z,, V;,,) imply V) since
8(A"Z;, A"Z,) = 0.

The inequalities (V. A"Z;) < 1, §(V;,.» A"Z;) < 1, which hold for sufficiently
large n, imply together with (7) that dim ¥V, = dim Z; < dim Z; = dim V; . Thus
if we put

Jj—1 - ji—1
(13) my=my =0, m;=) dimZ;,, m;=73 dimZ,,

i=1 i=1
then it is a consequence of the definition of 171-,,,, V; . and Theorem 1 that 4, .;, /7
2 dmysi =0y and Ly iy 7 Ay = 0, i = 1,2,...,dim Z;. These relations imply
ii). iv) is an asertion of Th. 11.6.46 [1] aplied to the operators 4, and 4, = P,4,|¢,
and iii) may be obtained from iv) by going to infinity with n.

With the notation (13) it follows from the above theorem that for j = 1 one has
Z,;,ﬁ,-,,, Syt S 0 (i=1,2,...,dim Zj); these inequalities do not hold for
Jj > 1in general. Nevertheless, one might expect that the convergence 4, +in 3> ®;

n
is not worse than Az 4 ;, — «;, i.e. that

(14) lim sup (0t = A4 i )/(@ = Apyuiw) < 00, i=1,2,...,dimZ;.

The next theorem shows that (14) holds if dim X, = 2, however, no general solution
has been found.

Theorem 4. In addition to the assumptions of Theorem 3 assume that dim X, = 1,
dimX, = 2and 1, = 4, < ;. Then
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lim sup (2, — 4,,)/(A2 = Zy,) < A4)(Ay — 22) -

Proof. Let v,, w, be the orthonormal eigenvectors of 4,, x, — the unit vector in X,
and y,€X, a unit vector orthogonal to x,. Then it follows from (4) that 4,, =
= <AU", Un> é Zl,n = <Axn5 xn> é }'l,n = <A“}n9 wn>’ and we pUt Hn = <Ayn.~ yn>7
VY = {AXy, Y- Ay p» A2, are the eigenvalues of the matrix

o = Zl,n ?n]
S T

thus solving the quadratic equation det (&, — 1) = 0 we have
(15) /12,7: = (Zl,n + Hn - ((zl,n - Mn)z + 4[’)’nl2)1/2)/2 .

We shall estimate |y,|- Since 4, , — 1, it follows from Theorem 1 that E(£,, o) x,, =
=0 for all n, which implies [(4 — 4,/2)x,| < 1,/2 and consequently,
(4= Z)x,)* = (4 = Z4/2) %, = Zixaf2)* = (4 = Z,)2) x,|* = 2((4 = 4,[2) x,,
;l,x,,/?.) + H/llx,,/iZHZ = (/11/2)2 — 24y, — ).1/2) 11/2 + lf/4 = /11(/11 — }.1,"). This
inequality and the eigenvalue expansion of A, further gives Z,(4, — 4,,) =
g ”(An - ;[‘1) X"HZ = ”(An - A’Z) (<xn! Un> Uy + <xn’ Wn> W,,)”Z = H(xm vn> (}‘2,71 - ;“2)'
0+ (X W) (Ag = Ag) wa||? = <X w2 (A1, — 4)%. This inequality implies

(16) |<xm Wn>I2 = 12(11 - 11,::)/('11,'. - }*2)2 .

The identities w, = <Wn: yn> Yn + <Wn’ xn> Xn and ,<W", yn>
= [wa]l* = 1imply

2:

24 KW x>

(17) I,y |2 = |<Ax y > 2 <Axm W, — <Wn9 xn> xn> 2 —
W V>
— I<X"’ AW"> - <xn9 wn> <Axn’ xn> 2 _ (/{ _ Z )2 (X", wn> ?
1= [Cw x| BT K
Note also that
(18) ty =trace o, — Xy = Ayt Agp— Ay Ay

Now the identity
2’2 - A‘Z,n = [((zl,n - :un)z + 4[?!1[2)1/2 - (Il,n + Hi — 2)2)]/2 =

(~1," — /'L")Z - (zl,n + Uy — 2/12)2 + 4 T -
2(((11,,‘ - /“‘n/2 + 4Iynlz)1/2 + /Tl,n + = 243)

(= 1y,) At = 2a) + 20 = L)
LT = A A AP T — 20

2
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implies in virtue of (16), (17) and (18) that

. Ay = dam _ (A = A2 27,
2 2n <o) — Ay + lim %
lim sup = = 1 2 T2 [ w2 (}Ll’" _ /12)2

X (A = 22 + 02 + 2o + 4y = 24,]71 = 404 = 2),

n—o 2~ M,n

Wwhich completes the proof.

It is shown in the above proof that s, — A, and |w, — y,| - 0, thus instead of
looking for the exact solution of the eigenvalue problem for the operator 4, one may
be satisfied by taking 1, > > Xp» ¥ as the approximate solution. This procedure may
be generalized in the following way.

Suppose that {0} = M, « M, < ... © M,, = X,, are subspace with dim M = j.
Let x;,€ A"M; be a vector orthogonal to A"M;_, with unit norm and put y;, =
= {Ax;,, x; > (j = 1,2,...,m). Note that the vectors X; ,, X3 s -+ X, may be
obtained from the vectors Ax; ,_1, AX3 -1, -+, AX,, ,—; by the Schmidt orthogonali-
zation process (see e.g. [1] p. 50).

Theorem 5. The sequences {i,jn=o {J = 1,2,...,m) are convergent and
{lim p; .} 7= = {oy, 03, ..., & }. If W, denotes the subspace spanned by the vectors
X; . with indices j such that lim p; ; = o, then §(W,,, V,,) - 0.

Proof. Let P,(j) denote the orthogonal projection on 4"M; and F,,(j) — the
orthogonal projection on the subspace V,,(j) spanned by those eigenvectors of
the operator P,(j) AIA..MJ which correspond to the eigenvalues lying in the interval

(%4 1» %] Theorems 1 and 2 imply that there exists a number n, such that
dim V;,(j) is independent of n for n > n,. Theorem 3 implies that

(19) 6(Viui = 1), Viu(i) 7 0,
k
thus, by (7), dim V,,(j — 1) £ dim ¥, ,(j) for n > n,. Since j = Y dim V, (j) =
k =1
=1+ ) dimV,,(j — 1) we m fact have dim V,,(j — 1) = dim V,(j) for all
I=1

1 =1,2,..., k except one, denoted by I, which together with (19) and (8) implies
that for I % 1,

(20) [F1a3) = Frai = D] = 8(Vi(i)s Viali = 1)) 5 0.
Since

Pn(.l) =I§:1Fl,n(j) 4
thus setting

G, =P(j) = P(j — 1) = > Xjn) Xim
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we have

“ Jmn (Flj n( ) Flj,n(j - 1))” = ” li (Fl,n(j) - Fl,n(j - 1))“ =

1%1;

M=

< X3V Viali = 1))
51
Let
Q.= G,, and W,,=ranQ,,,
lj=r
0, »is the orthogonal projection on W, ,. The previous inequality implies that
(21) (5( o Ven) = “ On — F,’,,(m)” =
= X (G = (Fru(i) = Frali = D)) = X (Fra0) = Frli = D)) =
= ler
m k m
< ¥ X 0) Viali = 1) + X 6(V1(0), Voali = 1)
Jj=1 j=
lj=r l#lJ Lj#r

This in virtue of (20) shows that 8(W,,, V,,) = 0, (r = 1,2, ..., k). This con-
vergence and Theorem 2 imply that ||(A - ot,)lwm
it suffices to note that if I; = r then x;, € W, , and then

[1jm = o] = [K(4 = %) X} Xj.00] <
< (4 - “)x, W S (4 - a) -0.

W,

ERROR ESTIMATIONS

Suppose that the eigenvalue problem for the operator 4, has been solved. Then,
using the formula

Ak, o(A) = int |1~ 4| = inf [(4 — 2)x]
x| =1

(cf. [11, p. 277), we can estimate how far the eigenvalues of 4, are from the spectrum of
A. Namely, if (4, — 4;,)v;, = Oand |v;,| =1, then d(4;,, o(4)) < (4 —
= 230yl = (A0l = 2500y 079 + )17 = (v — 22,72 T the
same way we can find an a posteriori estimate d(y;,, 6(A)) < (| Ax;,||* — ui )%
where X; ,, u; , have the same meaning as in Theorem 5.

If a; is an isolated eigenvalue in o(A) then the following theorem gives an a priori
estimate of d(4;,, o(4)) and provides fast convergence of eigenvalues and eigen-
vectors of operators A,,.
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Theorem 6. Suppose that for some ¢ > 0 (oc — & a;] 0 o(A) = {«;}. Then there
is a positive number c¢ such that §(V, J wEiZ;) < ol — gfa)’, where E;
= E(o; — & 0;] = E[;,0;] and a; — 4,, < c(l — gla;)*", for all i such that
A = o

Proof. It follows from (10) and (11) that there is a positive number ¢, such that
for sufficiently large n, 8(V;,. Z;,) < col[(4 — 2))|z,,| and 6(Z;m E;Z;,) <
< ¢o(1 — ¢fa;)". Note that (4 — o )IE 2z, =0and E;Z;, = EA"Z; = E;Z;; there-
fore (4 = 2|5, | = |4 — 5]  (Zyu E,2,) and 8(Vy EZ) € 8Vym 1) +
iZ,,, E;Z;) < co(|A = o + 1) (1 — &]a;)". Suppose now that (4, — 4;,) v = O,
veV;,, |v] =1 Then % =a, and i, = (Av,v) = <A(l — E;)v, 0> +
+ CAEjv, v) = CA(l — Ej)v, (1L — Ej) vy + oj|Epw[[>. Thus oa; — 4;, =
=L~ )~ A= B (1 5)o =i - £) ] <
< a(8(Vym E;Vy0))* Tt is easy to verify that S(E;Z;, E;V;,) < 8(E;Z;, V;,,), hence
‘S(an’ J J") s 5 Vi Ej J") + 5(E.I 7 Ej J") = 25(V_,,,,EZ_,) = 2‘:1(1 - 8/“
The above shows that o; — 4;, < c,(1 — &a;)?", where c, is a new constant in-
dependent of n.

A similar theorem may be proved for the approximation process considered in

Theorem 5.

Theorem 7. In addition to the assumptions of Theorem 5 suppose that f; are such

positive numbers that («; — B, o] N o(A) = {a,}, and put y = max (1 — Bjlxy).
Then there is a positive number ¢ such that for j = 1,2,...,k and n=12,.
we have

(W) E;Z;)) < " and o

;= u,-',,l < ey* forall i

such that p; ,, - o;.
Proof. Applying Theorem 6 we have
(22) 5(”’1 w Ej ZJ) = 5( jm j,n) + 5(VJ wE ZJ) = 0( jm Vi n) + "

We keep the notation from the proof of Theorem 5 and put Z,(j) = (¥, n M,)* n
N Y, n M; (cf. the definition of Z; in the proof of Theorem 3). There are two pos-
sibilities:

i) Z,(j) = {0} — then for sufficiently large n, V,,(j) = {0},

ii) Z,(j) # {0} — then we may apply Theorem 6 with M; instead of X,. Thus in
both cases there exists a positive number ¢ such that

(23) S(Via(i) EZ(J) = (1 = pifou)" < ey 5 0.

In the inequality 8(E, Z,(j), E, Z,(j — 1)) < (E, Z,(j), Vi..(j)) +

+ (Vi) Viuli = 1)) + 8(V,,(j — 1), E, Z(j — 1)) the righthand side converges
to zero for [ # I, in virtue of (23) and (20). This implies that E, Z(j) = E, Z,(j — 1)
for 1+ 1, and by (23), §(V;,(i), Viuli — 1)) £ 8(V1(0), E1 Zi(J) + §(Vi.1(j — 1),
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E,Z(j — 1)) £ 2¢y". This inequality together with (22) and (21) gives
S(VVL"’ EjZi) é C'y" + z S(Vl,n(i)! Vl,n(i - 1)) é cly" )

i<m
k

IAIA

IAIA

1
1

-~
+#

with a constant ¢, independent of n. The desired estimate of ‘cxj — UK;,| may by
obtained in nearly the same way as that of Il,-,,, - atj| in the proof of Theorem 6.
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Souhrn

SPEKTRALNI APROXIMACE POSITIVNICH OPERATORU
METODOU ITERACE PODPROSTORU

ANDRZEJ POKRZYWA

Vysetfuje se metoda iterace podprostorti pro aproximaci bodii spektra positivniho
linedrniho omezeného operdtoru. Je popsdano chovdni vlastnich hodnot a vlastnich
vektorii A,, vznikajicich pfi uZiti této metody, a jejich zdvislost na poéétéénim
podprostoru. VySetfuje se rovné€Z uziti Schmidtova ortogonalizaéniho procesu
k piibliznému vypoctu vlastnich prvki operdtort 4,.
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