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SVAZEK 28 (1983) APLIKACE MATEMATIKY Cisto s

STATISTICAL ANALYSIS OF PERIODIC AUTOREGRESSION

JIRi ANDEL

(Received January 20, 1983)

The autoregressive parameters of the classical autoregressive model are constants.
In some seasonal time series it is possible to assume that the autcregressive coeffi-
cients are also pericdic functions of time with the pericd corresponding to the sea-
sonal component. Such a model is called a pericdic autoregression. In the paper
methods for estimating parameters and testing hypotheses in the pericdic auto-
regression are proposed and investigated. Two models are considered, one with
constant variances of the innovation process and the other with periodically changing
variances. The statistical analysis is based on the Bayes approach. The parameters
of the model are supposed to be random variables with a vague prior density. Theo-
retical results are demonstrated on numerical examples.

1. INTRODUCTION

The usual autoregressive process {X,} is given by the relation
(1.1) X, =bX,_1+...+bX,_,+Y,,

where {Y,} is a white noise with vanishing mean and a variance 6> > 0. The vector

b = (by,..., b,) and the parameter ¢” are estimated from a realization X, ..., Xy.
The autoregressive model (1.1) can be also used in the analysis of seasonal time

series (see Box and Jenkins [3]). In the typical cases the characteristic equation

" — bt — ... —b,=0

has some roots with the absolute values equal to one and it is known in advance
that some fixed autoregressive parameters are zeros.

In the seasonal time series the length of the longest pericd is known. For example,
an economic time series consisting of monthly data is expected to have a periodic
behaviour with the period 12. If we have a model of type (1.1) for such a series, it
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is possible to assume that the vector b of autoregressive parameters is not constant
over a year but reflects the same periodicity. Taking into account that the longest
period is p (say), we introduce p autoregressive vectors

by = (bi1s - byy)s s by = (bpy, .. b))

Consider a model with given variables X, ..., X, in which X, fort > n is generated by

(12) Xn+jp+k = z bkan+jp+k—i + Yn+jp+k >

i=1
where k =1,...,pand j = 0,1,2,.... Denote b = (b, ..., b,)". It is quite natural
to introduce vectors

’
Zs = (Xn+ps+15 Xn+ps+21 ""Xn+ps+p) ’

s =1,2,.... It can be derived from (1.2) that {Z,} is a p-dimensional autoregressive
process. This model allows to decide whether the original process {X,} has an explo-
sive behaviour or not. We shall use this approach in examples in Section 6.

For any process {X,} we can define new processes {&; ,} by &; , = X0/ j =1...
..., p. If the processes {f,‘,} are stationary, {X,} is called a periodically correlated
random sequence. This concept was intrcduced and investigated by Gladyshev [6]
and [7] Jones and Brelsford [10] considered the model for periodic autoregression
(1.-2). They expanded by, ..., by, into a Fourier series, the coefficients of which
could be estimated by a regression method. The results were used for extrapolation
of the process {X,}. Pagano [12] investigated asymptotic properties of estimators
of the covariance functions of the processes {f,-,;}~ He proved that in the case of
periodic autoregression the estimators for b,; obtained from mcdified Yule-Walker
equations are asymptotically efficient. Cleveland and Tiao [5] introduced a periodic
ARMA model. Tiao and Grupe [13] investigated the errors of misclassification,
when the periodic structure of an ARMA process was neglected.

It has been discovered that the method of periodic autoregression can substantially
simplify the computation of estimates of autoregressive parameters in the classical
multiple autoregressive mcdels. This result is also important for estimating spectral

“characteristics in multiple stationary time series. Some details of this procedure were
described by Newton [11].

In the present paper we apply a Bayes methcd for estimating parameters b and ¢*
in the periodic autoregression. The results are used for testing some hypotheses
about the model. A method of estimation is given also in the case that some elements
b,; do not depend on k.

The Bayes approach has beccme popular in the time series analysis (see Zellner
[14], for example). Being simple, this method is frequently used in the statistical
research. For example, the intervention analysis was also built on the Bayes principle,
see Box and Tiao [4]. In our paper we apply the methods used by Andél [1], pp.
173 —180, for the classical autoregressive processes.
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2. PRELIMINARIES

In this part of the paper we collect some auxiliary assertions which will be used
in the following sections.

Theorem 2.1. Let K = [] '1;1,’ 15; ! be a symmetric positive definite matrix such that
il 4 |
A and D are square blocks. Denote
. [' Kll K12
— _ rq4—1 — _ D—I ’ -1 _ ’
P=D-BA'B, Q=A4A-BD'B', K ‘K“,K“p’

where K™! and K are divided into blocks in the same manner. Then P and Q are
symmetric and positive definite matrices, and

Kll — A-l + K12PK21 KIZ — _A—IBP~1 KZI =K12/ KZZ — P—l X
Other expressions for the blocks of K~! are
Kll — Q—l KIZ — __Q—IBD—I KZl — KIZ/ K22 = Dvl + K21QK12 .
Proof. Theorem is well known from the matrix theory, see And¢l [2], pp.

65— 66. O

Theorem 2.2. Let Q,,..., Q, be n x n symmetric positive definite matrices.
Assume p = 2 and introduce matrices Q = Q; + ... + Q,,

!J{ le 09 LI 0 QIQ;IQD D] QIQ_IQp—l
H = i ................. el | s
}0’ 07 ey Qp—] | Qp*lQ_lQla RS Qp—lQ_lQp"l |
Lo _ -
j Ql N O, ey 0 ]9 > Q ! i
K=/ .....0........... e
| -1 — -
10, 07 s Qp-—l 1’ H Q !
Then H and K are symmetric positive definite matrices.
Proof. Let zy, ..., z,_; be vectors with n components. Denote z = (2, .., z;,_.,)’
and put

p—1
Zp = -0 kZ1 iz -
It can be verified that

p—1
z’Hz = kZI(Zk +z,) Qlz + z,) + 2,0,7,

holds. Let z # 0. If z, # 0, then we immediately obtain

z’Hz 2 z,0,z, > 0.
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If z, = 0, then there exists a vector z,(1 £ k < p — 1) such that z, + 0 because
of our assumption z # 0. In this case z, + z, + 0 and we have

Z’Hz 2 (z; + z,) Oz + z,) > 0.

Tkerefore, H is a positive definite matrix.
Denote D = Diag(Qy, ..., Q,—1). This matrix is regular and symmetric. Since
K = D 'HD™?, the matrix K is also positive definite. O

Theorem 2.3. Let V be an n x n symmetric positive definite matrix and let
a random vector X = (X4, ..., X,) have the density

(2.1) g(x) = (1 + x'Vx)™"/?,

where ¢ is a constant and m = n + 1. Introduce a random vector

Z=(Z,..n2) = (Xs, ... X.)

where | iy <i, <...<ig=n, 1 <s <n. Let Wbe the matrix arising from
the rows iy, ..., i, and from the columns iy, ..., i of the matrix V~'. Then the
marginal density of the vector Z is

q1(2) = ¢;(1 + /W™ 1z) " lmontiz

where ¢y is a constant.

Proof. First we prove the assertion in the case that (iy, ..., i) = (n — s + 1, ..., n)
ie for Z= (X, ,41,-..,X,). Denote
n '
[ Raps Ry !,

where R,,isans x s block. Put
| 7712, —T'?Ry,R;, |

T=Ry;; — R,R5'R,, S= ;i 0 R;,? K

. Theorem 2.1 gives S'S = V, and thus S’ '¥S™! = I (the unit matrix). Consider
the transformation U = SX. The Jacobian is a constant and we get that the density
of U is

qx(u) = c;(1 + w' S WS ') = ¢y(1 + u'u)™™?.
Let U = (U}, U3)', where U, has s components. From U = SX we get U, = R;,/*Z.

The marginal distribution of U, is

q3(us) =j er(1 + uiuy + uhuy) ™ duy =
Rn-s

=c(1 + u'zuz)""/zj [T+ ui(1 + whuy)™ uy ™2 duy,
Ry-s
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where R, _j is the Euclidean (n — s)-dimensional space. For calculating the integral
we put
t= (14 upuy) 2 uy.

The Jacobian is (1 + uju,)® /2, and thus

a(u2) = ex(1 + whuz)~moroN2 J‘ (1 + )™ di =

Rn-s
= (,'3(1 + u;uz)‘(m*n+s)/2 .
Since U, = R;,"*Z, the density of Z is
(2.2) ‘11(2) =c(1 + Z'R{zlz)_("‘_"”)ﬂ ,

and for the special choice of iy, ..., i; the assertion is proved.

Now consider the general case. Introduce a matrix J which has in each row an
element equal to 1 while all the other elements are zero. The units are subsequently
placed in the columns

(23) 1,2, iy = Lig+ 1y = Ly + Lo iy = Ly 4 1, iy, i ey g -

Put Y = JX. The elements of the vector Y are X; in the order (2.3). The vector
Z =(X;,,...,X;) is placed at the end of the vector Y. Since JJ' = I, we have
J ™1 = J’ and the density of Yis

q4(y) = 64(1 + y'JVJ’y)_"’/Z .

In this case we have proved that the density q,(z) is given by the formula (2.2), where
Ry, is the s x s right-down corner of the matrix (JVJ’)~*. Since (JVJ')™' =
= JV~1J’, R,, is the matrix arising from the rows iy, ..., i, and from the columns
iy, ..., iy of the matrix V1, O

Theorem 2.4. Let a vector X = (X, ..., X,) have the density (2.1). Then the
random variable

m —n

F = X'VX

n

has the Fisher-Snedecor F distribution.

Proof. The density of Y = V¥2X is
91(}’) = cl(l + yIJ’)—mIZ .
Consider the transformation

2 cos O,
r1/2 sin ©, cos O, ,

I

h
V2

Il
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Yooy =r?sin@,sin@,...sinO,_,cos O,_,,
Yo =1r"*sin@,sin @, ...sin O,_, sin @

n—1>»
where
rz0, 0£0,,0,,...,0, ,<n, 006,_, <2r.

Denote @ = (04, ..., ©,_;). Since the Jacobian of the last transformation is
r/2)=1 (@), where h is a non-negative measurable function, the simultaneous
density of r and @ is

ga(r, ©) = c; P71 + r)™"* h(O).

The marginal density of r is
gs(r) = J.gz(r, 0)dO = ¢y r™H 71 + r)™m?
for r > 0. From F = (m — n) r/n we obtain the density of F

—m/2
g4(f) = C4f("/2)_1 <1 + - ) , >0,

m —n

which is the density of the F, ,_, distribution. O

Let Y= (Y;,..., Y,) be a random vector with the density

p(vi v P) = LMLy ot ety

(o) I(v[2) |P['/2
where P is an n X n symmetric positive definite matrix. The function p is called the
density of the n-dimensional Student ¢ distribution with v degrees of freedom (see
Johnson and Kotz [9], pp. 132—150). Let a vector X = (X,,...,X,) have the
density g defined in (2.1). Then Y = (m — n)"/? X has the density p(y; m — n, V1),
i.e. the n-dimensional ¢ distribution with m — n degrees of freedom. From this point
of view, Theorems 2.3 and 2.4 express some properties of the multivariate ¢ distribu-
tion.

3. ANALYSIS OF THE MODEL

Let us consider the model (1.2). We shall assume that the variables {Y,} are inde-
pendent and Y, ~ N(0, ¢%). Moreover, let X, and Y, be independent for s < t. We
shall analyze a realization X,, ..., Xy. Usually, N is large in comparison with np.

We shall assume that b and ¢ are random variables. The conditional density
of X,,1,..., Xy, given X; = xy, ..., X, = X, and given b and o, is

(3'1) f(xn+1, cees XN | X1 oo Xp by 0) = (27[)_(N_")/2 o™ x

1 P aK n 2
X CXP{— — Z Z [X:x+k+(j—1)p - Zbkt’xn+k+(j—l)p—i] } 5
i=1

202 k=1 j=1
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where

(32) o = Lu—k] F1.

p
If we denote by, = —1 for k = 1, ..., p, then (3.1) can be written in the form
_ n _ . 1 P n n
(33) (2m)~ (N2 gm (V= exp J — — Y XY a¥bubygh
207 k=1 i=0 j=0

where

Ak

(k) _ "

qij” = Z Xn+k+(h—-1) p—i Xn+k+((h—1)p—j -
=

Introduce the matrices, vectors and variables

Q = ”qgl;‘)“'il,ﬁo , Ok = ”q(il;')”'i',j=1 s qy = (qg(1)> cees qg‘n) ",
b = (bits - bi) = Qi 'ax, b* = (b1, ... by)
ve=q% —bi'qg, v=0v;+..+0v,.

We shall assume throughout the paper that all the matrices €, are positive definite,
Then the vectors b, are well defined and it follows from Theorem 2.1 that v, > 0
for all k. The symbols ¢ and ¢; will denote constants, which may depend on a realiza-
tion x = (xy, ..., xy)’ of the random vector (X, ..., Xy)"

Theorem 3.1. Let b and ¢ have the prior density
n(b,c) = o™ *

for @ > 0 and be R, (and equal to zero otherwise) and let (b, o) be independent
of (X4, ..., X,). Let N = np + 1. Then the posterior density g(b, ¢ l x) is

(34) g(b,o|x)=co ™" T exp {— 2%2 kzi [(be = b) Qu(bi — bF) + ”k]}

Jor ¢ > 0 and zero otherwise. The modus of the posterior distribution is b* and o*,
where
o** = /(N —n +1).

The marginal posterior density of the vector b is
L
(3:5) gi(b|x) = e[t + 07" Y (b — bi) Qulbe — b)YV,
k=1
and the marginal posterior density of the parameter o is
(3.6) 920 | x) = e,V P exp {—0f(26%)}, 6> 0.
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Proof. Formula (3.4) immediately follows from (3.3) by using the Bayes theorem.
Since all Q, are positive definite, it is clear that b* is the modus, because g(b*, o [ x) =
> g(b,o , x) for every b and ¢. The maximization of g(b*, o | x) over g € (0, c0) gives

the value of o*. In order to prove (3.5), we put

a- él [(b — b%) Ou(by — bY) + u,] -

Then
g:(b I x) = J g(b, o I x)do = cJ o N lexp {—a/(20%)} do .

(1]
After the substitution u = a'/? ¢~! we obtain formula (3.5). Further, we have

92(0|X)=J g(b,o | x)db =

0

Rnp

p
=co V" Texpd — 2l exp { — L(bk — by) Qu(be — by) b db,.
202 k=1 J g, 207

After the substitution f, = ¢~ (b, — by) we get

920 | x) = ca™ V" Lexp {— 2%2} ﬁl (o"j exp {— %B’Qkﬁk} dﬁk) =

k=
a

CZO.—N'}‘n‘l“rnp exp {—1)/(20'2)} .

The modus b* and ¢* can be used as a point estimator of b and ¢. As for the
decision about the individual parameters, the following assertions can be useful.

Theorem 3.2. Let ¢ be the (i, i)-th element of the matrix Q; . Then the posterior

distribution of

(kyii

vq

N —n—np]|'/?
T = [—I‘):I (bki - b:i)
is the Student t distribution with N — n — np degrees of freedom for k =1,...,p

andi=1,...,n
Proof. Using Theorem 2.3 we obtain the posterior density of b,; in the form

[l + (b — b;“x.)z/(uq(")“)]—(N~n—np+1)/2 )
(]

From here we immediately get the density of T;;.
Theorem 3.3. The posterior distribution of v[o* is the x* distribution with N —
— n — np degrees of freedom.
O

Proof. The assertion follows from (3.6).
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Theorem 3.4. The random variable

N—-n—np 2 ,
F = LS (b — bE) Qulbs — b))
npv k=1
has the posterior F,, \_,_,, distribution.
Proof. The assertion follows from (3.5) and Theorem 2.4. O

This last theorem can be used as a test of goodness-of-fit in the case that a hypo-
thesis specifies the value of b (e.g. in a simulation). Alternatively, F can be used for
testing independence in a time series against the alternative of periodic autoregression,
when we put b = 0. In both the cases the large values of F are significant.

For testing the fit of a model we can use either the statistics T;; or F. It is important
to know a relation among them. Denote

bt
D = Diag{Qy,...,0Q,}, O = ‘l ........ ;
I b, - b: i

Let @,; be the [(k — 1) n + i]-th element of ©. For any fixed vector h € R,, we have
the inequality

(W®)? = [(D~'?hy (D'?0)]* < W'D 'h. @'DO .
For h = (0,...,0,1,0,...,0), whete 1 is the [(k — 1) n + i]-th element, we get
@2 < ¢™ie' Do .
This yields
TZ<npF, k=1,...p; i=1,..,n.

In fact, this result corresponds to Scheffé’s theorem concerning multiple comparison.

It is very important to have a test statistic for the decision whether the mcdel
(1.2) is really necessary or whether it is possible to reduce it to the classical homogene-
ous model (1.1). For this purpose we prove the following assertion.

Theorem 3.5. Let 4, = b, — b, — (by — b}) for k = 1,...,p — 1, and introduce
a vector A = (44, ..., 4,-1)'. Let Q and H be the matrices defined in Theorem 2.2.
Then the posterior distribution of the statistic

Fo=N=me =1 4y
n(p—1)v

1S Fp-1) N-n(p-1)-

Proof. Put 4, =b, — b:. The Jacobian of the transformation (b}, ..., b;,)' -
- (4}, ..., 4;) is equal to 1. From the formula (3.5) for g, (b | x) we obtain the density

p—1
gx(dy, ... 4, x) = ;{1 + v7'[4,0,4, + k; (4 + 4,) Q4 + 4,)]} N2,
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Denote
p—1

p—1
h = Z 04, G= Z 4,04, — WQ 'h.
k=1 k=1
Then we can write

93(41, s 4, | x) = ¢3[1 + 071G + v (4, + Q7 'h) Q(4, + Q" Th)]" N2,
The posterior density of the vector 4 is

g4(4 I x) =f gs(44, ..., 4, | x)d4, =

Rn

= cy(1 4+ v71G)" N2,
f [T+ +0v7'6) v (4, + Q" hy Q(4, + Q7 'h)]" V"2 d4, .
Rn

The Jacobian of the substitution
w=(1+0v1G)""? v‘”zQ‘/Z(Ap - Q7 'h)

is
(1 + 07 1Gy/2 2

QI—I,IZ

and thus

g4 | x) = cv™?|Q|7* (1 + u*’c)*"/zf (1 + w'w)~N=m/2 gy
Rn

After some computations we get G = A’HA, and thus

94(4 | x) = c,(1 + o' A’ HA)™N?,
where

ey = co "2

Q[_”ZI (1 + ww)=N=mi2 gy,
Rn

Since the matrix H is positive definite, the assertion follows from Theorem 2.4. (]

The above result can be used for testing the hypothesis Hy : by = b, = ... = b,.

» Under H,, we have
Ay =b,— b, A=(4%,...,4, ).
If
(3.7) FdzwA'HA
n(p—1)v

exceeds the critical value F,,_ 1y y-np-1y(2), We reject H, on the level a.

In some cases it can be important to test a hypothesis that only some components
of the vectors by, ..., b, do not depend on the first subscript. For example, consider
a set iy, ..., iy such that

12 <i<...<ig=n, 1=Ss<mn,
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and introduce subvectors

31 = (blil’ e b]ia)/ > B"l‘ = (b;kix’ R le})’ ’

, * * * 0\,
B, = (b, .. b)) s By = (bpiys s b))
We are interested in testing the hypothesis Hg : B, = B, = ... = B,
Theorem 3.6. Let M, be the inverse of the matrix arising from the rows iy, ..., i

and from the columns iy, ..., i, of the matrix Q; ', k = 1, ..., p. Then the marginal
posterior density of the vector B = (B, ..., B,) is

4
ql(B I x) — C[l + ! Z (Bk _ B;f)' Mk(Bk _ B:)]‘[N—n—l?(n—s)]."l .
k=1

Proof. The posterior density of b given in (3.5) can be written in the form
gl(b ‘ x) = c;[l + (b - b*)’ K(b _ b*)]—(N~n)/2 i

where K = v ! Diag {Q, ..., Q,}. Our assertion immediately follows from Theo-
rem 2.3. O

Obviously, the case s = 1 will occur most frequently. We put briefly i; = i. The
result can be formulated as follows.

Corollary 3.7. Let g% be the (@ i)-th element of the matrix Q; ! Then the marginal
posterior density of the elements by, ..., b,; is

4 .
‘12(b1i, v by l x) = C[I + 7! Z (bki - b:i)z/q(k)” IR
k=1
Proof. Corollary is a special case of Theorem 3.6. O

Theorem 3.8. Put 6, = B, — B, — (B} — B,) for k = 1,...,p — 1, and denote
6 = (8%, ..., 6p—y)". Introduce the matrices M = M, + ... M, and

Then the posterior distribution of the variable
F(,=N—(n+1)p+255’L6
s(p — 1)

is the Fs(p—-l),N—(n+1)p+2s distribution.

Proof is analogous to that of Theorem 3.5. O
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Fors = 1and i; = i we have
p P
Mk — ]/q(k)ii , M — z (]/q(k)n) .
k=1
Corollary 3.9. If s = 1 and i, = i, then the posterior distribution of the variable

N—(n+1)p+27"

p=1v

Fy =

(S Gl = MoLS, (a9

18 Fp—]..’\’—(n+1)p+2'

Proof. Corollary is a special case of Theorem 3.8. O

It can happen that we finally choose a model in which some parameters are periodic-
ally changing and some are constant. This situation was described before Theorem
3.6. If we decide for a medel corresponding to a hypothesis H,, it is convenient
to have also formulas for estimating the parameters. For two most important cases,
when the constant parameters are either at the beginning or at the end of the vectors
b,, we give explicit solutions.

Theorem 3.10. Let b, = (B, w’)', where the vector w has s components. Introduce
blocks Q)7 and gqj for i,j = 1,2 by
12 1

| 11!
—f' ’ [ _ o k=1
) sz‘f i ?Iqlfh, ,-~-?P,

22 . . .
where Q;% is an's x s block and g7 is a vector with s components. Denote

; 01', 0, , 0, 01 gy
”03 ;], > 09 ;2: ‘! q;g
Mo | * _ ‘| ceen |
o0 ;1, 0 " L {i
i ! P |
Lol 03 L. ZQ“ ‘ | Xac |
{ | |

P = S0P - 0201 0L 0= (BB

If the prior density of n and ¢ is 6™ for ¢ > 0 and zero otherwise and if (n, ¢) is
independent of (X, ..., X,), then for N = p(n — s) + s + 1 the posterior density
of (n, o) is

_ - 1
ri(n, o |x) = co™ N ! exp{— Py [(n = n*y M(y — n*) + w]}, a> 0,
o
where

n=Mu, w——Zq‘“

375



The matrix

|
can be calculated by the formulas
M= P M = -0l 020
" (eih) o0, ..., 0 ’;’
M2 =MV, MU= f + M'2ppRt
, |

The modus of the posterior distribution is n* and *. where

o =w/(N—-n+1).
Proof. From (3.3) we get the posterior density
12 ,
r(n, o , x) = co M exp {— o Y (=1, b)) (-1, b,;)’} .
g k=1

Further we have

M~

P
(_1, b/i) Q—1, bl:), = kZI (‘Ig(o) — biqi — qiby + bl:kak) =

k=1

14
=2 [a60 — (Bigx + @'ai) — (ax B + ai'@) +
=1
+ (BQi i + B0’ + o' Q7B + ' Qw)] =
P
=My —n'u —u'n+ ¥ q53 = (1 = n*) Mln = n*) + .

The formula for M~ follows from Theorem 2.1. The proof that (17*, a*) is the modus
is the same as the proof of Theorem 3.1, since the matrix M is positive definite. []

The marginal posterior density of  is
ra(n ! X) = Cz[l + w“(q - ;7*)' M(’1 — ,1*)]~(N—n)/z

and the posterior distribution of

N —n—pn—s)— Sw"(iy—n*)’ My — n¥)

F =
pln —s) +s

iS Fp(n-—s)+s,N*n—p(n‘s)~s'
A similar assertion holds for the case that the constant parameters are placed at the

beginning of the vectors by, ..., b,
Theorem 3.11. Let b, = (w’, B;)’, where the vector w has s components. Introduce

the blocks QY in the same way as in Theorem 3.10. Denote
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p | I
11 12 12 12" 1!
ZQk ] 1 205 p || qkl
| k=1 ' =1 lf

21 22 2
N = 1 Ql ’ 0’ ] 0 i y = | qli!

= 21 22 y =1 21l
2 07 2 5 e 0 |, | q: I
! |
......................... | eenn

21 22 ’ ! 2

' P> 0, 0, cee Y5 ] | t],,‘l

S :kgl [Ql:1 - I:Z(Qlfz)_l :l]v V= (w,a ﬂll""7 ﬁ;)),

If the prior density of v and ¢ is ¢~* for ¢ > 0 and zero otherwise and if (v, 6) is
independent of (X, ..., X,), then for N = p(n — s) + s + 1 the posterior density

of (v, 0) is
ra(v,o| x) = ca® " Texp {— 2% [(v = v¥) N(v — v¥) + z]}, ¢ >0,
o
where
14
v =NTly, z=3 g0 — v*y.
k=1

The matrix
[

‘Nll NIZ |
!NZI, N22 J

-

can be calculated by the formulas
NSNS R(OR) e 00,

‘(sz)-‘, 0,...,0
N =NW, N2 = | + N?'SN'2 .

lo, 0, ..., ()71
The modus of the posterior distribution is v¥ and o*, where
o*? =z[(N—n+1).

» Proof is analogous to that of the previous theorem. O
The marginal posterior density of v is

ra(v l x) = C3[1 + z“‘l(v — v*)’ N(v _ v*)]"(N—n)/Z
and the posterior distribution of

F//=N_n_p(n_s)_sz—l(v_.v*)’N(v_v*)
p(n —s) +s

is Fp(n—s)+s,N—n—p(n—s)—s-
From the previous two theorems we could derive marginal distributions and test
statistics similar to those given in Theorems 3.2 —3.7.
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4. MODEL WITH NON-EQUAL VARIANCES

In the model (1.2) it is sometimes assumed that Var Y, ,,, = i >0 depends
on k, k =1, ..., p. The statistical analysis of the model is similar to the procedure

given in Section 3.

Theorem 4.1. Denote o = (o, ..., 0,). If the prior density of (b, ) is o7 ... o, !

Jore;, >0,...,0,>0 (and zero otherwise) independently of (X4, ..., X,,), then the
posterior density of (b, o) for positive oy, ..., 6, is

—ay = —xp— 2 l ’
g(b,olx)=cal e exp {— kZIE;;[(bk*— by) Ou(by — b)) + Uk]}a
=120}

where by, by, O, and v, are given in Theorem 3.1 and w, is defined in (3.2). The modus
of the posterior distribution is b* and ot ..., a: where

or? = vl +1), k=1,...,p.

The marginal posterior density of b is
p
(4.1) g:i(b|x) = clkl:ll[l + vg (b — bg) Qu(by — b)] ™2
and the marginal posterior density of o is
P . v
(4.2) ga(c , x) =c¢, I g™ 1*" exp{— -—"5}
k=1 20}

for positive o4, ..., 6,

Proof. Theorem can te proved in the same way as the assertions in Section 3. []

Theorem 4.2. Denote

o, —hn _
F, = "n v '(by — by) Qu(by— b)), k=1,..,p.

Let H, be the distribution function of the F,,, , distribution. Put m, = 1 — H,(F,).
Then the posterior distribution of the random variable

14
¢=-2)Inm,
k=1
isx%,,.

Proof. From (4.1) we can see that, given x, the vectors by, ..., b, are independent
and the density of b, has the form

cal[l + vi (b — be) Qu(be — be)] ™.
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Then Fy ~ F, . (see Theorem 2.4) and given x, the variab'es F,, ..., F, are inde-
pendent. Further we use the well known construction of a test of significance based
on several goodness-of-fit tests (see Janko [8], p. 27). O

The result can be used for testing the hypothesis that the theoretical values of auto-
regressive vectors are by, ..., b,. If ¢ = ;(;p(a), we reject this hypothesis on the level a.

Theorem 4.3. Denote &; = v,/(«, — n), k = 1, ..., p. Then, given x, the variables

A2 A2 .
6%, ..., 0, are independent and

(o4 — 1) 68[0% ~ Hamn -

Proof. The conditional independence immediately follows from (4.2). The marginal
posterior density of oy, is

con ™ M exp { —v,/(207)} -

Hence we get that v/o; ~ 22 _,. (]
In many cases o, = a, does not depend on k. In such a case we can test the hypo-
thesis 07 = 63 = ... = o} using the Cochran test (see Janko [8], p. 62). We cal-
culate the statistic
p
g = (maxé7)| Y 6;.
1<k<p k=1
The critical values of g’ for the levels « = 0-05 and « = 0-01 are tabulated in Janko
[8], Tab. 16a and 16b.

This test shows whether the model with non-equal variances is necessary or whether
it is possible to reduce it to the model investigated in Section 3.

Let us remark that for p = 2 in the case o] = o3 the ratio 41/63 has the posterior
F,, 1 4,-n distribution and we can simply use the classical F test for comparing two
variances instead of the Cochran test.

In order to simplify the procedure described in Theorem 4.2 and to derive a test
corresponding to F4in (3.7) Wwe use some approximations.

Again, consider a random vector X with the density g(x) = ¢(1 + x'Vx)™™?
which was introduced in Theorem 2.3. Then the random vector Y = m'/2X has the
density ¢'(1 + y'Vy/m)~™?, and we can sce that the distribution of Y converges to
N(0, V~*) as m — co. In view of this fact we shall approximate the distribution of
X by N(0, m~*V ), i.e. g(x) will be approximated by the density ¢” exp { —4x'mVx}.

Denote

U =0y '0Q, U=U;+..+U,,

U;, 0, ..., 0 uu'uy, ..., UUT'U
0, 0, ..., Uy U,., U Uy, ..., U,_,U'U
The marginal posterior density g,(b | x) in (4.1) can be approximated by the density
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] p
(4.3) Ab|x) = cexp {— 5 Y (b — b)) Ub, — b,’f)} )
k=1
Hence we immediately get, that the random variable
p
(4.4) y = Zl(bk — by) Uy(b, — b;)
k=

has approximately the posterior xf,, distribution. If y excceds the critical value
Xfp(a), we reject the hypothesis that the parameters of the mcdel are by,..., b,
on a level which is approximately «. The statistic y can be used instead of ¢ given
in Theorem 4.2.

Now, we derive a test statistic for testing the hypothesis Hy : by = b, = ... = b,
The derivation is similar to the proof of Theorem 3.5 and thus it is only sketched. Put

4,=b,—b,—(by — b)) for k=1,...,p—1, 4,=b,— b},
p—1 p—1

A=Ay 4,y h=Y Ude, G=Y &Ud, — WU k.
k=1 k=1

Let b have the density (4.3). Then the density of (4}, ..., 4,)' is
24(45 .. 4y %) = cyexp {=3[G + (4, + U *hy U(4, + U~ ' h)]} .
Since G = A’L4, the marginal density of 4 is
Jo(4] x) = cyexp {—14'Ld} .

Then
(43) r=ALA
has the posterior x2,-1, distribution. If r = y2,,(2), we reject the hypothesis H,
on a level which is approximately equal to a.

Let u® be the (i, j)-th element of matrix U, '. It follows from (4.3) that the

posterior distribution of (b,; — by;)/[u®*]"/? is approximately N(0, 1). This result
can be used for testing hypotheses or for constructing confidence intervals for b,;.

5. SUBSET PERIODIC AUTOREGRESSION

Consider again the model (1.2). In some cases it can be known in advance that
some parameters b,; are zeros. Assume that only the parameters b,; for iel =
= {iy, ..., i,,} can be non-vanishing. Then we have the model

Xotjpik = Z biiXusjprk—i + Yot jpe -
e
All the procedures from Sections 3 and 4 remain valid, only the type of matrices
Q, is m x m, their elements are defined only for i, j € I and starting from Theorem
3.1 we must write everywhere m instead of n and after that N — n + m instead of N.

380



6. EXAMPLES

Consider a special case of the periodic autoregression withn = 2, p = 2, i.e.
(6.1) Xore1 = by Xor + b12 X505 + Yoruqs
Xopvz2 = by Xpps1 + 022X + Youus .
If we denote
1" 1 1
i Y, 1, o
= || | = | Ay = |
ét “er j‘ s My ‘“ er ,i 5 0 !:I _bzl’ 1

the model can be written in the form
Alipr + Ay = MNiyq -

Thus we have the classical two-dimensional autoregressive process. (For general
n and p see Pagano [12].) Obviously,

[Aoz + Ay| = 2 — (byybyy + byy + byy) z + byyby, .
Let z, and z, be the roots of the equation
(6'2) z? — (by1bay + byy + byy) z + byyby; = 0.

It is well known that {¢,} is stationary provided |z,| < 1, |z, < 1. If this condition
is not satisfied, {f,} has an explosive behaviour. Let us remark, however, that the
results of previous sections do not depend on whether the condition 'Z1| <1, <1
holds or not.

A realization of the process (6.1) with Y, ~ N(0, 1), by; = 02, b,y = 06, b,, =
= by, = 07 fort = 1,2,..., 80 is given in Fig. 1. The roots of equation (6.2) are
z; = 1-056 and z, = 0-464. The explosive character of the series is clearly visible
from Fig. 1. The results of the analysis are

¥ =009, bY, =089, bl =056, b}, =0706, o*>=0963.

Z;

I~
[es]
et

~A '.‘
;VE— A“,"\'VH"

‘,’iH.vlv'\.'i
i . H"‘-."v yvye
AV \
FAAAAAAM T
PVaAaRi vy V
A

40 80
Fig. 1. A realization of the process X,,,; = 02X,,+ 0.7X5,_; + Y5, 1, Xp12=
= 0.6X5,41 + 07Xy, 4 V4o
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None of the statistics T;; and F from Theorems 3.2 and 3.4 are significant at the level
0-05. To test the hypothesis b, = b, we used formula (3.7) with the result F, = 536,
which exceeds the critical value F2,73(O-05) = 3:11. The difference -between b},
and b}, is not significant at the level 0-05 (the correspondig F statistic was calculated
by using Theorem 3.8). If we assume that b,, = b,,, we can use Theorem 3.10 for
calculating new estimates. In our case we have got n* = (0-185, 0-499, 0-746)" as an
estimate of = (0-2, 0-6, 07)".

The resut of simulation of the process (6.1) with b, = 0-5, b;, = 06, b, = 0-2
and b,, = 0-6 for t = 1, ..., 80 is given in Fig. 2. The roots of (6.2) are z; = 1019,

4T
2t 'y 1
O R — A«' N y i A l*‘rﬁ ! —
7] PJ'F"’“" ,K:M Vi 40 ey “f‘bp"“’\,{“\,’\,u ABG
2 v Py Ui
| P
-4 \Y

Fig. 2. A realization of the process X, ,, 1 =0.5X,, + 06X,y + Y5,, 1, X3,42=02X,,, { +
+ 0’6X2! + Y2t+2'

z, = 0-481. Again, the process should have an explosive character, but this time the
length of the realization is too short to reccgnize it visually. The estimates are

bT, = 0380, b}, =0-540, b3, = 0010, b3, =0789, o** = 1-098.

The statistics T;, and F from Theorems 3.2 and 3.4 are not significant at the level
0-05. However, F, = 2-34 is not significant either.

The processes similar to that in Fig. 1 occur in economics. Our simulations show
that for a given length of the record even a small change of the parameters of the
model can lead from a clearly significant pericdic autoregression to the decision

for a classical autoregressive model.

10C0+ \
A !r
ot A A
IASAR \ i
100f W Jf\“:f
Wi
wi
10+
1949 o 1979

Fig. 3. Numbers of deaths due to influenza in Czech countries.
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Two real time series are given in Tab. 1. Series 4 contains numbers of deaths due
to influenza in Czech countries from 1949 to 1979, which were obtained from more
detailed data given by the Czech Statistical Institute (Cesk)'/ ufad statisticky). The
first column of A4 summarizes data from April to September, the second column
from October to March of the next year. Series B is formed by numbers of cases

Tab. 1.

A — numbers of deaths due to influenza in Czech countries
B — numbers of cases of hepatitis in Czech countries

A B

Year Apr.-Sept. Oct.-March Jan.-June July-Dec.
1949 116 208

1950 125 450 3901 15435
1951 96 136 14 983 18 757
1952 65 285 16 334 13 852
1953 159 709 9 678 19 352
1954 44 69 16 218 21326
1955 25 32 14 815 19 491
1956 18 131 15 347 13 699
1957 23 522 8713 8326
1958 79 1119 6574 9973
1959 288 139 7313 12 749
1960 189 152 10 281 15422
1961 22 2259 11 688 15 641
1962 78 116 10 096 11134
1963 56 372 9078 16 664
1964 221 80 12058 15058
1965 54 364 9 531 8020
1966 22 641 5457 6417
1967 26 471 4432 4904
1968 56 150 4023 4 436
1969 183 2 146 3 803 5012
1970 35 48 4 402 5 840
1971 22 906 4 461 5074
1972 25 706 4059 5543
1973 23 217 5879 5325
1974 24 1 040 4 807 5436
1975 42 316 4410 4 662
1976 334 374 4432 4582
1977 71 159 4370 4 348
1978 60 94 3510 3456
1979 6 570 4432 30 422
1980 6 288 4 849
1981 4027 3326
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of hepatitis in Czech countries from 1950 to 1981. The data were obtained from

a more detailed information given by the Institute of Health Information and Statis-
tics (Ustav zdravotnickych informaci a statistiky).

Series A is plotted on the logarithmic scale in Fig. 3, series B on the usual scale
in Fig. 4.

1950 1981

Fig. 4. Numbers of cases of hepatitis in Czech countries.

We analyzed not only series A and B, but also their logarithms. The results of the
analysis are summarized in Tab. 2. In all four cases the hypothesis 62 = o3 is rejected
at the level 0:05 and thus the mcdel with non-equal variances must be applied.

Tab. 2. Results of statistical analysis

A In A B In B
N 62 62 64 64

b}, 0-0449 0-3597 03757 0-6385
b¥, 0-4249 0-4726 0-4561 0-3424
b%y 25149 0-5244 15233 1-5827
b%, 0-1024 0-6036 —0-2022 —0-5433
a? 9103 0-8239 6236 150 0-0578
o3 454795 2:5600 28 336 173 01379
r 4-86 9:35 153 29-7

The critical value for r at the level 0-05 is 5:99. Except for the series A4, in all remain-
ing three cases the hypothesis by = b, is rejected. It seems that the non-significant

value of r in the series A is caused (at least partially) by the large value of the ratio
6361, because the estimates bf and b3 differ considerably.

Acknowledgement. The author is very grateful to RNDr. Eva Svandovd from
the Institute of Hygiene and Microbiology, Prague, for providing the data in Tab.1.
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Souhrn
STATISTICKA ANALYZA PERIODICKE AUTOREGRESE
Jiki ANDEL

V klasickém autoregresnim modelu jsou autoregresni parametry konstantni.
PFi vySetfovdni sezonnich ¢asovych fad Ize vSak v nékterych pfipadech predpokiddat,
Ze autoregresni koeficienty jsou periodickymi funkcemi ¢asu s odpovidajici periodou.
Pak jde o tzv. periodickou autoregresi. V prdci jsou navrZzeny metody pro cdhad
parametrii a testovdni hypotéz v modelu periodické autoregrese. Je vySetfovdn jak
model s konstantnimi rozptyly inova¢niho procesu, tak i medel s periodicky se méni-
cimi rozptyly. Statistickd analyza je zaloZena na bayesovském pristupu. O parametrech
modelu se pfedpoklddd, Ze to jsou ndhodné veliCiny s nevlastni apriorni hustotou.
Teoretické vysledky jsou demonstrovdny na simulovanych i redlnych datech.

Author's address: Doc. RNDr. Jifi Andél, DrSc., Matematicko-fyzikalni fakulta Univerzity
Karlovy, Sokolovska 83, 186 00 Praha 8.
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