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SVAZEK 29 (1984) APLIKACE MATEMATIKY ČÍSL01 

SOLUTIONS OF ABSTRACT HYPERBOLIC EQUATIONS 
BY ROTHE METHOD 

MILAN PULTAR 

(Received November 26, 1982) 

INTRODUCTION 

In this paper we consider the abstract hyperbolic equation 

(VI) ^ + A(t) u(t) = f(t) , r e < 0 , T > , T < c o 

dt2 

with the initial conditions 

(1.2) M(0) = «o, ^ ( 0 ) = M l , 
dt 

where A(t) is supposed to be a symmetric elliptic operator which depends on t. 

The above mentioned equation is solved in the following way: 
a) for a uniform partition of <0, T>, h = Tjn and ntf = jh we construct an appro­

ximative solution 

(1.3) "_(.) = «_,_. + (t - tj_x) h~\% - "_,_0 

for tj_x tMtitj, j = 1,...,«, 

where "zj, j = 1,..., n are the solutions of the system of equations 

(1.4) %-2'zj ,+%._ +.Ajn2j = nfjt ; = ! , . . . , „ , 

h 

(1.5) % = w0 , n z _ ! = w0 - hux , 

where " ^ = A(nt3) , % = / ( % ) ; 
b) under certain assumptions on A(t), f(t) and the initial conditions w0 and ux 

we prove that the sequence nw(t) converges for n -» oo to the unique solution w(t) 
of (1.1), (1.2); , . , ; . 
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c) in the next part some numeric aspects of the above mentioned method are dealt 
with, some estimates of the difference of the approximate solution nu and the exact 
solution u of the problem (1.1), (1.2) are presented here; 

d) in the last part of this paper we present results concerning estimates of errors 
of the approximate solutions which are constructed by using only the approximate 
solutions of the equations of the system (1.4), (1.5). 

The method described is called the Rothe method or the method of lines. 

The Rothe method was introduced in [9] and later on has been used by many 
authors for the solution of parabolic equations — see [1] — [6]. Hyperbolic equations 
have been solved by the Rothe method first in [7] and [8]. In this papers the operator 
A was considered only independent of time t. Questions concerning hyperbolic 
equations have been solved also for instance in [10] by using other methods. 

NOTATIONS AND DEFINITIONS 

Let V be a reflexive Banach space which is contained in a Hilbert space H. We 
assume that Vis dense in H and Vis continuously imbedded in H. We identify the 
space H with its dual H' and denote by V the dual space of V In this way we can 
identify H with the subspace of V: 

(2.1) Vc H c V' . 

We denote by | • | and || • || the norms in H and V, respectively. The inner product 
in H as well as the pairing between Vand V' are both denoted by (•>•) (which is 
possible due to (2.1) and density Vin H). 

((•,•)) denotes a continuous symmetric bilinear foim defined on V x V Such 
form can be identified with a symmetric operator A e J5? (V, V'), where for ueV 
in the following way we define Au e V 

(2.2) ((u, v)) - (Au, v) for all v e V. 

The space of all such operators is denoted by jrf. 

In the whole article ( ( v ) ) „ t e <0, T> = I denotes the set of continuous symmetric 
bilinear forms defined on V x Vfor which there exists a > 0 such that 

(2.3) ((u, u))t ^ a\\u\\2 , u e V, tel. 

At denotes the set of the corresponding continuous symmetric bilinear operators, i.e. 

( 1 4 / ' ' v; w " (Atu,v) = ((u, v))t9 ve V, tel. 

For brevity we denote ((u, u))t = ||w||2. 

24 



Definition 2.1. Let X be a Banach space with a norm ||-||A. Lp(l,X), 1 ___ P ^ oo, 
denotes the space of functions f :I ~> X for which 

Í. 1/(015 < °° • 
O 

Definition 2.2. Wk,p(l, X), 1 g p g oo, denotes the space of functions f for which 

f(/)eLp(LX), O ^ i ^ k , 

where f(l) is the derivative in the sense of distributions. 

The next two lemmas are presented without proofs, which are evident. Their 
purpose is to introduce the notation of constants which are used in the same sense 
throughout the whole article. 

Lemma 2.1. Let f e Wk>m(l, H), k = 0, 1, 2. Then there exist constants Lh i = 0,... 
..., k, independent of t and such that 

1/(01 = L> , 
j/(o"-/(.-fc)r_.i.fc, 
| / ( 0 - 2f(t - h) + f(t - 2h)\ Z L2h

2 , 

for t,t - h,t - 2hel. 

Lemma 2.2. Let A,eWk'cc'(I, stf), k= 1,2,3. Then there exist constants K„ 
i = 0,..., k, independent of t and such that 

\((u,v%\ZK0\\u\\.\\v\\, 

\((u,v)),-((u,v)),_h\ £ J _ 1 _ _ | « | . - f l _ | j , 

|((u, _)), - 2((u, „)),_„ + ((„, v))t_2h\ ^ K2« h3\\u\\ . HI , 

|((". «0« - 3((w, v)),_h + 3((u,v)),_2h- (u, -) ._3_| _; K3u h2\\u\\ . \\v\\ , 

for t,t - h,t - 2h, t - 3hel. 

Now we can formulate the problem: 

Solve the equation 

(2.5) u"(0 + A,u(0=/(0. 

(2-6) u(0) = u o , u'(0) = u. 

with A, e W*'°°(J, sf), fe W''X(I,H), where k, I will be specified further and the 
properties of the solution depend on them. We denote by u' and u" the strong deriv­
atives in the space V, H or V, which will be specified. 
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A PRIORI ESTIMATES 

Lemma 3.1. Let the assumption (2.3) be satisfied. Then every equation of the system 
(1.4), (1.5) has a unique solution. 

This lemma is a simple consequence of the Lax Milgram theorem. 
Before formulating a priority estimate theorems we add to the mesh points ntj9 

j = — 1, ..., n, two auxliary points t_2 = — 2h and t_3 = — 3h and to the system 
of the equations (1.4) two further equations for j = 0 and j = —1. To this aim 
we must define M_ j and n / _ i . We do that in the following way: 

M__ = 2 M 0 - M i , 

"/ - i = 2 - / 0 - " / i ; 

The reason for this definition will be clear from the proof of Theorem 3,3. 
Further we shall use the following notation: 

Z _ £ _ _ ! _ _ ! , j=-2,...,„, 
h 

Z ; — Z;_ i , i 

sj = , , J = ~h...,n, 

Sj _ _ _ _ _ _ _ ; 7 _ 0 ) . . . , n . 
h 

We shall omit the upper index n if there is no danger of misunderstanding. 

Theorem 3.1. Let z} be solutions O/(1.4), (1.5), At e Wl><°{I9 st\ Then the estimate 

\zj\) + |Z,|2 <_ jL^ [(1 + Kih) ||z0 | |2 + |Z0 |2 + r m a x | / | 2 ] erm(i.Kl)/(i^ 

takes place for j = 1, ..., n. 

Proof. Zj is a solution of the equation (1.4) if and only if 

(M)j+(Zj-2zj-; + Zj-2>°)=(fj,v) 

(where ((%•)); = ( ( v ) ) 0 ) h o l d s f o r a11 veV- Putting v _- Zj _ Z j i w e h a v e 

((zj> ZJ - ZJ~I))J + (5jv
z1 ~ z 1 - 0 ~ ( /* z, - z y _ i ) . 

Hence we obtain 

.:,; il-ii; + - h - -Wtf - -.I-V-..L. + - W + i|z, - z,_,|2 -
-\\Zj^±h{fj,Zj)-
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By omitting the nonnegative expressions $\\zj — Zj-i||y and \\Zj — Zj^^2 we obtain 

Nl,2 + |z,|2 ̂  \\zj.4l, + \Zj_x\
2 + 2h(fj,Zj) + \\zj_4) - Wzj^wu. 

From Lemmas 2A and 2.2 we deduce 

||z,||2 + |Zy|2 5g \zj-i\U + I Z , ^ ! 2 + h|Z,|2 + h max |j f |
2 + hK^Zj.^).,. 

This estimate is recurrent and enables us to obtain successively {h < 1) 

| |z , | 2 + |Zy |2 <: - i - [(1 + hKx) | |z0 | |2 + IZ,!2 + Tmax | / ( |
2] + 

1 — n 

+ r^max(l )/;1)I ,(IN2 + N2)-
1 — h i=l 

Now, the assertion is a consequence of the following lemma: 

Lemma 3.2. Let aj be a consequence of nonnegative numbers for which 

at£A9 

j - i 

aj SA + hB%ai9 
i=l 

where A, B are nonnegative constants. Then 

aj^Aeu-i)hB. 

The p roo f of this lemma is well-known. 

Remark . From the previous theorem it is evident that there exist a constant 
Cx > 0 independent of j and h (after restriction to "small h") which depends only 
on ||z0||0, \Z0\ and ||/||o,a» where || * ||fc,oo denotes the norm in the space Wk,QO(l9 H), 
such that the following estimate holds: 

||z,.||2 + | Z , | 2 ^ C 2 . 

Theorem 3.2. Let At e W2 °°(I, j a / ) , /e WUco(l, H). Then there exists a continuous 
function 

C2 = C2(||H0||O, | « I | O , |jo - ^o"o|> I j l i . J 

independent of h and j , C2(0, 0, 0, 0) = 0, such that 

IW + N2 = c2. 
Proof. By subtracting two equations of (1.4) with the indices j and j — 1 and 

putting v = Sj we obtain 

((z;> SJ))J ~ ((ZJ-I> SJ))J-I + (s; ~ s;-i> sj) = (fj ~' fj-u sj), J = 1. •••> " • 
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Hence we deduce 

\\zj\\j + M = |z.-iL-i + \SJ- + 2/Î fj "~ fj-i 
, s, + 

+ | | Z . - i | | . - fl-v-.ll.-. + 2((ZJ-LSJ))J-I ~ %(*j-uSj))j. 

Now, we modify the last part of the preceding inequality 

2((z,_„s,)) ,_ 1 - 2((z,_ 1 ) S , )) , = (2lh)((zj,Zj))j^ - (2lh)((zj_uZj-x))j-t ~ 

- (-/*)((-., z,)), + (2/h)((z,_ l 5 Z , _ t ) ) , + 2\\ZJ\\2J - 2||Z,fl}_. . 

The remainder of the proof is based on the same principle as the proof of the previous 
theorem and therefore it is not presented here. 

Theorem 3.3. Let At e W3oo(I, s/)9 fe W2oo(I, H). Let there exist constants 
that 

At ~~ 4o 
^ K 4 , lA^I ^ K 5 , 

for 0 ^ t fsj d. Then there exists a continuous function 

C3 = C 3 ( | |M 0 | |O- | |«I| |O> \\fo - ^oW0||o, \\f\\2,«»K49K5) 

independent of j and h, C3(0, 0, 0, 0, 0, 0) = 0, such that 

||s,||j + \Sj\2 g C 3 • 

Proof. By multiplying three equations of (V4) with the indices j,j — 1 andf— 2 
successively by 1, — 2 and 1 and then by their adding and putting v — Sj we obtain 

((*J.SJ))J - 2((z,_„ _-,)),_.. + ((z,_ 2, S,)),_2 + ; ' , 

: + ( s , - 2 s , _ 1 + s , _ 2 , S , ) = ( / , - 2 / , _ 1 +fj-2,Sj), ,;,,- „ 

j = 1,..., «. Hence we deduce 

((-„s,--,_.)), + (S,-S,_1,S,) = 

mh(f,•-#,-* + /,-_ t S,N + j ^ . ^ , , _ j : ((_,_., s,)), -;; 

-i(fe--,5,)),_2 + i((z,_2,S,)),. 
h h 

which yields similarly as in two previous proofs 

+ 2h 

•N.+|S.»|a5_.|-/-i|î-ť+|SJ__|ł + 
^ , - 2 ^ + / ^ 2 > S j \ + | k _ ł | | 2 _ k _ 

i ІІУ—--i + 
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+ \ ( ( - . - i . Sj))j-t - - ((*,_.. Sj))j - - ((z,_2, SJ))J.2 + - ((_,_-, SJ))J. 
h h h h 

The remainder of the proof is again similar to the proof of Theorem 3.1. 

EXISTENCE OF SOLUTION 

Theorem 4.1. Let A0u0 e H, U1EV, Ate W2^(I, s/)9 fe Wloo(I, H). Then there 
exists a unique function u with the following properties: 

a) At u(t) e H for almost all t el, 
b) the function u is Lipschitz - continuous from I into V and thus u'L^I, V), 
c) the function u' is Lipschitz - continuous from I into H and thus u" e L^I, H), 
d) Atu(t) + u"(i) = f(t) holds for a.e. tel, 
e) u(0) = u0, u'(Q) = ul9 

f) if two functions u and v have the above defined properties, where u is a solution 
corresponding to initial conditions u09 u{ and the right hand side f9 v is a solution 
corresponding to the initial conditions v0, vi and the right hand side g, then the 
estimate 

\\u(t) - v(t)\\2 + \u'(t) - v'(i < 
< IK \\u -11 II2 4- If. — 11 I2 4- II f - .all2 1 prmax(l,__,) 

= LAo||Mo yo||o + \U1 Vi\ + ||J g||L2(/,H)J e 

holds for t el. 

Proof. In addition to the function nu(t) defined by (1.3) we define the following 
auxiliary functions: 

nu(t) =nzj+u for te(tj,tj+ly, 
nw(0) = z0 , 

nU(t) = nZj + ^ (nZj + 1 - nZj), for t E (tj, tj+iy, 
h 

«®(t) s «Sj + LzJl (n __ «s.), for t e <ty, t i + !> , 
h 

f(t)=j("0) + ^ ' ( j ( V i ) - j ( " 0 ) ) > for te<t„t;+1>, 
h 

B j ( t ) = j C V , ) > for te(tj,tJ+1y, 

7 ( 0 ) = / ( 0 ) , 

j = 0 , . . . , n - 1. 

The operator functions "A , and "A, are defined analogously. The bilinear forms 
corresponding to "A, and "A , are denoted by "((•,•)), and "((•,•))*.((•,•)); and "((•,-)); 

29 



denote the derivatives of the forms ((• ,•)), and "((•, •)), with respect to t. The whole 
proof of Theorem 4.1 consists of several lemmas: 

Lemma 4.1. There exist functions u e C(I, V) and U e C(I, H) such that nu -> u 
uniformly in V and nU -> U uniformly in H. Further there exists a constant M 
independent of h, t such that 

a\\u(t) - "u(t)\\2 + \u(t) - "U(t)\2 g TMheKlT. 

Proof. First we assert that 

(4.1) "A, nu(t) + "U'(t) = "/(.), 

for a.e. t e I, which is equivalent to 

"(("u(t),v)): + ("U'(t),v) = (nf(t),v) 
for all veV. 

After subtracting this equations with different indices m and n and putting v = 
= "u'(t) - mu'(t) we obtain 

(4.2) n(("U(t), "u'(t) - mu'(t)))t - m((mu(t), "u'(t) - mu'(t)))* + 

+ ("U'(t) - mU'(t), nu'(t) - mu'(t)) = ("f(t) - mf(t), "u'(t) - mu'(t)). 

By adding convenient expressions we have 

"(("u(t) - mu(t), "u'(t) - mu'(t)))t + i n(("u(i) - mu(t), "u(t) - mu(t)))'t + 

+ ("U'(t) - mU'(t), "U(i) - mU(t)) = ("/(f) - mf(t), "u'(t) - mu'(tj) + 

+ \("u(t) - mu(t), V ( l ) - mu'(t)))t - "(("u(t) - mu(t), "u'(t) - mu'(t)))* + 

+ n(("u(t) - "u(t) - (mu(t) - mu(t)), "u'(t) - mu'(t)))t + 

+ ("U'(t) - mU'(t), "U(t) - "u'(t) - mU(t) + mu'(t)) + 

+ m((mu(t), "u'(t) - mu'(t))t - n((mu(t), "u'(t) - mu'(t)))* + 

+ 1 »((»„(,) _ "„(,), »u(t) _ ».„(,)));. 

The left hand side is the derivative of 

i"\\"u(t) - mu(t)\\2 + i\"U(t) - mU(t)\2. 

Applying the a priori estimates of Theorems 3.1 and 3.2 we obtain 

("\\"u(t) - mu(t)\\2 + \"U(t) - mU(t)\2)' ^ 

= 4 - + " V L i C i + 3 ^ i C i C 2 + 4C^) + K,"||-tt(t) - mu(t)\\2 . 
\n m) 
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By the adding a nonnegative term K-J" 11(f) — mU(t)|2 to the right hand side and in­
tegrating we obtain 

(4.3) n\\nu(t) - mu(t)\\2 + \nU(t) - mU(t)\2 g 

S 4 T ( - + 1 ) ( L i c i + 3X-C-.C2 + 4C^) + 
\n mj 

+ K! f ("||JJu(t) - Wu(t)||2 + |"U(f) - mU(t)\2) dt . 

As a consequence of Gronwall's lemma and (2.3) we have 

||BM(f) - mu(t)\2 + \nU(t) - mU(t)|2 ^ T ( - + - ) M eKlT , 
\n mj 

where M = 4(L1C1 + 3K1C1C2 + 4C2). 

Hence, {"u} is a Cauchy sequence in C(I, V) and {"U} is a Cauchy sequence in 
C(I, H) and thus, as a consequence of the completeness of H and V, there exist limit 
functions u e C(l, V) and U e C(I, H). 

The estimate from Lemma 4.1 can be obtained by the limiting process m -> oo. 

Lemma 4.2. The function u is Lipschitz-continuous in V. The estimate 

\\u(t + h)-u(t)\\^^-

holds for t, t + h e I. The function U is Lipschitz-continuous in H. The estimate 

\U(t + h) - U(t)\ ^ C2h 
holds for t + h, t e I. 

The p roof of the first estimate can be obtain by the limiting process n -> oo in the 
following inequality 

||u(t + h) - u(t)||v S \\u(t + lft) - nu(t + h)\v + 

+ \\nu(t + h) - nu(t)\\v + \\nu(t) - u(t)\\v g 2T-e J C l T + - ^ . 
n yjct 

The proof of the second estimate is similar. 

Lemma 4.3. u'(t) = U(t) holds for a.e. t eI . 

Proof. It is evident that 

nu(t) = u0 + I V(s ) ds u0 + "w'(s)' 
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holds for every function nu, tel, where the integral is considered in the space H. 
As a consequence of Lemma 3.2 and Lemma 4.1 the sequence {nn'} converges uni­
formly in H to the function U and thus we can pass to the limit with n -> GO. From 

u(t) = u0 + i U(s) ds 

we see that the functions u and U coincide for all tel (as a consequence of the 
continuity of the function U). 

Lemma 4.4. The sequence {nU'} converges weakly in L2(I, H) to the function 
U'( = u"). 

Proof. Let w be an arbitrary function from @(l,H). Then using Lemma 4.1 
we obtain 

CT CT CT CT 

CU', w) dt = - ("U, w') dt ----^> - (U, w') dt = (Uf, w) dt. 
Jo Jo Jo Jo 

The space £$(l, H) is dense in L2(I, H) and the sequence {"U'} is bounded in La,(I, H) 
which enables us to prove that the above mentioned relation holds for every w e 
eL 2 (LH ) . 

Lemma 4.5. 

At u(t) + u"(t) = f(t), M(0) = u0, u'(0) = u! 

takes place for almost all t e I. 

Proof. From (2.3) we deduce 

Í 
n((nu(t) - v(t), nu(t) - v(t)))t dt ^ 0 

for all v G L2(I, V). From (4.1) we have 

f r("/(0 - "-!'(0> "»(0 - 40)d^ - f r((40. ""(0 - K0))«df = ° • 
Jo Jo 

Using the fact that nf —nU'->f— u" weakly in L2(L H) (Lemma 4.4) and nu -> u 
in L2(I, V) we obtain 

f (/(0 - «"(0, «(0 - 40)d ' - [ ((40. »(0 - 40)),d' = o. 
Jo Jo 

Now, we put v = u — rw where w is an arbitrary function from L2(I, V) and r is 
a nonnegative constant: 
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f '(/(.) - u"(t), w(t)) dt - \\(u(t) + r w(t), w(t)))t ^ 0 . 
Jo Jo 

After passing to the limit with r -> 0 we have (the inequality holds for both w and 
— w) 

\T(f(t) - u"(t),w(t))dt = \\(u(t),W(t))),dt 
Jo Jo 

for all w e L2(I, V) which is equivalent to 

C(f(t)-u"(t)-A,u(t),w(t))dt = 0 

for all w 6 L2(I, V) which yields 

A,M(0 + u"(/)=/(t) 
for almost all t e I. 

Assertion a) follows from the fact that u"{t) e H andf(t) e H. Now we shall prove 
assertion / ) . Since the equation considered is linear it suffices to prove that only 
for v = 0 and g = 0. In the equation 

(u"(t),v) + ({u(t),v))t = (f(t),v), 

which holds for all v e V, we put v = u' and by integration we obtain 

(4.5) ľ[((и(s), и'(s))). + («"(-)> «'(*))] ds = (/(s), u'(s)) ds, 

which implies 

K0||2 + |«'(t)|2 = ||«(o)||2 + |«'(o)[2 + 

+ f'((«( S ), u(s)));ds + 2 f'(/(s), «'(s)) ds . 
Jo Jo 

Then, owing to the assumption of the operator A, we have 

||«(t)«2 + |«'(t)|2 = \\u(o)\\l + \u'(of + \\f\\uH) + 

+ m a x ( l , K 1 ) £ [ | W ( s ) | | 2 + |«'(s)|2]ds 

and the estimate f) follows from Gronwall's lemma. 

PROPERTIES OF SOLUTIONS UNDER STRONGER ASSUMPTIONS 

Theorem 5.1. Let At e W3'°°(I, stf)Je W2'°°(I, H), f(0) - A0w0 e V. Let there 
exist a derivative in H of the function Atu0 at the point t = 0 and let there exist 
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3 > 0 such that the function Atu1 is bounded in H for 0 = t — 5. Then, in addition 
to the assertions of Theorem 4.1, the following assertions take place: 

a) the function u' is Lipschitz-continuous from I into V and thus u" e Ljj, V\ 
b) the function u" is Lipschitz-continuous from I into H and thus u" eLjJ, H)y 

c) (A,u(t))'eLm(I,H), 
d) if in addition f(t) e Vfor all t e I then At u(t) e Vfor a.e. t e I, 
e) let u be a solution for the initial conditions u0, ux and the right hand side f 

and let v be solution for the initial conditions v0, vl and the right hand side g; then 

M0-40I? + K0-^(0N 
g 2[(1 + Kt) \\ut - vilo + KiHuo - v0||o + 

+ |/(0) - 0(0) - A0u0 + Aovo|2 + | | / ' - g'\\L<i.n> + TK2Cl] e ™ ' 3 * ™ + 

+ 4K 2C 2e 2 T m a x ( 1 ' 3* 1 +* 2 ) . 

The p roo f is similar to that of Theorem 4.L 

First, the existence of the functions U and % such that nU -> U uniformly in V 
and n°ll -» % uniformly in H and the existence of a constant N such that 

(5.4) a|| 17(f) - "U(0||2 + |^(0 ~ "^(0|2 = TNh QKIT 

can be proved similarly as in Lemma 4.L From Theorems 3.2 and 3.3 we obtain 
U'eLjj, V) and WeLjl.H). U' = % follows from (5.4) analogously as in the 
proof of Lemma 4.4. If in addition we use Lemma 4.4, we can prove assertions 
a), b), c) d). The proof of assertion e) is similar to that of assertion f) of Theorem 4.L 

WEAK SOLUTION 

Definition, u e C(l, V) n C^I, H) is a weak solution of the equation (2.5), (2.6) if 

(6.1) f [((«, v))t - (u\ »')] dt = [ (f(t), v(t)) dt + (uu v(0)), 
Jo Jo 

(6.2) 1/(0) = u0 

takes place for all v e L2(l, V) n WU2(I, H). 

Theorem 6.1. Let At e JV2'°°(f jrf), fe L2(l, H), u0 e V, uYe H. Then there exists 
a unique solution of the equation (2.5), (2.6) such that u" e L2(l, V). 
If in addition f e C(I, V) then u" e C(l, V). 
Estimate f)from Theorem 4.1 takes place for two weak solutions. 

Proof. There exist sequences {u[} a V, {/"} c W1,2(I,H) and a sequence {u0}, 
A0u0 e H, such that M" -> ux in H, u"0 -> u0 in V, / " —>/ in L2(I, H). For every 
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triplet un
0, u\,fn there exists a solution u" (see Theorem 4.1). The equation (6.1), (6.2) 

holds for all such solutions un. Due to the estimate f) from Theorem 4.1 there exists 
a limit function u e C(I, V) n C*(L H) for which the equation (6.1), (6.2) holds. 

Since u e Q(l, V) we have Atu(t)e C(l, V). feL2(l,H) implies feL2(l,V) 
and the assertion can be proved by passing to the limit in the formula 

«"'(') = "" + Í (f"(s)-Asu"(s))ds 

in the space V, forf" -> fin L2(I, H), and thus also in L2(I, V), and it can be proved 
that At un(t) -> At u(t) in C(I, V). 

The two remaining assertions of the theorem are evident. The proof of the unique­
ness can by find for instance in [10]. 

Further we shall deal with the question of convergence of the Rothe sequence 
to a weak solution. Here we have some trouble with that we defined f}- = f(t3) 
which is not possible for a function only from L2(I, H). The definition of the value 
fj must be therefore changed. 

In the casefe C(I, H) we keep the original identity f,- = f(ty) while in the opposite 
case we define 

(6.3) fj^h'1 f' f(t)dt, j = l,...,n. 
J ( j - i ) / i 

Now we can formulate a theorem: 

Theorem 6.2. Let the conditions of Theorem 6.1. be fulfilled. Then the sequence 
of Rothe approximations {nu} converges to the weak solution u of the equation (2.5), 
(2.6) in C(I, V) and the sequence {nU} converges to u' in C(I, H). 

Proof. Let {um, um, fm} be the sequence defined in the proof of Theorem 6.1 and 
let {um} be the sequence of the corresponding solutions. In order to prove that nu -> u 
in C(I, V) we use the following inequality: 

(6.4) \\u(t) - nu(t)\\ ^ \\u(t) - um(t)\\ + ||um(t) - "um(t)|| + ||"um(t) - "u(f)|| . 

We choose e > 0. There exists mAeN such that 

(6.5) 1 u - M
m i | c a , F ) S ie 

holds for m S: mv From Theorem 3.1 we deduce (j, defined by (6.3)) the inequality 

«||-«-(0 - "u{t)f ^ ^ [(1 + K,h) ||u- - u0f0 + |«T - ^ | 2 + 
1 — n 

-L II f» _ f\\2 1 pTmax(l,K I)/(l-/ i) 
^ ||j J ||L2(I,H)J e 
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Further there exists m2 such that 

(6.6) || V - "!#]|C(JiK) g is 

for all m ^ m2 and neN. Now, we choose a fixed m ^ max (mi, 71x2). Owing 
to Theorem 4.1 there exists n0 such that 

(6-7) | K - "um\\c(r,v, = & 

holds for all n ^ n0 (m fixed). 

Owing to (6.5), (6.6), (6.7) we have 

|| 11(f) - nu(t)\\ ^ e 

which proves "u -> u in C(I, V). 

The proof of the second part of the theorem is similar. 

ESTIMATE OF ERROR OF ROTHE APPROXIMATION 

Theorem 7.1. Let the assumptions of Theorem 5.1 be fulfilled. Then there exist 
constants Ml9 M2 , M 3 independent of n and t such that 

4nU(t) - u'(t)\2 + \n%(t) - u"(t)\2 ^ M^ , 

||"u(t) - u(t)| ^ M2h , 

|"U(t) - u'(t)\ ^ M3h 

takes place for t el. 

Proof. The first estimate immediately follows from (5.4) and the proof of Theorem 
5.1. For the proof of the two remaining estimates we consider two partitions: with n 
and In mesh points. We denote 

Pj = 2nz2j -%> J = - 1 , •••> n9 

Pj = Pj~Pj-l> 7 - 0 , . . . , n , 
h 

h 
From the equation 

AJVJ + ^ ( - % • + 2 " - ; _ . - V - + 4 *V - 8 'V-i + 4 2 % - 2 ) = 0 

we obtain 

- V ; + Is = ° J ' 
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where 

0 ; = - ! ! ( 3 2 " S 2 , - + 2"S 2 , - . ) . 

From Theorem 3.1 we obtain 

(7.1) *INI2 + \Pj\2 = 

< (1 + ftgi) ||Po||o + \PQ\2 + ^max |^-|2 e T m a x ( 1 ,K l ) / ( 1-h ) 

1 - h 
for all J = 1, . . . , n. 

Owing to Theoiem 3.3 and the fact that p0 = 0, P0 = -(fc/4) (f(0) - A0u0) 
there exists a constant M 2 such that 

holds for j = 1, ..., n, /i < h0. By repeating this process for two partitions with 
2n and An mesh points we obtain 

II 4 » - - 2n„ II ^ * * * " 

|| Z4j ~ Z2j|| = M 2 -

for j = ! , . . . , « . By another repeatition we obtain 

p z 2 t , - »z,|| g M*h 

and passing to the limit with k -> oo we obtain 

fl«(0) - ""(0)1 = ll»(';) - %ll ^ M*2h 

for j = 1, ..., n. In order to estimate the error not only at the mesh points we use 
Lemma 4.2: 

\\u(t)-»u(t)\\ti^h + M*2h 
Va 

for all t E I. If we put M 2 = C2\yJoi + M* the proof is complete. 

The proof of the third estimate is similar. 

The following theorem is a direct consequence of Lemmas 4.1 and 4.3. 

Theorem 7.2. Let the assumptions of Theorem 4A be fulfilled. Then the estimate 

a\\u(t) - "u(r)||2 + \u'(t) - "U(r)|2 ^ TMheKlT 

holds for t el. 

R e m a r k . We can obtain a certain improvement of the Rothe approximation 
"u if we put 
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h2 

Z0 = U0, Z _ ! = u0 - '*"_ + — (/(°) " ^O^o) 

because then the estimate (7.1) reduces to 

a||pyj |
2 + |P,-|2 = -1— max \9j\

2

 ero-«(-.*->/--*>. 
1 — h 

A certain disadvantage of this consists in the fact that the assumptions onf(O) — A0uo 
must be stronger (the same as on Mj). 

In the end we shall deal with the case when the equations (1.4) are solved only 
approximately, i.e. we consider the system of equations 

(7.2) Ajzj + Zj-2Sj-}+Sj-2=fj + Rj, j = l,...,n, 

(7.3) = z_ 

where Rj expresses the error of the solution of each equation of the system (1.4). 
Then the following theorem is an immediate consequence of Theorem 3A : 

Theorem 7.3. Let Zj be solution of (V4), (1.5) and let Zj be solutions of (7.2), (7.3). 
Then 

all-, - zjf + \Z. - Z,|2 < — max |R,|2 e'- , ( I*" ( ,- ,» 
II J J II \ J J — * i J 

1 — h 

holds for j = 1, . . . , n (Zj defined analogously as Zj). 
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S o u h r n 

ŘEŠENÍ ABSTRAKTNÍCH HYPERBOLICKÝCH ROVNIC 
ROTHEHO METODOU 

MILAN PULTAR 

V práci jsou řešeny abstraktní hyperbolické rovnice, ve kterých vystupuje eliptický 
operátor závislý na čase, pomocí tzv. Rotheho metody, tj. metody diskretizace dané 
úlohy v čase. Je zde dokázána existence a jednoznačnost řešení a některé jeho vlast­
nosti y závislosti na různých předpokladech, kterým vyhovují dané rovnice. Dále 
jsou uvedeny některé numerické aspekty této metody. 
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Praha 6. 
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