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SOLUTIONS OF ABSTRACT HYPERBOLIC EQUATIONS
BY ROTHE METHOD

MIiILAN PULTAR

(Received November 26, 1982)

INTRODUCTION

In this paper we consider the abstract hyperbolic equation

(1.1) d*u

o7 TAD ) =10), te0.T), T<w

with the initial conditions

du
(1.2) u(0) = uy, 5(0) =u,,

where A(?) is supposed to be a symmetric elliptic operator which depends on .
The above mentioned equation is solved in the following way:

a) for a uniform partition of <0, T), h = T/n and "t; = jh we construct an appro-
ximative solution

(1.3) "u(t) ="z;_y + (t — t;_) h™("z; — "z;_,)

for t;_;, =t<t, j=1,..,n,

where "z;, j = 1, ..., n are the solutions of the system of equations

(1.4) =27 e "Avz="f, j=1,...n,
hZ

(1.5) "Zo = Up, "Z_y = Uy — hu,,

where "4; = A("t;), = f("t;) ;

b) under certain assumptlons on A(t), f(t) and the initial conditions u, and u,
we prove that the sequence "u(r) converges for n — oo to the umque solution u(r)

of (1.1), (1.2);
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¢) in the next part some numeric aspects of the above mentioned method are dealt
with, some estimates of the difference of the approximate solution "u and the exact
solution u of the problem (1.1), (1.2) are presented here;

d) in the last part of this paper we present results concerning estimates of errors
of the approximate solutions which are constructed by using only the approximate
solutions of the equations of the system (1.4), (1.5).

The method described is called the Rothe method or the method of lines.

The Rothe method was introduced in [9] and later on has been used by many
authors for the solution of parabolic equations — see [1]—[6]. Hyperbolic equations
have been solved by the Rothe method first in [7] and [8]. In this papers the operator
A was considered only independent of time t. Questions concerning hyperbolic
equations have been solved also for instance in [10] by using other methods.

NOTATIONS AND DEFINITIONS

Let V be a reflexive Banach space which is contained in a Hilbert space H. We
assume that V is dense in H and V is continuously imbedded in H. We identify the
space H with its dual H' and denote by V' the dual space of V. In this way we can
identify H with the subspace of V':

(2.1) VeHe V.

We denote by |-| and || the norms in H and ¥, respectively. The inner product
in H as well as the pairing between ¥ and V' are both denoted by (+,+) (which is
possible due to (2.1) and density Vin H).

((+,+)) denotes a continuous symmetric bilinear form defined on ¥V x V. Such
form can be identified with a symmetric operator A€ Z(V, V'), where for ueV
in the following way we define AueV’ .

(2.2) ((u, v)) = (Au, v) forall veV.

The space of all such operators is denoted by .

In the whole article ((+,*)),, t € <0, T) = I denotes the set of continuous symmetric
bilinear forms defined on ¥ x V for which there exists « > 0 such that

(2.3) ((u, ), 2 oz”u“.z , ueV, tel.
A, denotes the set of the correspon&ing continuous symmetric bilinear operators, i.e.
(249 7 - (A4, v) = ((u, v)),» '_v eV, tel.

For brevity we denote ((u, u)), = ||u|?. o
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Definition 2.1. Let X be a Banach space with a norm |+|x. LI, X),1 £ p < oo,
denotes the space of functions f 11 — X for which

NS

Definition 2.2. W*7(I, X), 1 < p < oo, denotes the space of functions f for which
fPeL(,X), 0<i=<k,

where 9 is the derivative in the sense of distributions.

The next two lemmas are presented without proofs, which are evident. Their
purpose is to intreduce the notation of constants which are used in the same sense
throughout the whole article.

Lemma 2.1. Let f € W"”“(I, H),k = 0,1,2. Then there exist constants L;, i = 0,...
., k, independent of t and such that
[f(t) = f(t = h)] < Lyh,
[£(t) = 2f(t = h) + f(t — 2h)| < L,h?,
fort,t — h,t — 2hel.

Lemma 2.2. Let A e Wo (I, o), k =1,2,3. Then there exist constanls K,
i=0,...,k, mdependent of t-and such that .

IW@Mé%hWM%

|((u’ v))r - ((u’ U))r—h, é Kla h”"” N “Un 4

(. 0))e = 2((w, ),y + (4, 0))e- 2] < Ko h3u] - [o]

I((”’ 0) = 3((u, ),y + 3((% 0))i-2n = (u, U)r—3h| < Ky h?flu] - o
fort,t — h,t — 2h,t — 3hel.
Now we can formulate the problem:

Solve the equation
(2.5) " (1) + A, u(t) = £(1),
(2.6) u(0) = uy, u'(0) = u,

with 4,€ Wo(1, o), fe W"=(I, H), where k, | will be specified further and the
properties of the solution depend on them. We denote by u’ and u” the strong deriv-
atives in the space ¥, H or V’, which will be specified.
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A PRIORI ESTIMATES

Lemma 3.1. Let the assumption (2.3) be satisfied. Then every equation of the system
(1.4), (1.5) has a unique solution.

This lemma is a simple consequence of the Lax Milgram theorem.

Before formulating a priority estimate theorems we add to the mesh points "t;,
j = —1,..., n, two auxliary points t_, = —2h and t_; = —3h and to the system
of the equations (1.4) two further equations for j = 0 and j = —1. To this aim
we must define "A_, and "f_;. We do that in the following way:

"A_y =274, — "4y,
- = 2", "’"fl'

The reasen for this definition will be clear from the proof of Theorem 3.3.
Further we shall use the following notation:

ZJ:Zj-zjml’ j==2,..,n,
h
Z,—7Z;_ 4
J : hj ’ '1:_1’ s n,

S; = §; 7 Si-t ——hs-"“ , j=0,..,n.

We shall omit the upper index n if there is no danger of misunderstanding.
Theorem 3.1. Let z; be solutions of (1.4), (1.5), A, € W'-=([, ). Then the estimate
1
ol + 127 5 = 10+ K [l + [20f? + T 7] ermscomos=s

takes place for j = 1, ..., n.

Proof. z; is a solution of the equation (1.4) if and only if

(o + (P25 )

h2
(where ((,)), = ((.,.)),/) holds for all v e V. Putting v = z; — z;_, we have

(22 = zjm))i + (5o 2 = 25-1) = (), 2, — Zj_y).

Hence we obtain

B | I | ETR It At P RS 17 Hz, -z, -
=3z, > = (/. Z)) -
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By omitting the nonnegative expressions 3| z; — z;_,||7 and }|Z; — Z;_,|* we obtain
I2;17 +1Zi* £ zjoal3-1 +1Z5oa ] + 20015 Z)) + |z5=alf = |zi-a]F-1 -

From Lemmas 2.1 and 2.2 we deduce

217 + 1Z,* £ |zj=all7=1 + |Z;=1]* + h|Z;]> + hmax |fi]> + hK,|z;-,]7-,.

This estimate is recurrent and enables us to obtain successively (h < 1)
1
ol + 2 = 10+ K 203 + 21 + Tmax 1] +
h it 2 2
+ m max (1, Kl)-gl(llzi”i + IZ,I ) .

Now, the assertion is a consequence of the following lemma:

Lemma 3.2. Let a; be a consequence of nonnegative numbers for which

al g A9
j—1

J
a; £ A+ hB'Zla,.,

i
where A, B are nonnegative constants. Then
(j—1)hB
a; < Ae .
The proof of this lemma is well-known.

Remark. From the previous theorem it is evident that there exist a constant
C; > 0 independent of j and h (after restriction to ‘‘small h’") which depends only
on | zo[lo» |Zo| and |f||o, ., Where || |i.,, denotes the norm in the space W* (I, H),
such that the tollowing estimate holds:

Iz + |z|* = ct.

Theorem 3.2. Let A, € W>*(I, /), f € W""*(I, H). Then there exists a continuous
function

C, = Cz(”“o”o, ”u1||0, Ifo — 4, “OI’ [/]1,00)
independent of h and j, C,(0,0,0,0) = 0, such that
i

Proof. By subtracting two equations of (1.4) with the indices j and j — 1 and
putting v = s; we obtain

((Zj’ sj)),- = ((zj-1s sj)),-_l + (Sj = Sj-1 Sj) =(f; =fi-8), J=1..,n.
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Hence we deduce

1Z|7 + |s:* S 1Z;-1]7-1 + ’5j~1lz + 2h (ﬁ‘%;l’%) +

F1Zis 7 = 1Zi=alF-0 + 2((z- 10 5))i-1 = 2((2j-15 7)), -
Now, we modify the last part of the preceding inequality v
2A(zj-1s5)N)i-1 = A(zj=155)); = @M (21> Z))j-1 = @[0) ((zj- 1> Zj-1))j-1 =
— 2/ (- 2))); + @0) (2= 1> Z;-1))s + 225l = 2] Z5]3-+ -

The remainder of the proof is based on the same principle as the proof of the previous
theorem and therefore it is not presented here.

Theorem 3.3. Let A, e W>*(I, o), fe W»®(I, H). Let there exist constants
K, and K5, 6 > 0 such that

Ax - AO l

ug| = Ky, IAtull = K;,
t

for 0 =t < 6. Then there exists a continuous function
Cs = Cy([[uo]o [[u1]lo | fo — Aoto]o> [ ]2,> Kas K'5)
independent of j and h, C4{0, 0,0, 0,0, 0) = 0, such that
Isill7 + [si* = 3.

Proof. By multiplying three equations of (1.4) with the indices j, j — 1 andj — 2
successively by 1, —2 and 1 and then by their adding and putting v = S; we obtain

((zs S)); = 2A(zj=158,)j=1 + ((zj-2, S)))j-2 +
+ (sj —25; 1 + Sj_2, S,-) = (fj =21+ fizas Sj)’

Jj =1,..., n. Hence we deduce
((sjo 55 = 8i=1))i + (55 = Sj-1, 8)) =

=h (fj = 2f,-h—21 e, Sj) + ’2"1((21—1: S)i-1 = %((zj_l, S =

- %((Zj—z’ Si))j-2 + %((Zj-z’ S5)); -

which yields similarly as in two previous proofs

sl ISR S sl # S5 +
=2+ S
4+ 2h (L—-“f—’—h;*l—g, Sj) + {17 = Isi=aflF-10 +
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4 4 2 2
+ ;((-’jﬂ’ S)i-1 = Z((Zj—h S)); — ;((zj—z’ S)j-2 + E((zhz’ S))-

The remainder of the proof is again similar to the proof of Theorem 3.1.

EXISTENCE OF SOLUTION

Theorem 4.1. Let Aguge H, u; €V, A,e W>*(I, o), fe W(I, H). Then there
exists a unique function u with the following properties:

a) A, u(t)e H for almost all tel,

b) the function u is Lipschitz - continuous from I into V and thus u'L,(I, V),

¢) the function u’ is Lipschitz - continuous from I into H and thus u” € L (I, H),

d) A, u(t) + u"(1) = f(1) holds for a.e. t€l,

e) u(0) = u,, u'(0) = uy,

f) if two functions u and v have the above defined properties, where u is a solution
corresponding to initial conditions ugy, u, and the right hand side f, v is a solution
corresponding to the initial conditions vy, v, and the right hand side g, then the
estimate

Ju(®) = v@)[F + [u (1) = v(1)]* =
= [Kolluo = vol[o + [ur = vs[* + ||/ = g Luem] e

holds for tel.

Tmax(1,Ky)

Proof. In addition to the function "u(t) defined by (1.3) we define the following
auxiliary functions:

Ma(t) ="z, for te(t,tii),

"17(0) =z,
t—t;
"U(t)="Z; + I—l’("ZH1 —"Z;), for tedt,t;s),

t-t;

"U(t) ="s; + ("sje1 —"s;), for telt; tivr),

t—t;
h
(1) = f("tj1), for te(t; tjvy),
"f(0) = £(0),
j=0,...,n— 1

(1) = (") + (f(tyje1) = f("1) s for teltytivy),

The operator functions "4, and "4, are defined analogously. The bilinear forms
corresponding to "4, and "4, are denoted by "((+,*)), and "((+,*))!. ((*,*)): and "((+,*));
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denote the derivatives of the forms ((+,)), and "((+, +)), with respect to t. The whole
proof of Theorem 4.1 consists of several lemmas:

Lemma 4.1. There exist functions ue C(I, V) and U e C(I, H) such that "u > u
uniformly in V and "U — U uniformly in H. Further there exists a constant M
independent of h, t such that

afu(r) — "u(t)||* + |U(t) - "U(l)|2 < TMh 5T,

Proof. First we assert that
(4.1) "4, "u(r) + "U'(1) = (1),
for a.e. t € I, which is equivalent to

"((u(), )7 + (U(0), 0) = (7(1). v)

forallve V.

After subtracting this equations with different indices m and n and putting v =
= "u'(t) — ™u'(t) we obtain
(42) "((a(e), () = "w(@)F = "(("a(0), "' (1) = "W () +
+ (U(0) = "), () = " (1) = (F() = T (@), "' (t) = "u(6))

By adding convenient expressions we have

*(Cu(r) = "), "' (1) = "u'(1) + 3(Cu(e) = "u(0), "u(r) — "u(®)); +
+ (U'(1) = "U(1),"U(1) = "U(1)) = (F (1) = "7 (1), "u'(r) = "u'(1)) +
+7((a(t) = "a0), "w'(r) = "w(0)), = "((alr) — "a(), "' () = "w'(@)F +
+ "((u(t) = "a(e) = ("u(t) = "a(?)), "w'(t) — "' (1), +
+ ("U'(1) = "U(0),"U(1) — "u'(t) = "U(t) + "u'(t)) +
+ "((a(e), " (1) = "' (0), = (), () = "w(0)F +
+ 3 "(("u(t) = "u(2), "u(t) = "u(1))); -

The left hand side is the derivative of
Vrut) — () + U ~ U@
Applying the a priori estimates of Theorems 3.1 and 3.2 we obtain
(ru@) = "u(@[? + ['U@) = "v@F) =

4(3 + l) (LiCy + 3K,CiC, + 4C3) + K,"|"u(t) — ™u(t)])? .
n m

IIA
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By the adding a nonnegative term K,|"U() — '"U(t)l2 to the right hand side and in-
tegrating we obtain

(4.3) () = mu(@)]F +

() - U@ <

11
< 4T<— + —) (L,Cy + 3K,C,C, + 4C3) +
n m

"U(1) — "U(1)|?) dt .

t
K [ ) ol +
0
As a consequence of Gronwall’s lemma and (2.3) we have

") = "u(®)]F +

"Wty - U < T<1; 4 l) MeST,

m
where M = 4(L,C, + 3K,C,C, + 4C3).

Hence, {"u} is a Cauchy sequence in C(I, V) and {"U} is a Cauchy sequence in
C(I, H) and thus, as a consequence of the completeness of H and V, there exist limit
functions u € C(I, V) and U € C(I, H).

The estimate from Lemma 4.1 can be obtained by the limiting process m — 0.

Lemma 4.2. The function u is Lipschitz-continuous in V. The estimate
' C,H
Ju(e + n) = ()] = ==
NE
holds for t, t + hel. The function U is Lipschitz-continuous in H. The estimate

|U(t + h) = U(1)] < C,h
holds fort + h,tel.

The proof of the first estimate can be obtain by the limiting process n — oo in the
following incquality

[u(t + n) — u(@)|y < |u(t + h) = "u(t + h)|, +

IA

e+ B) =l + )~ )l £ 277 T S

The proof of the second estimate is similar.

Lemma 4.3. u/(1) = U(1) holds for a.e. t€1.

Proof. It is evident that

t

"u(t) = up + J '(s) ds

0
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holds for every function "u, t €I, where the integral is considered in the space H.
As a consequence of Lemma 3.2 and Lemma 4.1 the sequence {"n’} converges uni-
formly in H to the function U and thus we can pass to the limit with n - o. From

u(t) = up + f O'U(s) ds

we see that the functions u’ and U coincide for all rel (as a consequence of the
continuity of the function U).

Lemma 4.4. The sequence {"U’} converges weakly in L,(I, H) to the function
L[/(:u// .

Proof. Let w be an arbitrary function from 2(I, H). Then using Lemma 4.1
we obtain '

T T o T T
J (U, w) dt = —j (U, w') di 225 _'[ (U, w)di =f (U w) dt
0 0

0 0

The space (1, H) is dense in L,(I, H) and the sequence {"U’} is bounded in L,,(I, H)
which enables us to prove that the above mentioned relation holds for every we
e L,(1, H).

Lemma 4.5.
A u(t) + u"(t) = f(1), u(0) = u, u'(0) = u,
takes place for almost all t € I.

Proof. From (2.3) we deduce
[ #at) = o050 ~ e 2 0
for all ve Ly(I, V). From (4.1) we have
[0 vt = sy an = [ (60750 = a1 = 0.

Using the fact that "f — "U’ — f — u” weakly in L,(I, H) (Lemma 4.4) and " — u
in L,(I, V) we obtain

j OT( 1) = w(o), u(t) — o(t)) dt — J OT((v(t), u(t) = o(8), d = 0.

Now, we put v = u — rw where w is an arbitrary function from L,(I, V) and r is
a nonnegative constant:
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J :( 1) — (i), wle) dt — j OT((u(t) + (i) (i), = 0.

After passing to the limit with r — 0 we have (the incquality holds for both w and

—W)
jum—uwxwmm=jﬁwaw@»m

for all w e L,(I, V) which is equivalent to

T
J (1) = w(t) — A, u(i), w(t) dt = 0
0
for all w € L,(I, V) which yields
A u(t) + u'(t) = f(1)
for almost all tel.

Assertion a) follows from the fact that u”(¢) € H and f(r) € H. Now we shall prove

assertion f). Since the equation considered is linear it suffices to prove that only
forv = Oand g = 0. In the equation

@'(), 0) + ((u(®), ). = (/1) v)

which holds for all v € V, we put v = u’ and by integration we obtain

@53) ﬂmwwwM+@mw@mw=£mqwmm,
which implies

lu(@)]F + [w(@)]* = [u(0)[5 + [#'(0)]> +
+ J ;((u(s), u(s),ds + 2 L( £(5), w(s)) ds .

Then, owing to the assumption of the operator A, we have

lu@|? + [w@F = [uO] + [ O + [/ Zsr.m +
; max(l,Kl)I;[\[u(s)‘lf T [w(s)] ds

and the estimate f) follows from Gronwall’s lemma.

PROPERTIES OF SOLUTIONS UNDER STRONGER ASSUMPTIONS

Theorem 5.1. Let A, e W>*(I, ), fe W>*(I, H), f(0) — Aquge V. Let there
exist a derivative in H of the function Au, at the point t = 0 and let there exist
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& > 0 such that the function A, is bounded in H for 0 £ t < 6. Then, in addition
to the assertions of Theorem 4.1, the following assertions take place:

a) the function u' is Lipschitz-continuous from I into V and thus u" € Lw(I, V),

b) the function u” is Lipschitz-continuous from I into H and thus " € Lm(I, H),

c) (4,u(t)) e L,(I, H),

d) if in addition f(t)€ V for all t e I then A, u(t)e V for a.e. tel,

e) let u be a solution for the initial conditions uq, u, and the right hand side f
and let v be sclution for the initial conditions vy, v, and the right hand side g; then

[w'(0) = w7 + |u"()) = ') =
S 2[(1 + Ky) Juy — og]|5 + Kyfug — vo5 +
+ [£(0) — g(0) = Aguo + Agvo|* + |/ — 9’| Loy + TK,CT] M3tk

+ 4K%C% eZTmax(l,3K1+K2) .

The proof is similar to that of Theorem 4.1.
First, the existence of the functions U and % such that "U — U uniformly in V'
and "% — % uniformly in H and the existence of a constant N such that

(5.4) o U(t) = "U()||* + |2(1) = "u(1)|* < TNh 5T

can be proved similarly as in Lemma 4.1. From Theorems 3.2 and 3.3 we obtain
UeL,(I,V)and %' eL,(I,H). U = % follows from (5.4) analogously as in the
proof of Lemma 4.4. It in addition we use Lemma 4.4, we can prove assertions
a), b), ¢) d). The proof of assertion e) is similar to that of assertion f) of Theorem 4.1.

WEAXK SOLUTION

Definition. u € C(1, V) n C'(1, H) is a weak solution of the equation (2.5), (2.6) if
T T
60 [T = o= [ 0,60 d+ (o0,
(o] (1]

(6.2) U(0) = u,
takes place for all ve Ly(I, V) n W'2(I, H).

Theorem 6.1. Let A,e W>*(I, o/), fe Ly(I, H), ug€ V, u, € H. Then there exists
a unique solution of the equation (2.5), (2.6) such that u” € L,(I, V").

If in addition fe C(I, V') then u” € C(I, V).
Estimate f) from Theorem 4.1 takes place for two weak solutions.

Proof. There exist sequences {u}j} = V, {f"} = W"*(I, H) and a sequence {ug},
Agug € H, such that u} — uy in H, ug — uy in V, f* > f in Ly(I, H). For every
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triplet ug, u'}, /" there exists a solution u” (see Theorem 4.1). The equation (6.1), (6.2)
holds for all such solutions u". Due to the estimate f) from Theorem 4.1 there exists
a limit function u € C(I, V) n C'(I, H) for which the equation (6.1), (6.2) holds.

Since ue C(I, V) we have A, u(t)e C(I,V'). feL,(I, H) implies fe LyI, V)
and the assertion can be proved by passing to the limit in the formula

u"’([) =u] + J:(f"(s) — A u"(s)) ds

in the space V', for f" — fin L,(I, H), and thus also in L,(I, V’), and it can be proved
that 4, u"(t) —» A, u(t) in C(I,V").

The two remaining assertions of the theorem are evident. The proof of the unique-
ness can by find for instance in [10].

Further we shall deal with the question of convergence of the Rothe sequence
to a weak solution. Here we have some trouble with that we defined f; = f(t,)
which is not possible for a function only from L,(I, H). The definition of the value
Jf; must be therefore changed.

In the case f € C(I, H) we keep the original identity f; = f(t;) while in the opposite
case we define

(6.3) 1= h-lrh f(yde, j=1,..,n

(=1Dh

Now we can formulate a theorem:

Theorem 6.2. Let the conditions of Theorem 6.1. be fulfilled. Then the sequence
of Rothe approximations {"u} converges to the weak solution u of the equation (2.5),
(2.6) in C(1, V) and the sequence {"U} converges to u’ in C(I, H).

Proof. Let {uf, uf, /™} be the sequence defined in the proof of Theorem 6.1 and
let {u"'} be the scquence of the corresponding solutions. In order to prove that "u — u
in C(I, V) we use the following inequality:

(64)  [u() = "u(@)] = [u(t) = w" @] + [u() = "w"(0)] +

num(t) _ nu(t)“ .

We choose ¢ > 0. There exists m; € N such that

(6.5) “u - umHC(I,V) < e

holds for m = m;. From Theorem 3.1 we deduce (f; defined by (6.3)) the inequality
0‘” (1) = "u I)HZ (1 + K, h H“o - “o”o ‘”T - “1|Z +

Tmax(1,Ky)/(1—h)

N

| 2
S LZ(I,H)] ¢
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Further there exists m, such that
(6.6) ["um = "ulcar) = 3o

for all m 2 m, and ne N. Now, we choose a fixed m = max (m;, m,). Owing
to Theorem 4.1 there exists n, such that

(6.7) lum = "u"llcay, = 3o
holds for all n 2 n, (m fixed).
Owing to (6.5), (6.6), (6.7) we have
() - (] = ¢

which proves "u — u in C(I, V).
The proof of the second part of the theorem is similar.

ESTIMATE OF ERROR OF ROTHE APPROXIMATION

Theorem 7.1. Let the assumptions of Theorem 5.1 be fulfilled. Then there exist
constants My, M,, M5 independent of n and t such that
a"U() — w(@)]* + ["u(t) — w'(1)]* = My,
[Pu(o) = (9] < Mh,
"U(t) — u'(t)l < M;h

takes place for tel.

Proof. The first estimate immediately follows from (5.4) and the proof of Theorem
5.1. For the proof of the two remaining estimates we consider two partitions: with n
and 2n mesh points. We denote

p1=2n221_"zj’ .]:_15 ,n,
p_’__pj pj—l’ j=07 ’n’
h
P, —P;_
j= =1
h

From the equation
1 n n n 2n 2n 2n
Ajpj+;2~(— Zj+ 2"z, = "zj, + 4%z, — 8%z, +4%2,_,) =0

we obtain
Ajpj + qj = g] B
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where

g9; = — 2(3 Sy + 2"S3j-1) -
From Theorem 3.1 we obtain
(7.1) alps[* + |P)J* =

< (1 + hK,y) [Po]ld + |Po|* + Tmax |g,|? Tmax(1,K)/(1=h)
- 1 —h

forallj=1,..., n.

Owing to Theotem 3.3 and the fact that p, = 0, Py = —(h/4) (f(0) — Agu,)
there exists a constant M, such that

I = M2 2

holds for j = 1,...,n, h < hy. By repeating this process for two partitions with
2n and 4n mesh points we obtain

. h
[#724; = 2255 < M3~

for j = 1, ..., n. By another repeatition we obtain
|22 = "z, < M3k
and passing to the limit with kK — oo we obtain
lu(ty) = "u(t))]| = ut)) = "z,|| = M3h

for j = 1, ..., n. In order to estimate the error not only at the mesh points we use
Lemma 4.2:

Ju(t) = "u(o)| <2 1+ M3
Jo
for all 1 e I. If we put M, = C,/\/o + M? the proof is complete.

The proof of the third estimate is similar.
The following theorem is a direct consequence of Lemmas 4.1 and 4.3.

Theorem 7.2. Let the assumptions of Theorem 4.1 be fulfilled. Then the estimate

afu(r) — "u(r)|* + |u’(t) - "U(t)l2 < TMh BT
holds for tel.

Remark. We can obtain a certain improvement of the Rothe approximation
"u if we put
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hZ
Zo =Ug, Z_q =ty — hu; + E—(f(O) — Agtig)

because then the estimate (7.1) reduces to

2 T(max(1,K1)/1—k)
2 .

T

2 2

alp;|* + |P;|” = max
Il + P2 =

A certain disadvantage of this consists in the fact that the assumptions on f(0) — Ayu,

must be stronger (the same as on u; ).
In the end we shall deal with the case when the equations (1.4) are solved only

approximately, i.e. we consider the system of equations
Z, =27, + Z;_,

hZ

(7.2) Az, + =fi+R;, j=1,.,n,

(7.3) Zo = Zg, Z-q = Z_4

where R; expresses the error of the solution of each equation of the system (1.4).
Then the following theorem is an immediate consequence of Theorem 3.1:

Theorem 7.3. Let z; be solution of (1.4),(1.5) and let Z; be solutions of (7.2), (7.3).
Then

alz - 5| + |z, - Z < IL max |R;|? eTmx(1K0/C1 b
holds for j = 1,..., n (Z; defined analogously as Zj).

References

[1] K. Rektorys: On application of direct variational methods to the solution of parabolic
boundary value problems of arbitrary order in the space variables. Czech. Math. J. 21
(1971), pp. 318—339.

[2] J. Kacur: Method of Rothe and nonlinear parabolic boundary value problems of arbitrary
order. Czech. Math. J. 28 (1978), pp. 507— 524.

[3] J. Kacur: Application of Rothe’s method to nonlinear equations. Math. &as. 25 (1975),
pp. 63—81.

[4] J. Kaéur, A. Wawruch: On an approximate solution for quasilinear parabolic eguations.
Czech. Math. J. 27 (1977), pp. 220—241.

[5) J. Necas: Application of Rothe’s method to abstract parabolic equations. Czech. Math.
J. 24 (1974), pp. 496—500. '

[6] M. Pultar: Nonlinear parabolic problems with maximal monotone operators solved by the
method of discretization in time. Dissertation. (In Czech.)

[7]1 J. Streiblovd: Solution of hyperbolic problems by the Rothe method. Habilitation. Bull.
of the Faculty of Civil Engineering in Prague (To appear.)

[8] F. Bubenik: A note to the solution of hyperbolic problems by the Rothe method. Disserta-
tion. Bull. of the Faculty of Civil Engineering in Prague. (To appear.)

38



[9] E. Rothe: Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler
Randwertaufgaben. Math. Ann. 102, 1930.
[10] J. Lions, L. Magenes: Problémes aux limites non homogenes et applications. Dunod, Paris,
1968.

Souhrn

RESENI ABSTRAKTNICH HYPERBOLICKYCH ROQVNIC
ROTHEHO METODOU

MILAN PULTAR

V préci jsou feSeny abstraktni hyperbolické rovnice, ve kterych vystupuje elipticky
operdtor zdvisly na ¢ase, pomoci tzv. Rotheho metody, tj. metody diskretizace dané
ulohy v case. Je zde dokdzdna existence a jednoznacnost feSeni a nékteré jeho vlast-
nosti v zdvislosti na riznych predpokladech, kterym vyhovuji dané rovnice. Ddle
jsou uvedeny nékteré numerické aspekty této metody.
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