Aplikace matematiky

Ivan Hlavacek; Michal Ktizek

Internal finite element approximations in the dual variational method for second
order elliptic problems with curved boundaries
Aplikace matematiky, Vol. 29 (1984), No. 1, 52-69

Persistent URL: http://dml.cz/dmlcz/104068

Terms of use:

© Institute of Mathematics AS CR, 1984

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/104068
http://dml.cz

SVAZEK 29 (1984) APLIKACE MATEMATIKY CisLo 1

INTERNAL FINITE ELEMENT APPROXIMATIONS IN THE DUAL
VARIATIONAL METHOD FOR SECOND ORDER ELLIPTIC
PROBLEMS WITH CURVED BOUNDARIES

IVAN HLAVACEK, MicHAL KRiZEK

(Received April 18, 1983)
1. INTRODUCTION

Internal finite element approximations of the dual variational formulation for
second order elliptic boundary value problems in R? have been restricted, to
the authors’ knowledge, to domains with polygonal boundaries. It is the aim
of the the present paper to extend the results to domains with piecewise smooth (CZ)
curved boundaries.

The space of divergence-free vector functions with vanishing normal flux on some
part of the boundary is approximated by (internal) subspaces of finite elements,
having the same properties. We also satisfy the requirement to save the order of
approximation which belongs to polygonal domains. Thus we construct the
so-called conforming dual finite element approximations. If also a conforming
primal approximation is available, one obtains a posteriori error estimates and
two-sided bounds of energy [4, 7, 12, 14].

Using the concept of stream functions [5], some a priori I*-error estimates are
deduced, provided the exact solution is regular enough. We also prove the convergence
of the proposed method to a non-regular solution.

Let us introduce some notations. Let @ = R? be a bounded domain with a Lipschitz
boundary dQ (see [12]). The outward unit normal to 02 will be denoted by v. The
usual norm and semi-norm in the Cartesian product of the Sobolev spaces (W*?(Q)Y,
r=1,2,..., are denoted by ||, , 0 and ['Ik,p'g, respectively. We shall omit the sub-
script p in the case p =2 and we put HYQ) = W**(Q). Further, let L*(Q) =
= W%*(Q) and let the notation (-, +), o be used for the usual scalar product in the
space (LX(Q)) = (H°(Q)y. By P;(Q) we denote the space of polynomials of order
at most j defined on Q. Let C¥(Q) denote the space of continuous functions, the deri-
vatives of which up to the order k are continuous in Q.
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Next, we define the operator curl : H'(Q) — (I*(Q))? by the relation

.
curlv=(-a~li, _ﬁvw) , ve HY(Q).

0x, 0x;

Let us emphasize that all statements will alwys hold only for a sufficiently small
discretization parameter h. Moreover, notations C, C,, C,, ... are reserved for the
so-called generic constants.

Many boundary value problems of mathematical physics can be formulated in the
following classical way: Find u such that

(1.1) —div(dgradu) =f in Q,
u=1u on [,,
(Agradu)'v=g on r,,

Il

Il

where I',, I', are disjoint and open in dQ (one of them can be empty),
(1.2) M,ul,url,=0Q,

and M, is a finite set of those points, where one type of the boundary condition
changes into another. Further, f € I*(Q), i € H(Q), g € I}(I',) and A e (L*(Q))* is
supposed to be a symmetric and uniformly positive definite 2 x 2 matrix. In the case
I', = 0, we moreover assume that

J.fdx+J‘ gds =0.
Q o2

Let us recall that the dual variational formulation of the problem (1.1) consists
in finding  which minimizes the functional

(1.3) J(q) = 1b(q. 9) — I(q)

over the space

(1.4) 0 = {qe(I*(2))*|(q, grad v)g o = 0 Yve V},
where

V={veH(Q)|v=00nT,,

(L.5) b(9,9)=(47"9,9)o0
is a symmetric and Q-elliptic bilinear form and
(1.6) I(q) = b(p, q) — (9, grad @)oo,

where P e (L(Q))” satisfies the equation

(P, grad v)o.0 = (f, v)o.0 +f gvds YoeV.
T

9

For other details see [7, 9, 16]. Let us note that if g€ Q n (H'(Q))?, then divg = 0
in Qand q"v = 0 on I,. The space Q can be characterized also as follows. If the sets I,
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and I'; are connected, then

(1.7) Q=culW,
where
(1.8) W= {veH(Q)|v=0o0nTI,}.

The general case is described in the following theorem (see [9], p. 59).

Theorem 1.1. Let 0Q,, ..., 0Qy be the components of 0Q and let m be the number
of those components for which 0Q, 0 I',, % 0. Let n be the number of the components
of T, Then, if m 22 or n = 2, there exist functions o, ...,a™ %, B, ..., " e
€ (IX(Q))*> — curl W such that

0= Z(curlwou {a',..,0m" 1, Bt .., g1},

where Q and W are defined by (1.4) and (1.8), respectively, and &£ denotes the
linear hull. g

The details on the functions o, p7 will be presented in Remark 2.1.

In Chapters 2 and 4 some subspaces Q, of the space Q will be constructed. A func-
tion p,, minimizing the functional (1.3) over Q,, will be called internal approxi-
mation of the solution of the dual problem. An algorithm for finding p, will be pre-
sented in Chapter 5.

2. PIECEWISE CONSTANT EQUILIBRIUM FINITE ELEMENT SPACES

In this chapter we introduce subspaces Q, = Q consisting of constant elements
and we derive their approximation properties. We shall deal only with the problems
from the class ¥‘® according to the following definition.

Definition. 4 couple (Q, I';) is said to be from the class €%, if

(i) @ = R? is a bounded domain with a Lipschitz boundary, which consists of
a finite number of arcs from the class C®. The set of the end points of these arcs
will be denoted by M,.

(i) the part I, of the boundary 3Q consists of a finite number of convex and
concave arcs. The set of the end points of these arcs will be denoted by M.

An arc I' = 0Q is said to be convex (concave), if there exists a convex domain
Q, = Q(Q, = R* — Q) such that T = 0Q,,.

Note that for (@, I,) € € the set

(2.1) M=M, UM, UM,

is finite.
Let us describe the way of triangulation of a domain from the class '*). First
we establish an approximation I', of the part I'y, such that I';, < Q. Denote by
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re, ..., "' all components of I',. Every component (curve) I', will be now ap-
proximated by a polygonal curve F;,, < Q consisting of a finite number of line

segments the length of which does not exceed h. Each of those segments is a chord

Fig. 1.

or a tangent of a convex or of a concave arc, respectively, which is contained in I'}

(see Figs. 1 and 3). If I'} is a closed curve, we require I}, to be also a closed curve.
Moreover, we require that M; U M3 < I, n T, where

n—

1
th =U F;h .
i=0
The subdomain of ©, bounded by I', and I',, will be denoted by €, and we define
D,=Q—0,.

Now 7, will denote the triangulation of the domain Q, generated in a standard
way, assuming that the triangles adjacent to I', may have at most one curved side
(i.e. the inner triangles are “straight ones” only).

Furthermore, we shall always assume the validity of the so-called consistence
condition of a triangulation, i.e. the interior of any side of any triangle K € 7, is
disjoint with the set M (see (2.1)). Each segment from I'y, — I', coincides with a side
of one triangle K.

Moreover, we assume that all triangulations belong to a regular family of triangula-
tions M. (A family of triangulations M is said to be regular if

(i) there exists a constant x > 0 such that for any 7, € M and any K € 7, there
exists a circle Bg with a radius gk such that By = K and
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(2:2) xhy < 0k,
where hy = diam K,

(ii) for any ¢ > O there exists 7, € M such that

h=max hg <e¢.)
KeIn

Finally, we can define the space of equilibrium finite elements as follows:
(2.3) 0, ={qe Q| 4|y, =0, qxe(Py(K))* VKeT,}.

We shall now examine the approximation properties of the space Q, = Q. If we
introduce the space

W, = {veW|v|,, =0, v|xe P,(K) VKe T},

then a linear approximation operator r, : W H*Q) — W, will be determined by
the relations

(riv) (x) = v(x)

for all nodal points x of the triangulation 47, such that x ¢ I';,. Note that r,p = 0
on I',, and the function r,e W, is therefore uniquely determined. We have the
well-known lemma for I', = 0 (see e.g. [6], p. 41):

Lemma 2.1. Let (2, T,) € ¢'® and let I', = 0Q. Then
v = rw|y0 £ Chllv],o Voe HY(Q).

Proof. There exists (see [11], p. 80) a linear continuous extension operator
E : H¥(Q) » H*(R?) such that Ev|, = v and

(24) |Ev]2.p2 = Cifo]20-

Let 7, be a subset of all curved triangles from 7 ,. Consider K € T, with vertices

Ay, Ay, A3, wWhere A::43 lies on 0Q (see Fig. 2), and let F(K) denote the straight

A, K,
F(K) aNn
A, As
Fig. 2. A1
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triangle with vertices A,, A5, A5 such that A4;, i = 2, 3, are midpoints of the segments
A, A'. Since 8Q is piecewise from C'?, we get

(2.5) K = F(K) VKeZ,

for h small enough. Let us put F(K) =KforKeJ, — 5‘,‘ and for any triangle let
us define the function 7Ev € P,(F(K)) by the relation

FKEUIK = r,,v‘,(.
Then (see [1])
[|Ev — FyEv|s pxy < Coh|Ev|2 piky VK €T, .

Hence, by (2.4) and (2.5), we have

(2:6) ”" - rhU“?,Q = ”U - ’”h”“f,x <> ”EU - FKEU“?,F(K) £
KeJ KeJn

IIA

< C3n? Z |EU|§,F(K)

KeJp

C3h?|Ev|3 e £ Cal?|o30- m

Theorem 2.1. Let (2,I,)e 6%, I', = 0Q and let the domain Q be simply con-
nected. Then there exists a linear operator R, : Q n (H(Q))* - Q, such that

”q - Rh‘l”o,n < Ch”q”Lﬂ :

Proof. Let g€ Q n (H'(2))* be arbitrary. Since Q is simply connected, there
exists v e H'(Q) (see [5], p. 25, the so-called stream function) such that (v, 1)g o = 0
and

(2.7) q =curlv.

In our case, however, we have even v € H*(Q). Setting

(2.8) R,q = curl rpv,

we see that R,q € 0, and by Lemma 2.1, (2.7) and (2.8) we obtain

29)  la = Rigloe = eurl (v = ro)]o.0 = |o = rivfi.0 £ Cyhfo]20-
Using the Poincaré inequality

(2.10) ||UH1,Q = C2l”|1,9 >
we get

Jol3.e = Jolta + [ol30 = (C3 + D) (joff.a + [e[3.0) = (C3 + 1) g0

Combining this relation and (2.9), we arrive at the assertion of the lemma. -
The case I', = 0Q for a multiply connected domain will be considered later in
Theorem 2.3.

Now we shall deal with the case I'y & (. Then the Friedrichs inequality holds:
(2.11) lolli.e < Clo); 0 YoeW.
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Let ¢ > 0 be fixed. By G = Q we shall denote the e-strip of that part of I'y which is
curved (see Fig. 3), i.e.

G={yeQ|Ixel, — Iy:dist(x,y) <z},
where

1“; = {xel"g] 3 a straight segment S < Fg:xeS}.

(For instance, G = 0 if I, is polygonal.) First of all we prove an auxiliary lemma.

Lemma 2.2. Let (2, I,)e ¢® and let I'; # 0. Then

”v - rhU”l’Q < Ch(”v“zﬁ + IUIl,oo,G) Yve W,
where
W= {ve Wn H Q)| v|c e W*(G)} .
Proof. Let E, denote the union of all triangles K € 7, at least one vertex of which

lies on I'y, — I', (i.e. at the points of intersection of the tangents — see Fig. 3).
Consequently, E, = G holds for sufficiently small i. Further, for v € W we have

2 2 2 2
(2.12) lv - r,,vl,,g = Iu - 7}.”!1,0;, + l” - "hvll,sz,.»sp. + |“ - rh”ll,E..-

Fig. 3.

The first term on the right-hand side of (2.12) can be estimated as follows:
(2.13) [v = |3 p, = |0]3 .5, £ 2|0|7,,0, mes D, £ CR2|ol} 6
since (see [15], Chap. 1.6)
mes D, < C,h?*.
The second term can be estimated in the same manner as in (2.6), i.e.
(2.14) o= relian = 3 o= rlie s Ol
Kd&EEn

Thus, it remains to deal with the third term. Let K < E, be an arbitrary triangle and
let v € Pl(K) be the linear interpolation of the function UIK. Then we have

(2.15) [U - UKll,K < Chl|v]|2,x -
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Next we have to estimate the difference
Wg = Ug — (rhv)lk .

Let x be an arbitrary vertex of the triangle K. If x € I'y, (see Fig. 3), then

(2.16) dist (x, I';) < Chg,
and therefore
(217) IWK(X)I < Chlz(]vll.oo,c s

since wg(x) = vg(x) = v(x). On the other hand, when the vertex x ¢ I';;,, we get even
wi(x) = 0. As wg e P,(K), we see that (2.17) holds for all x € K and using (2.2),

we obtain the estimate
C )} 2 2
w2 <2 mesK(,llﬂth-G) .
’ J{h’(
From this and (2.15) it follows that

|u — rhv|f,x < |u — lef,x + IWKK,K < Ch,z((ﬂv”g,,( + mes K[ulf,w_a).

Hence
lo—riwfle = X |v—rwix s Ch*(||v|3 o + mes Eh[uﬁ_mﬁ).
Kern
From here, from (2.12), (2.13), (2.14) and the Friedrichs inequality (2.11) we obtain
the assertion of the lemma. -

Theorem 2.2. Let (2, I,) € ¢, let I'y + 0 and let I, I'; be connected sets. Then
there exists a linear operator R, : O — Q, such that

} la = Riglloe = Ch(la]i.0 + l4lo.=.0)

(2.18) 0 ={qeQn (H'(Q)| qls € (L*(G))*} -

Proof. Let g€ § be arbitrary. By (1.7) there exists v e W such that q = curl v.
In our case, we have even v e W. Setting again R,q = curl r,p, we see that R,q € Q,
and from Lemma 2.2 and (2.11) we obtain

”q - th”(z),g = IU - rhvli,!) = thz(”l)llz,rz + |U|1,oo,c)2 <
< G (Jofi a0 + [v]3.0 + |07 ,0.6) = C2H*(Jq]5 0 + |9]5.0.6) - m

To generalize Theorems 2.1 and 2.2 even further, we extend the domain of the
mapping r,. The extended map will be denoted by r, as well. Let us define the space
W'(=2W) by

(2.19) W ={veH Q)| ifn=2 3c,....,c,. R 10|r = ¢y,

i=1,...,n—1; 0|0 =0}.

59



Here we note that the distances of the components F; are positive due to the finiteness
of the set M,. Hence, for sufficiently small h, we can define the finite element sub-
space W, of the space W' in the following way:

W, = {ve W|v|p, € Po(Di) Yie{0,...,n — 1}, v|ge P,(K) VK e T,},

where Dj is the union of all components D of the set D, for which D n F; * 0.
The operator r,: W' n H*(Q) > W, will be defined as follows. For ve W' n
N H*Q)and i€{0,...,n — 1} we put

(2.20) r,,v|,,hi = vlrgx

and we demand as before that (r,v) (x) = v(x) for all nodal points x of the traingula-
tion 7, such that x ¢ I'y,. The function r,v e W, is uniquely determined by these
relations, and the following lemma is valid.

Lemma 2.3. Let (Q, I,) € €*. Then

o= rvlls 0 < Ch(||v],.0 + |U|1,m,c) Yoe W',
where
W = {ve W n HQ)|v|ce W"(G)} .

Proof. The case I';, = @ was proved in Lemma 2.1. Consequently, let I'y + 0.
This case can be proved by an argument parallel to that of Lemma 2.2, since we im-
mediately see that (2.12), (2.13), (2.14) and (2.15) hold for v € W', too. We show now
that also (2.17) can be proved for ve W'.

Since r,v = v on I', (see (2.20)) and since r,v is constant on any Dj, i
...,n — 1, we get from (2.16) that

6(5) = (1) (9] £ CHEll

where x € I',, is a vertex of a triangle K = E, (see Fig. 3). However, v(x)
and thus

0, ..

Il

vk(x)

Pox()] = Jox(x) = (m0) ()] = Chlo]s 6 -

But this estimate is true also for a vertex x ¢ I, because wK(x) = 0. Since
wy € Py(K), (2.17) holds for all x € K. The rest of the proof is the same as in Lemma
2.2. According to (2.20), we get v — r,v € Wand therefore we can apply the Friedrichs
inequality (2.11). -

We shall use the preceding lemma in proving Theorem 2.3, which generalizes
Theorems 2.1 and 2.2. Before that we introduce two important remarks.

Remark 2.1. The functions &/, B’ in Theorem 1.1 can be chosen for example in
the following way (see [9], p. 59). If n 2 2, then we define

(2.21) B =culw, j=1,..,n—-1,
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where w/ € H'(Q) are arbitrary fixed functions satisfying
w=6;onT,, i=0,...,n—1, j=1_.,n-1,
(9;; is Kronecker’s symbol). Taking w/ e C*(Q2), we get B/ ¢ (C™(Q))>.
Further,letm = 2andlet0Q, n I', & @fori = 0, ..., m — 1 (otherwise we change
the notation of the components of dQ2). Then we can define the functions &/, j = 1, ...
...m—1, by
(2.22) a’ = curlw/ on §;,
«/=0 on Q-5
where S; « Q is an arbitrary simply connected domain with a Lipschitz boundary
such that

(2.23) 0S;noQ, =0 Vke{0,...H} —{j - 1,j}
and the sets

(2:24) 0S; = 0S5, M 0Q;_,, 05} =0S;n dQ,

Fig. 4.

are nonempty, connected and included in I', (see Fig. 4). Next, S} and S are com-
ponents of the set S; — (9S} U 8s}), and wie H'(S)), j=1,...,m — 1, are ar-
bitrary fixed functions satisfying

(2.25) w/ =1 in a neighbourhood of the component 45 ,

w/ =0 in a neighbourhood of the component 3S%.

One can see, using (2.22), that &/ € (C*(@))? follows for w/ e C*(S,). Moreover,
(2.23)—(2.25) imply that

(2.26) dist (suppa/, I')) >0, j=1,...m—1,
and ¢ (in the definition of the set G) can be chosen so small that
(2.27) ajl(;:O, j=1..,m—1.
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One can easily verify that the functions «!,...,a™ %, B, ..., B"" ! are linearly
independent. Henceforth, we shall assume these functions to be fixed in the space

(c=(Q)). -
Remark 2.2. Let g€ Q n (H'(R))?. According to [5], p. 22, for this q a stream
function exists if and only if

j q'vds =0 forall i=0,...,H.
a92;

Consequently, for m = 2 the stream function does not exist, in general. There exists,
m—1

however, precisely one linear combination & = ), ¢/a’ such that a stream function

ve W’ exists for the difference q — «, i.e. J=1

(2.28) q—a=curly

holds. The coefficients ¢, ..., ¢" ™! are the solution of the linear system of equations

m-—1
(2.29) chj (az’)Tvds=J- q'vds, i=0,...,m—1,
=1 Jees 00

which is uniquely solvable (see [9], p. 61). Therefore, we can consider the mapping
g€ Qn (HY(Q))?* > ae ZL(a',...,am ). It is readily seen that the mapping is linear.
We shall prove that it is continuous as well.

Let v'e C*(Q), i = 0,...,m — 1, be fixed chosen functions such that

Vi|og, =0, i=0,..om—1, j=0,..,H.

Using Green’s Theorem, we obtain for i = 0,...,m — 1

J. q"vds '[ viqTv ds
aQ; 7]

where C can be taken independent of i, since v’ are fixed. Consequently, making use
also of (2.29) and of the equivalence of all norms in a finite-dimensional space, we
are led to the continuity of the map q > a, i.e.

|

= |(erad o', )o o] = [grad vo .0 [fo.0 = Claf 10>

(2.30) lafi.0 < clmi; Uan,qu ds| < Cy)q]1.0-

Recall (see [5], p. 25) that the stream function is determined except for a constant.
Thus the function v in (2.28) is uniquely determined in W’ if I'; # 9. In the case
I', = 0, we choose (the unique) v such that

(2.31) (v1)oe=0. m

Theorem 2.3. Let (2, I';) € 6'?. Then there exists a linear operator Ry, : 0-0,
such that ‘

la — Riglloe = Ch([a] 1.0 + [9]o.0.6)-
where Q and Q, are defined by (2.18) and (2.3), respectively.
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Proof. Let q € Q be arbitrary. According to (2.27), we write

m—1
q=curlv+ Y ca’,

i=1
where ve W', ¢, ..., " ' e R* and &’ are chosen in (C*(Q))2. Since q € J, we even
have v e W'. First of all let us construct an approximation of the function &’ by means
of functions from Q,. For the time being let the superscripts and subscripts j be

omitted.

Consider w e C*(S), which satisfies (2.25), and define (for sufficiently small h)

a function m,w e C°(S) by

(2:32) mWkns€PI(KNS), KeT,, KnS+0,
mw=w on 0S*uU dS*,
(maw) (x) = w(x)

for all nodal points x of the triangulation 4, such that x € S. Let us put

(2.33) Mo =curlmw on S,
Ma =0 on @-—S.

We can show that IT,x € Q. In fact, from (2.32) it follows that m,w fulfils (2.25) for
sufficiently small h. Consequently, using Theorem 1.1 and Remark 2.1, we obtain
e Q, since m,w € H'(S). Further, with regard to (2.26) and (2.33) we get IT,a|,, =
=0, and IT,a| € (Po(K))* follows from (2.32) and (2.33) for all K e ,. Con-
sequently, IT,x € Q, (cf. (2.3)).

Using (2.22) and (2.33), we derive that

(2.34) o — Matffouo = [eurl (w — mw)|os < [w — mw|ss < Chlw,s .

The last inequality is standard and can be proved in a way parallel to that of (2.6)
(taking into account the fact that w = 7w in a certain neighbourhood of the com-
ponents dS? and 0S*).

The Friedrichs inequality together with the fact that w
and (2.22) yrelds

es; = 0 and with (2.34)

lo =m0 = CHAW[s, + [W]5s) = CR2[@|] s, = C?[|3 0

Putting
I, =mz_:c"H{;ac’ for a =mi: cal, JeR?,
j= B
we can easily find that
(2.35) e — Malo,q = Chlja]

holds for all « from the finite-dimensional space Z(a, ..., 2" ').
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Now, for g€ § we define
(2.36) R,q = curl rpp + I

on the basis of the relation (2.28). Then obviously R,q € Q, and we may write, making
use of (2.28), (2.36), Lemma 2.3, (2.35), (2.31), the Friedrichs inequality if I', + 0
or the Poincaré inequality (2.10) if I', = 0, (2.27) and (2.30),
la = Rigllo,e = [curl (v = riw)]lo,0 + & = Miflo.e < Cih([0]2.0 + t]1 .6 +
+ “““1,9) =< Czh(‘vh,n + |U‘2,rz + ”curl U”O,oo,c; + ”““1.9) =<
< Ch(|q = a0+ [9lo.m.c + [a]1.0) = Cl[la] 1.0 + [a]o.0.6)- -

2

3. ERROR ESTIMATES AND CONVERGENCE

In this chapter we shall estimate the difference p — p,, where p and p, are the
solution of the dual problem and its internal approximation (from the space Q, —
(2.3)), respectively (see Chap. 1).

Theorem 3.1. Let (Q, I',) € €@ and let p € Q (cf. (2.18)). Then
Ip = #ullo.e = Ch([p] 1.0 + [Pllo..c) -

Proof. The well-known Céa’s Lemma ([1], p. 104) yields

”P - Ph”o,rz =C ing ||P - qh”o,n =C H‘P - RhP”O,Q'
qaneln

The assertion follows then from Theorem 2.3. -
When no regularity of the solution p € Q is assumed, we obtain a convergence
of p, to p by virtue of the following density theorem.

Theorem 3.2. Let Q = R? be a bounded domain with a Lipschitz boundary and
let I, and T, satisfy (1.2). Then the set Q N (C*(Q))* is dense in Q (with respect
10 the |*||o g-norm).

Proof. Let q € Q be arbitrary. Then by Theorem 1.1 we have

q=curlw +a+ B,

where w e Wand «, p e (C*(Q))*> — see Remark 2.1. According to [3], p. 618, there
exists a sequence {w,} = Wn C*(@Q) such that

[w—=wio—0 if k—>oo.

Hence, putting g, = curl w, + « + B e (C*(2))?, we obtain q, € Q,
la = aflo.e = [eurl(w = wi)foa < [w = w120 m

64



Remark 3.1. Similar results obtained under a little stronger assumptions can be

found in [8, 10]. -

Theorem 3.3. If (2, I')) € 6%, then |[p — p, |00 = O for h — 0.

Proof. Let ¢ > 0 be given. By Theorem 3.2 there exists g€ Q n (C*(Q))* = O
such that |p — q|lpo < ¢/2 and by Theorem 2.3, |q — R,q|lo.o < /2 for suf-
ficiently small /. Thus on the basis of Céa’s Lemma, we get

P = Puoe < Cinfllp — qiloe = C([P — qlloe + |9 — Rigloe) S Cc. m

qneQn

4. EQUILIBRIUM FINITE ELEMENT SPACES GENERATED
BY POLYNOMIALS OF HIGHER ORDERS

Let us consider again problems of the class ¥‘®). Assume now that each of the
smooth arcs belonging to C®, from which the boundary ¢Q is composed, has a para-
metric representation

x=0(), y=y(s), o.peC?,
and the functions @, are available.

Let 9 be a regular family of triangulations of the domain @, including curved
elements — triangles with one curved side along the curved part of 0Q.

To define subspace W, < W' (see (2.19)) generated by polynomials of higher
orders, we can use the approach of Zldmal ([18], [17] p. 28). Let us introduce the
mapping
(4.1) x=x(&n) =x; + %,& + X3n +

+ (L =&=n) @ —n)"" (ol + 53m) — x; — Xam),
J”—’Y(Cvaﬂ)=h + 7.6 + yan +
+ (1 - - "I) (1 - ’7)71 (‘//(51 + 5‘3’7) — Vi~ f3'1),
where
')—cl'zxj_xl’ J7j=yi—y1,j=172a

S3 = S3 = St

which maps the closed triangle K with the vertices R, = (0, 0), R, = (1,0), Ry =
= (0, 1) in the &, n-plane onto a closed triangle K € 7, with vertices P; = (x;, y;),

—_

j =1,2,3,in the x, y-plane. Then the side R,R; is mapped onto the arc PP, the
sides R, R, and R,R; are linearly mapped onto the sides P, P, and P, P, respectively
(see Fig. 5). Finally, s,, s; are the values of the arc parameter corresponding to the
vertices P; and Pj, respectively.

Zldmal has proved the following assertion (see [18]): Let the boundary dQ belong
piecewise to C?), Then for sufficiently small & and any triangle K € 7, the mapping
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(4.1) maps one-to-one the closed triangle K onto the closed triangle K and the
Jacobian J(&, n) of (4.1) is different from zero on K.

y
R
8
[m
( P
2 X
Ry
| & 3
R, R, Fig. 5.

Choosing a polynomial (&, ) in K we define

p(x, y) = r(i(x, y), 17(x, y)) on K,

where ¢ = &(x, y) and n = n(x, y) is the inverse mapping to (4.1). The polynomials
r(é, 1) are such that their values on each side of K are uniquely determined by some
(nodal) parmeters associated with some points (nodes) lying on this side. The trial
functions are now defined on the whole domain @ by the values of the nodal para-
meters at the nodes.

If K runs through the partition °, of Q, we get all nodes of Q. Evidently, the trial
functions form a finite-dimensional subspace of H'(Q). As the boundary 0Q is mapped
piccewise onto R K5, the conditions of, i = ¢, i =0,1,....n — 1, where ¢; = 0
(see (2.19)), are casy to satisly by choosing the boundary nodal parameters in such
a way that r(0, 7) = ¢;. Thus we obtain a subspace W, of W'.

Remark 4.1. If the boundary 0Q is piecewise polynomial, cne can use the so-
called isoparametric finite elements to construct the subspaces W, of W'. For details
we refer to the book [1], Chap. 4.

We may therefore consider an arbitrary finite element space W, such that
(4.2) W, < wW'.

First of all let us suppose that the part I', of dQ is contained in at most one com-
ponent of the boundary Q. Then by (2.19), (2.21) and by Theorem 1.1 for m < 2
we sec that

(4-3) Q = curl w'.
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We can define the space of equilibrium finite elements as follows:
(4.4 Q, =curl W,.

The desired inclusion Q, = Q results from (4.2) and (4.3).
Let rp: W n H*"(Q) > W,, k=1, be an operator with the following ap-
proximation property:
[v — rivlly .0 £ CH|vllis1,0-

(See [17, 18], where such estimates have been proved for subspaces of curved finite
elements.) Then we can define an operator R, : Q n (H¥(Q))* - Q, by

R,q = curl (),
where g = curl v, and R, has this approximation property:
(4.5) ”q - th”o,g = chrl (v - '"hU)Ho,Q = C1llk||ullk+1,n nY Czhk”quk,rz .

The last inequality has been obtained by means of the Friedrichs or Poincaré ine-
quality, respectively. Therefore, if the solution p of the dual problem belongs to
0 n (HY(Q))?, we get by Céa’s Lemma that

Ip = pullo.e = ChMp
If the set (JW, is dense in the space W’ (with the |||, o-norm), then the set (JQ,
h h

k.2

is dense in Q (with the |+|, o-norm) and the convergence |[p — P40, — O can be
derived in a way analogous to that of Theorem 3.3.

When I', is contained in at least two components of 0Q (i.c. m = 2), then the space
of the equilibrium finite elements can be defined as follows:

(4.6) Q, = L(curl Wy L {ay, ..., '),

where &) are determined by (2.22), where wj e {w|5j we W,} are functions satislying
(2.25). The definition of Q, is independent of the particular choice of af, since any
other @ can be expressed as @ = a] + curlw, for convenicnt w, € W;. Now an
approach parallel to that in the proof of Theorem 2.3 can be uscd to obtain the
approximation property (4.5) of Q,.

5. APPENDIX

The internal approximation p, of the dual problem can be easily found via the
following theorem.

Theorem 5.1. Let I'y & 0, let I', be contained in at most one component of 0Q
and let {w;}{_, be a basis of the space W, = W'. Then we have

d

Py = x;curlw;,

i=1
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where xq, ..., X4 is the solution of the system of linear algebraic equations with
a positive definite matrix

d
(5.1) Zlb(curl wi, curl wy) x; = I(curlwy), i=1,...d,
=

where b(+, +) and I(+) are defined by (1.5) and (1.6), respectively.

Proof. Since F;’ #+ 0, the kernel of the mapping curl : W, — Q, reduces to the
zzro element. Consequently, the relation dim W, = dim Q, follows. Thus {curl witdo,
generate a basis of the space Q, and the ellipticity of the bilinear form b(+, *)implies
that the matrix (b(curl w;, curl w;))¢ ;_, of the system (5.1) is positive definite. The
rest of the assertion is obvious. -

Remark S.1. Since supp curl w; = supp grad w;, by a suitable labelling of the
basis functions we can reach that the matrix of the system has a structure similar
to that of the corresponding system of the primal finite element method. Moreover,
if the material is isotropic and homogeneous (i.e. if 4 in (1.1)is an identity matrix),
the relation

(curl wy, curl w;)y o = (grad w,, grad w)), o

holds, i.e. the inner products in the matrix of the system (5.1) can be calculated in the
same way as in the primal finite element method. -

Remark 5.2. In the case I'; = @ we have dim W, = 1 4+ dim Q, and for the choice
of the basis functions in Q, see the paper [9], p. 46. If I', is contained in at least two
components of the boundary 02 and if {g’};_, is a basis of the space curl W}, then
{q', ... q" &y ..., &y "'}, where af are the same as those in (4.6), will be a basis of
the space Q,. For the details we refer to the paper [9]. -
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Souhrn

VNITRN{ APROXIMACE KONECNYMI PRVKY
V DUALNI VARIACNI METODE PRO ELIPTICKE PROBLEMY
DRUHEHO RADU SE ZAKRIVENYMI HRANICEMI

IvaN HLAVACEK, MICHAL KRiZEK

Na oblastech s po ¢dstech hladkou hranici jsou zkonstruovdny pomoci prcudové
funkce podprostory konecnych prvkit v prostorech vektorovych funkci, jejichz
divergence je rovna nule a jejichZ normdlovd komponenta je na ¢dsti hranice rovnéz
nulovd. Pomoci téchto podprostort je definovdna vnitini aproximace dudlni tlohy
pro eliptické rovnice 2. Fddu. Je dokdzdna konvergence této metody (bez pfedpokladu
na regularitu feSeni) a pro dostate¢n& hladké feseni je dokdzdna i optimdlni rychlost
konvergence. Vnitini aproximaci Ize ziskat feSenim soustavy linedrnich algetraickych
rovnic s pozitivné definitni matici.
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