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SVAZEK 28 (1983) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

STATISTICAL ANALYSIS OF PERIODIC AUTOREGRESSION 

JIŘÍ ANDĚL 

(Received January 20, 1983) 

The autoregressive parameters of the classical autoregressive model are constants. 
In some seasonal time series it is possible to assume that the autoregressive coeffi­
cients are also periodic functions of time with the pericd corresponding to the sea­
sonal component. Such a model is called a periodic autoregression. In the paper 
methods for estimating parameters and testing hypotheses in the periodic auto­
regression are proposed and investigated. Two models are considered, one with 
constant variances of the innovation process and the other with periodically changing 
variances. The statistical analysis is based on the Bayes approach. The parameters 
of the model are supposed to be random variables with a vague prior density. Theo­
retical results are demonstrated on numerical examples. 

1. INTRODUCTION 

The usual autoregressive process {Xt} is given by the relation 

(1.1) Xt = blXt_1 + . .. + bnXt_n+ Y,, 

where {Yt} is a white noise with vanishing mean and a variance o2 > 0. The vector 
b = {bu ..., bn)' and the parameter o2 are estimated from a realization X1 ? ...,XN. 

The autoregressive model (1.1) can be also used in the analysis of seasonal time 
series (see Box and Jenkins [3]). In the typical cases the characteristic equation 

zn - b^""1 - . . . - bn = 0 

has some roots with the absolute values equal to one and it is known in advance 
that some fixed autoregressive parameters are zeros. 

In the seasonal time series the length of the longest pericd is known. For example, 
an economic time series consisting of monthly data is expected to have a periodic 
behaviour with the period 12. If we have a model of type (1.1) for such a series, it 
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is possible to assume that the vector b of autoregressive parameters is not constant 
over a year but reflects the same periodicity. Taking into account that the longest 
period is p (say), we introduce p autoregressive vectors 

b1 = (bll9 ..., blw)', ..., bp = (bpl, ..., bpny . 

Consider a model with given variables Xl9 ..., Xn in which Xt for t > n is generated by 

n 

(1-2) Xn+Jp+k = 2_ bkiXn+jp+k_i + Y„+J-p+fc, 
1 = 1 

where k = 1, ..., p and j = 0, \9 2, .... Denote b = (bi, ..., b^)'. It is quite natural 
to introduce vectors 

^s = V ^ i + p s + l ' KAi + p s + 2 , • ••- Kn + ps + p) » 

s = 1,2, .... It can be derived from (1.2) that {Zs} is a p-dimensional autoregressive 
process. This model allows to decide whether the original process {Xt} has an explo­
sive behaviour or not. We shall use this approach in examples in Section 6. 

For any process {Xt} we can define new processes {£;,,} by £jtt = Xpt+j9j = 1 . . . 
. . . ,p . If the processes {f/,J are stationary, {Xt} is called a periodically correlated 
random sequence. This concept was introduced and investigated by Gladyshev [6] 
and [7]. Jones and Brelsford [10] considered the model for periodic autoregression 
(1.2). They expanded bkl9...9bkn into a Fourier series, the coefficients of which 
could be estimated by a regression method. The results were used for extrapolation 
of the process {Xt}. Pagano [12] investigated asymptotic properties of estimators 
of the covariance functions of the processes {£;,,}. He proved that in the case of 
periodic autoregression the estimators for bki obtained from modified Yule-Walker 
equations are asymptotically efficient. Cleveland and Tiao [5] introduced a periodic 
ARM A model. Tiao and Grupe [13] investigated the errors of misclassification, 
when the periodic structure of an ARM A process was neglected. 

It has been discovered that the method of periodic autoregression can substantially 
simplify the computation of estimates of autoregressive parameters in the classical 
multiple autoregressive models. This result is also important for estimating spectral 
characteristics in multiple stationary time series. Some details of this procedure were 
described by Newton [11]. 

In the present paper we apply a Bayes methcd for estimating parameters b and o~2 

in the periodic autoregression. The results are used for testing some hypotheses 
about the model. A method of estimation is given also in the case that some elements 
bki do not depend on k. 

The Bayes approach has become popular in the time series analysis (see Zellner 
[14], for example). Being simple, this method is frequently used in the statistical 
research. For example, the intervention analysis was also built on the Bayes principle, 
see Box and Tiao [4]. In our paper we apply the methods used by Andel [1], pp. 
173 — 180, for the classical autoregressive processes. 
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2. PRELIMINARIES 

In this part of the paper we collect some auxiliary assertions which will be used 
in the following sections. 

Theorem 2.1. Let K be a symmetric positive definite matrix such that 

K11, K12|| 
K21, K22!' 

A, B 

B\ D 

A and D are square blocks. Denote 

P = D - B'A'B, Q = A - BD~XB' , K~x = 

where K_1 and K are divided into blocks in the same manner. Then P and Q are 
symmetric and positive definite matrices, and 

K11 = A'1 + K12PK21 , K12 = - A ^ B P " 1 - K21=K12', K22 = P1 . 

Other expressions for the blocks of K~x are 

K11 = Q~1, K12=~Q1BD~\ K21=K12', K22 = D-1 + K21QK12 . 

Proof. Theorem is well known from the matrix theory, see Andel [2], pp. 
65 -66 . • 

Theorem 2.2. Let Q\,...,QP be n x n symmetric positive definite matrices. 
Assume p _ 2 and introduce matrices Q = Qx + . . . + Qp, 

e.. o, ..., o Q^-'Qt, .... ce^ep-i 

ep-ie-'ei, •••, ep-ie-'e^-i 

e~\ .... e-1 

e-1. .... or 
Then H and K are symmetric positive definite matrices. 

Proof. Let zl9 ..., zp_1 be vectors with n components. Denote z = (z\, 
and put 

- ; - . ) ' 

It can be verified that 
p - i 

z'Hz = £ (zt + zp)' Qk(zk + z) + z'pQvz„ 
k=l 

holds. Let z 4= 0. Jf zp + 0, then we immediately obtain 

z'Hz ^ z'pQpzp > 0 . 
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If zp = 0, then there exists a vector zk(l _ k _ p — 1) such that zk + 0 because 

of our assumption z + 0. In this case zfc + zp + 0 and we have 

2'iVz _ (zfc + zpy Qk(zk + zp) > 0 . 

Therefore, H is a positive definite matrix. 

Denote D = Diag (<21? ..., Qp_i). This matrix is regular and symmetric. Since 

K = D~1HD~\ the matrix K is also positive definite. • 

Theorem 2.3. Let V he an n x n symmetric positive definite matrix and let 

a random vector X = (Xl9 ..., X,,)' have the density 

(2.1) q(x) = c(\ + x'Vx)-m/2 , 

where c is a constant and m _ n + 1. Introduce a random vector 

Z = ( Z ] , . . . , Z s ) ' = ( X i V . . . , X J , 

where 1 _ ij < i2 < ... < i5 _ n, 1 _ s < n. Let W be the matrix arising from 

the rows il9 ..., is and from the columns il9 ..., is of the matrix V~l. Then the 

marginal density of the vector Z is 

qi(z) = cx(i + 2 ^ V - 1 z ) - ( m - n + s ) / 2 , 

where ct is a constant. 

Proof. First we prove the assertion in the case that (il9 ..., is) = (n — s + 1, ..., n) 

i.e. for Z = ( l „ _ s + 1 , . . .,X„)'. Denote 

V"1 = R = 

where R22 ^s a n s x s block. Put 

j Rц> Rí2 

I ^ 2 b ^ 2 2 

I T~1/2 — T1/2R R 
T= R1X — R12R22R21 , S = R~i/2 > - i i 

^22 

Theorem 2.1 gives S'S = V, and thus S' 1VS 1 = I (the unit matrix). Consider 

the transformation U = SX, The Jacobian is a constant and we get that the density 

of U is 

q2(u) = c2(l + u'S'-^VS^u)"^2 = c2(1 + u'u)"m/2 . 

Let U = (Ui, U2)', where U2 has s components. From U = SX we get U2 = R22
l/2Z. 

The marginal distribution of U2 is 

q3(w2) = ci(l + u\ui + u2u2)~m/2 dux = 
J Rn-s 

= c2(l + u2u2)"
m/2 f [1 + u'i(l + u2W2)_1 ui]~m/2 dwi , 

J Rn-s 
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where Rn_s is the Euclidean (n — s)-dimensional space. For calculating the integral 
we put 

t = (1 + u2u2)-
ll2uA . 

The Jacobian is (1 + u2u2)
(n-s)/2, and thus 

qM = c2(i + u'2u2)-^-n+s)/2 f (l + r'l)-'"/2 dt = 
J Rn-s 

= c3(l + u2u2)-
(m~/,+s)/2. 

Since U2 = R22
1/2Z, the density of Z is 

(2.2) 4 I ( 2 ) - - , ( 1 + - ' - ? M 1 - ) - ( - , ' + * ) / 2 , 

and for the special choice of il5 ..., is the assertion is proved. 
Now consider the general case. Introduce a matrix J which has in each row an 

element equal to 1 while all the other elements are zero. The units are subsequently 
placed in the columns 

(2.3) V2, ..., ix - 1, it + 1, ..., i2 - 1, i2 + 1, ..., is - 1, is + 1, i1? i2,..., is. 

Put Y = JX. The elements of the vector Y are Xt in the order (2.3). The vector 
Z = (Xh, ...,Xis)' is placed at the end of the vector Y Since JJ' = I, we have 
J"1 = J' and the density of Yis 

q4(y) = c4(l +y>JVJ'y)-™/2. 

In this case we have proved that the density qx(z) is given by the formula (2.2), where 
R22 is the s x s right-down corner of the matrix (JVJ ' ) - 1 . Since (JVJ ' )"1 = 
= JV-1J', R22 is the matrix arising from the rows il5 ..., is and from the columns 
iu ..., is of the matrix V-1. • 

Theorem 2.4. Let a vector X = (Xl9..., Xn)' have the density (2.1). Then the 
random variable 

F^^^-X'VX 
n 

has the Fisher-Snedecor Fnm„n distribution. 

Proof. The density of Y = V1/2K is 

gi(y) = c,(l + y'y)-m'2 . 

Consider the transformation 

yx = r1'2 cos 0X , 
y2 = ^1/2 sin 0t cos G2 , 
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m/2 

yn_! = r1 /2 sin 0X sin 02 ... sin O„_2 cos (^ .^ , 
yn -= r1/2 sin 6>! sin 6>2 ... sin 6>fI_2 sin 0 n _i , 

where 
r ^ O , 0 ^ e 1 , e 2 , . . . , © B . 2 < 7 C , O ^ O „ _ 1 < 2 7 i . 

Denote (9 = (<9 t ? . . . , 6)n_1)'. Since the Jacobian of the last transformation is 

r(«/2)-i /jI(9^ where ft is a non-negative measurable function, the simultaneous 
density of r and 6) is 

g2(r, 0) = c2 r ^ 2 ^ 1 ^ + r)~w / 2 ft(<9) . 

The marginal density of r is 

9s(r) = f 0a(r, 0 ) d o = c3 r ^ 2 ' - ' ( l + r) 

for r > 0. From F = (m — rc) r/n we obtain the density of E 

»,(/) = ^/w 2 ) - 1 A + - ^ - / V m / 2 , / > o, 
\ m — n J 

which is the density of the Fnm_n distribution. • 
Let Y = (Y1? ..., Y„y be a random vector with the density 

p(y; V , P ) = r K V + ? M (1 + v-1 /p-V)" (V + ")/2 , 
V ^ (rcv)"/2F(v/2)|P|1/2V ' " 

where P is an n x n symmetric positive definite matrix. The function p is called the 
density of the ti-dimensional Student t distribution with v degrees of freedom (see 
Johnson and Kotz [9], pp. 132-150). Let a vector X = (Xu ..., Xn)' have the 
density q defined in (2.1). Then Y = (m — n)1 /2 X has the density p(y; m — n, V-1), 
i.e. the n-dimensional t distribution with m — n degrees of freedom. From this point 
of view, Theorems 2.3 and 2.4 express some properties of the multivariate t distribu­
tion. 

3. ANALYSIS OF THE MODEL 

Let us consider the model (1.2). We shall assume that the variables (YJ are inde­
pendent and Yt ~ N(0, a2). Moreover, let Xs and Yt be independent for 5 < t. We 
shall analyze a realization Xu ...,XN. Usually, N is large in comparison with np. 

We shall assume that b and a are random variables. The conditional density 
of X„+u ...,XN, given Xt = xu ...,-¥„ = x„ and given b and a, is 

(3.1) f(xn+u ..., xN | xi , ..., xn, b, a) = (27c)-<"-*>'2 ^ ^ ^ x 

r i p ak r n ~i2i 
X exp 1 ~ V £ Xn + k + (j-l)p ~~ _ZbkiXn + k + U-l)p-i ( > 

{ 2a2 k«i y=i L I = 1 J J 
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where 

(3.2) 
N - n 

+ 1 

If we denote bk0 = — 1 for k = 1, ..., p, then (3.1) can be written in the form 

(3.3) (2K)-<»-">'2 *-<»-"> e x p V - 1 H i qVbkibk\, 
I 2(7 k=l i = 0 j = 0 J 

where 

nij — Zu Xn + k + (h-l) p-i Xn + k + (h-l)p-j • 

Introduce the matrices, vectors and variables 

Q _ |M*)||" a - Wnik)\\n n - (a{k) n{k)\ 
h£k — \\nij \\i,j = 0 ' Slk — \\°ij \\ij=l -> Qk ~~ v g 0 l 9 •••> gOnj 9 

fc? = (*«, - 9 o # = o r 1 * 9 b* = (br , . . . , O ' > 
*>* = goo - ^rgfe9 t? = vi + . . . + vp. 

We shall assume throughout the paper that all the matrices Qk are positive definite. 
Then the vectors b* are well defined and it follows from Theorem 2.1 that vk > 0 
for all k. The symbols c and ct will denote constants, which may depend on a realiza­
tion x = (x j , . . . , xjv)' of the random vector (Xu ...,XN)'. 

Theorem 3.1. Let b and a have the prior density 

n(b,a) = a'1 

for a > 0 and b e Rn (and equal to zero otherwise) and let (b, a) be independent 
of (Xu ..., X„). Let N — np + 1. Then the posterior density g(b, a | x) is 

(3.4) g(b, a \ x) = ca'N^" exp - -±- £ [(bk - Ь*)' Qk(bk - b*k) + 
2a k=i 

-j} 
for a > 0 and zero otherwise. The modus of the posterior distribution is b* and a*, 
where 

a*2 = v/(N - n + 1). 

The marginal posterior density of the vector b is 

(3.5) 9l(b | ,) = C l[i + v i i (bk - bty Qk(bk - bt)rN-n)/2, 

k=l 

and the marginal posterior density of the parameter a is 
(3.6) 
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Proof. Formula (3.4) immediately follows from (3.3) by using the Bayes theorem. 
Since all Qk are positive definite, it is clear that b* is the modus, because g(b*, a | x) _• 
_̂  g(b, a I x) for every b and a. The maximization of g(b*5 a I x) over a e (0, co) gives 
the value of <r*. In order to prove (3.5), we put 

v 

Then 

9i(b | x) = exp {-a\(2a2)} áa . g(b, a\x)da = c 

After the substitution u = <x1/2 o*-1 we obtain formula (3.5). Further, we have 

g2(a | x) = 0(6, a I x) db = 
v Rnp 

= c < - - » + » - » e x p { - J L l n f exp { - - L ( 6 t _ b*)> Qk(bk - b*)\ dbk. 

After the substitution fik = o--1(b^ — b*) we get 

g2(a I x) = c c т - ^ " - 1 exp { - - І П ^ v 
P 

- l-ß'QЛ 

= c2o-- ;v+' ,-1-+"/,exp{-v/(2O-2)} . • 

The modus b* and c* can be used as a point estimator of b and a. As for the 
decision about the individual parameters, the following assertions can be useful. 

Theorem 3.2. Let q{k)l1 be the (i, i)-th element of the matrix Qk . Then the posterior 

distribution of 

Г N - n - npl1'2 ( *, 
И = [ ~f~ J ( " ~ kò 

is the Student t distribution with N — n — np degrees of freedom for k = 1, ..., p 
and i = 1, ..., w. 

Proof. Using Theorem 2.3 we obtain the posterior density of bki in the form 

c[l+(bki-btifl(vq^ii)]-^-'-^^. 

From here we immediately get the density of Tki. • 

Theorem 3.3. The posterior distribution of v\a2 is the x2 distribution with N — 
— n — np degrees of freedom. 

Proof. The assertion follows from (3.6). • 
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Theorem 3.4. The random variable 

F = >L^LZJ!1 f {bk _ b*y Qk{bk _ K) 
npv k=i 

has the posterior FnPtN_„_np distribution. 

Proof. The assertion follows from (3.5) and Theorem 2.4. • 
This last theorem can be used as a test of goodness-of-fit in the case that a hypo­

thesis specifies the value of b (e.g. in a simulation). Alternatively, F can be used for 
testing independence in a time series against the alternative of periodic autoregression, 
when we put b = 0. In both the cases the large values of F are significant. 

For testing the fit of a model we can use either the statistics Tki or F. It is important 
to know a relation among them. Denote 

h-b* 
D = Dmg{Ql,...,Qp], 0 = 

K - b* 

Let 0ki be the [(k — 1) n + i]-th element of 0. For any fixed vector h e Rnp we have 
the inequality 

(h'O)2 = [ (D - 1 / 2 hy(D 1 / 2 (9)] 2
 = h'D-'h. G'DO . 

For h — (0, ..., 0, 1, 0, ..., 0)', wheie 1 is the [(k — 1) n + i]-th element, we get 

S2
ki _ q(k)ii0'D0 . 

This yields 
Tk

2^npF, k = l , . . . , p ; i = 1 , . . . ,n . 

In fact, this result corresponds to Scheffe's theorem concerning multiple comparison. 
It is very important to have a test statistic for the decision whether the model 

(1.2) is really necessary or whether it is possible to reduce it to the classical homogene­
ous model (VI). For this purpose we prove the following assertion. 

Theorem 3.5. Let Ak = bk — bp — (b* — b*) for k = 1, ..., p — 1, and introduce 
a vector A — (Ai, ..., -dp-i)'. Let Q and H be the matrices defined in Theorem 2.2. 
Then the posterior distribution of the statistic 

FA = N-<p-^A'HA 
n(p ~ 1) v 

1 S ^n(p-l),N-n(p-l)' 

Proof. Put Ap — bp — bp. The Jacobian of the transformation (bi, ..., bp)' -> 
-* (Ai, ..., Ap)' is equal to V From the formula (3.5) for gt(b | x) we obtain the density 

g3(Au ..., Ap\x) = c3{l + v-\A'pQpAv + \ (Ak + Ap)' Qk(Ak + Ap)]}"^-^/2. 
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Denote 

h = "z ft.-.*, G = £ .d;&4 - /i'e_1/i • 
fe=i fc=i 

Then we can write 

g3(Alf..., J p | *) = c3[l + iT 'G + i T 1 ^ , + Q-'h)' Q(Ap + Q- iJ . ) ] -<"-" 2 

The posterior density of the vector A is 

g3(Al,...,Ap\x)dAp 

Rn 

I 

g4(A | x) = 

= c3(l + „- iG)-^-^ 2 . 

[i + (i + D-^Y1 P - ^ J , + Q-1/!)' e ( j p + g-'/7)]-<"-«>/2 d/iř 

' Rn 

The Jacobian of the substitution 

w = (1 + v^G)-^2 v-1/2<21/2(Ap - Q-'h) 
is 

(i + v-iG)»/2v"/2|e|-i/2 

and thus 

g4(A | x) = c 3 v - " / 2 | e | " 1 / 2 (1 + v-^)-^2 f (1 + w'w)-(*-">/2 dw , 
J Rn 

After some computations we get G = A'HA, and thus 

g4(A | x) = c 4(l + v-1AfHA)~N/2 , 
where 

c 4 = c 3 v - M / 2 | Q | - 1 / 2 f (1 + w'w)- ( N - r t ) / 2 dw. 1 / 2 Í (1 + w'w)~ 

Since the matrix H is positive definite, the assertion follows from Theorem 2.4. • 
The above result can be used for testing the hypothesis H0 : bt = b2 = . •. = br 

Under H0, we have 

Ak = bp - bk, A = (A;, . . , 4 - ! ) ' . 
If 

(3.7) FA = N-<P~1h'HA 
n(p — 1) v 

exceeds the critical value Fn(p„1)N_n(p_1)(oc), we reject H0 on the level a. 

In some cases it can be important to test a hypothesis that only some components 
of the vectors bl9..., bp do not depend on the first subscript. For example, consider 
a set ii,..., is such that 

1 <; il < i2 < ... < is <; n, 1 ^ s < n , 
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and introduce subvectors 

B . =(blh,...,buy, Bi = (b*it,...,b*uy, 

Bp = (bph,...,bpiy, B* = (b*pii,...,b*piy. 

We are interested in testing the hypothesis H* : Bl = B2 = ... = Bp. 

Theorem 3.6. Let Mk be the inverse of the matrix arising from the rows iu ..., is 

and from the columns iu ..., is of the matrix Qk
][, k = 1, ..., p. Then the marginal 

posterior density of the vector B = (B'u ..., B'p)' is 

q,(B | x) = c[l + tT 1 £ (8, - B*)' Af4(Bt - B * ) ] - . " — ^ - . n / - . 

Proof. The posterior density of b given in (3.5) can be written in the form 

gt(b | x) = Ci[l + (b - b*)'K(b - b*)]-^-«)l2
 5 

where K = v_1 Diag{Q1? ..., g p } . Our assertion immediately follows from Theo­
rem 2.3. • 

Obviously, the case 5 = 1 will occur most frequently. We put briefly it- = i. The 
result can be formulated as follows. 

Corollary 3.7. Let q^k)n be the (i, i)-th element of the matrix Qk
l. Then the marginal 

posterior density of the elements blh ..., bpi is 

q2(bu,..., bpi | x) = c[l + v - l t (bki - b*)2/flW«]-C«-.-P(.-i))/2 . 

Proof. Corollary is a special case of Theorem 3.6. D 

Theorem 3.8. Put Sk = Bk - Bp - (B* - B*) for k = 1, ..., p - 1, and denote 
.3 = (<5i, ..., <5p-i)'. Introduce the matrices M = Mx + ... Mp and 

L = 
M „ 0, . . . . 0 

0, 0, ...,Mp_x 

Then the posterior distribution of the variable 

N - (n + 1) p + 2S 

M1M'1M1, ..., M1M-iMp_1 

Mp^M~lMu ..., Mp_1M-lMp_l 

s(p — 1) v 

is the Fs(p_1)tN_(n+1)p+2s distribution. 

P r o o f is analogous to that of Theorem 3.5. 

Ô'LÔ 

D 
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For s = 1 and f- =- i we have 

M t = l/«j<*>", M = 2 ( 1 / « 2 W " ) . 
fc=l 

Corollary 3.9. If s = 1 at?J ii = i, then the posterior distribution of the variable 

[P — 1) V k=í fc=l 

is F p - 1 ,/V-(и+ l ) p + 2 -

Proof. Corollary is a special case of Theorem 3.8. • 
It can happen that we finally choose a model in which some parameters are periodic­

ally changing and some are constant. This situation was described before Theorem 
3.6. If we decide for a model corresponding to a hypothesis H0, it is convenient 
to have also formulas for estimating the parameters. For two most important cases, 
when the constant parameters are either at the beginning or at the end of the vectors 
bk, we give explicit solutions. 

Theorem 3.10. Let bk = (/?£, co')', where the vector co has s components. Introduce 
blocks Qk and ql

kfor i, j = 1, 2 by 

Ql\ Ql2 

Ql\ Ql2 , k= 1, ..., p , 

vhere O^2 is an s x s blOck and qk is a vector with s components. Denote 

M = 

Ql\0, ..., 0, 
0, Q\\ ..., 0, 

o, o, .... Q\\ ^ e » 

Q\\ Q\\ -.., Ql\ ÍQl2 

u = 

q\ 
q\ 

«i 
ľ,ql 

P - I [Ql2 - Qi\Qiri Ql2l. * - (ft, - . #,,»')' • 
ft= 1 

1f the pr/Or density of n and o is o'1 for o > 0 and zero otherwise and if (r\, o) is 
independent of (Xu ...,KW), then for N = p(n - s) + s + 1 the posterior density 
of (rj, o) is 

rj(i7, (7 | x) = co-N+n~x exp J [(// - r,*)' M(*j - „*) + w ] l , a > 0, 

where 

П* = M - ] и , w = £ <2oo - П*'" 
* = i 
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The matrix 

M'1 = 
M1 1 , M 1 2 

M2 1 , M 2 2 

ccfrt be calculated by the formulas 

M 2 2 = E-1, M21 = -p-^ief^ei1)"1.•••> Qll(Qlxri\\, 

i(er)-1, o, ..., o || 
M l z __ M 2 1 / M H = + Ml2PM2í . 

o, o,..., (errMl 
The modus of the posterior distribution is n* and a*, where 

a*2 = w/(N - n + 1) . 

Proof. From (3.3) we get the posterior density 

r.fo. t-| x) = c a " ^ " - 1 e x p ( - - ' T £ ( - 1 , 6_) fi_(-l, ^ ) ' l . 
( 2o- * = I J 

Further we have 

p 

I 
k=i 

£ ( - 1 , K) Qk(-\, b'k)' = X (q~ - Kqk - q'uK + KQkK) = 
fc=l 

= I [<7oo - (&<Z* + «'<72) - («_'A + «7*'«>) + 
k=l 

+ (#_",** + P'kQl2(o + _'_*"/. + <«'Q22w)] = 
p 

= n'Mn - n'u - u'n + £ qoo = fa - tf*)' M(q - n*) + vv . 
&=i 

The formula for M " 1 follows from Theorem 2.1. The proof that fa*, a*) is the modus 
is the same as the proof of Theorem 3.1, since the matrix M is positive definite. • 

The marginal posterior density of n is 

r2(n | x) = c2\\ + w~l(n - n*y Mfa - rj*)yiN-n)/2 

and the posterior distribution of 

F = .V - H - j<« - -) ~ - „ - , ( „ _ , - y M ( „ _ ~ 
p(n — s) + s 

^ ~ p(n — s) + s,N — n~ p(n — s) — s' 

A similar assertion holds for the case that the constant parameters are placed at the 
beginning of the vectors bl9 ..., bp. 

Theorem 3.11. Let bk = (co', pk)', where the vector co has s components. Introduce 
the blocks Ql

k
j in the same way as in Theorem 3.10. Denote 
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N = 

1QI\ e!2, Q\\ ..., e 
Q\\ Q\\ O, . . . , 0 
Ql\ O, Ql2, ..., O 

Єľ, o, o, -, Є 

P 
12 

fc=l 

<г2 

> y = чì 

„2 22 

> y = чì 

„2 
P чP 

s = 2 [eľ - eЛeľГ1 eľ], v = «/?;,...,/?;)'. fc=i 

If the TriOr density of v and cr is cr - 1 fOr c > 0 and zero otherwise and if (v, cr) is 
independent of (Xu ...,X„), then fOr N ^ p(n — s) + s + 1 the posterior density 
of (v, a) is 

r2(v ,cr | x) = eO"-"-1 exp | - - ^ [(v - v*)'N(v - v*) + z ] | , cr > 0, 

v * = N - 1 y , z = f qo^" v*'y. 

where 

The matrix 

Л Г 1 N11, N12 

N21, N22 

can be calculated by the formulas 

N11 = S-1, N12 = -S-ieiWr 1 , -, e^e22)"1!, 
l(ef)-1, o, ...,o 

N21 = N1Z\ Nlz = + N21SN2 

D 

[o, o, ....(err1 

The modus of the posterior distribution is v* and <r*, where 

<r*2 = zj(N - n + 1) . 

P r o o f is analogous to that of the previous theorem. 

The marginal posterior density of v is 

r3(v | x) = e3[l + z-\v - v*)'N(v - v*)]-(*-")/2 

and the posterior distribution of 

N - n - p(n - s) - s _.w v , v 
F = =--* ^ z x(v — v*j N(v — v*) 

p(n - s) + s 
1 S -Tp(n-s) + s,N-n-p(n-s)-s-

From the previous two theorems we could derive marginal distributions and test 

statistics similar to those given in Theorems 3.2 — 3.7. 
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<*kf2 

4. MODEL WITH NON-EQUAL VARIANCES 

In the model (1.2) it is sometimes assumed that Var Yn+jp+k = ok > 0 depends 
on k, k = 1, ..., p. The statistical analysis of the model is similar to the procedure 
given in Section 3. 

Theorem 4.1. Denote a = (al9..., ap)'. If the prior density of (b, a) is o^1 ... a~l 

for at > 0, ..., ap > 0 (and zero otherwise) independently of (Xl9 ..., Xn), then the 
posterior density of (b, a) for positive ox, ..., op is 

g(b, o\x) = ca^1'1 ..-, err-1*"1 exp f - £ ± \_(bk - b*)' &(** - b*) + vjl , 
( *=- 2-Ok J 

where bk, b*, Qft and vft are aiven in Theorem 3.1 and afc is defined in (3.2). The modus 
of the posterior distribution is b* and a*, ..., a* where 

°V = Vklfak + 1)- k = l,...,p . 

The marginal posterior density of b is 

(4.i) Olo> | x) = Cl n [ I + vk\bk - bty Qk(bk - bty]-
k=l 

and the marginal posterior density of a is 

(4.2) g2(o | x) = c2 IT ark~'+" exp { - - ^ 

ft=i ( 2ok 

for positive al9 ..., oy 

Proof. Theorem can be proved in the same way as the assertions in Section 3. • 

Theorem 4.2. Denote 

Fk = ^ ^ v k \ b k - bt)'Qk(bk- b*k), k = l,...,p. 
n 

Let Hk be the distribution function of the Fnak_n distribution. Put nk = 1 — Hk(Fk)» 
Then the posterior distribution of the random variable 

p 

Q = ~^T,lnnk 
k=l 

is X22P-

Proof. From (4.1) we can see that, given x9 the vectors bl9..., bp are independent 
and the density of bk has the form 

c<*)[i + vk\bk - bty Qk(bk - bty\-*«12. 
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Then Fk ~ Fn>ak_n (see Theorem 2.4) and given x, the variabtes Ft, ..., Fp are inde­

pendent. Further we use the well known construction of a test of significance based 

on several goodness-of-fit tests (see Janko [8], p. 27). Q 

The result can be used for testing the hypothesis that the theoretical values of auto-

regressive vectors are b1, ..., bp. If D ̂  Xipfa), w e reject this hypothesis on the level a. 

Theorem 4.3. Denote ok = vk\((xk — n), k = 1, ..., p. Then, given x, the variables 

o\9 ...9o
2

p are independent and 

(a* ~ n) o\\o2

k ~ xtk-n • 

Proof. The conditional independence immediately follows from (4.2). The marginal 

posterior density of ok is 

CvOi 
-aк-l+n exp{~vfc/(2o-2)} 

Hence we get that vk\ok ~ xak-n • D 

In many cases ak = a 0 does not depend on k. In such a case we can test the hypo­

thesis o\ = o\ = ... = o2 using the Cochran test (see Janko [8], p. 62). We cal­

culate the statistic 
p 

g' = ( max a2)/ £ o\ . 
i^k^p k=i 

The critical values of g' for the levels a = 005 and a = 001 are tabulated in Janko 
[8], Tab. 16a and 16b. 

This test shows whether the model with non-equal variances is necessary or whether 
it is possible to reduce it to the model investigated in Section 3. 

Let us remark that for p — 2 in the case o\ = o\ the ratio o\\o\ has the posterior 
Fai_„j(X2_n distribution and we can simply use the classical F test for comparing two 
variances instead of the Cochran test. 

In order to simplify the procedure described in Theorem 4.2 and to derive a test 
corresponding to FA in (3.7) we use some approximations. 

Again, consider a random vector X with the density q(x) = c(l + x'Vx)"m / 2 

which was introduced in Theorem 2.3. Then the random vector Y = m1/2X has the 
density c'(l + yfVy\m)~mJ2, and we can see that the distribution of Y converges to 
N(0, V-1) as m ~» oo. In view of this fact we shall approximate the distribution of 
X by N(0, m~1V~1), i.e. q(x) will be approximated by the density c" exp { — ^x'mVx). 

Denote 
Uk = vk-

1<xkQk, U = Ux + . . . + Up, 

Ui, 0, . . . , 0 || HU iU^U i , 

0, 0, . . . , U P-1 

. . . , UxU^U,-! 

U^U^U!, . . . , Ł/p_1l/-1l7 p-i 

The marginal posterior density gt(b \ x) in (4.1) can be approximated by the density 

379 



(4.3) k(b | x) = c exp j - ^ t f (ft, - 6*)' U*0* - b*) 

Hence we immediately get, that the random variable 

(4.4) v = i ( h - b*y Uk(bk - b*k) 
fc=l 

has approximately the posterior %lp distribution. If y exceeds the critical value 
xlp((x), we reject the hypothesis that the parameters of the mcdel are bu...,bp 

on a level which is approximately a. The statistic y can be used instead of O given 
in Theorem 4.2. 

Now, we derive a test statistic for testing the hypothesis H0 : bt = b2 — . . . = bp. 
The derivation is similar to the proof of Theorem 3.5 and thus it is only sketched. Put 

Ak = bk-bp-(b*k-b*p) for fc = 1, . . . ; / - - 1 , Ap = bp-b*, 

A=(Ai,...,A;^y, h=P^UkAk, G=\AkUkAk-h'U-lh. 
fc=i fc=i 

Let b have the density (4.3). Then the density of (Ai, ..., A'p)' is 

^ ( A i , . . . , A'p | x) = ct exp { - i [ G + (Ap + U~lh)f U(Ap + U"1 A)]} . 

Since G = A'LA, the marginal density of A is 

X2(A \x) = c2 exp { — \A'LA} . 
Then 

(4.5) r = ALA 

has the posterior Xn(P-i) distribution. If r ^ Xn(P-i)(
a)> w^ reject the hypothesis H0 

on a level which is approximately equal to a. 
Let u(k)ij be the (i, j)-th element of matrix Uk\ It follows from (4.3) that the 

posterior distribution of (bki — b*;)/[w(&)"]1/2 is approximately N(0, 1). This result 
can be used for testing hypotheses or for constructing confidence intervals for bki. 

5. SUBSET PERIODIC AUTOREGRESSION 

Consider again the model (1.2). In some cases it can be known in advance that 
some parameters bki are zeros. Assume that only the parameters bki for iel = 
= [il9..., im} can be non-vanishing. Then we have the model 

Xn + jp + k ~ Z_ "kiXn + jp + k-i + Yn + jp + k • 
iel 

All the procedures from Sections 3 and 4 remain valid, only the type of matrices 
Qk is m x m, their elements are defined only for i, j el and starting from Theorem 
3.1 we must write everywhere m instead of n and after that N — n + m instead of N. 
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6. EXAMPLES 

Consider a special case of the periodic autoregression with n = 2, p = 2, i.e. 

(6.1) ^ 2 ř + l = bцX2t + b12X2í_i + Y2ř+i , 

^ - 2 ґ + 2 = b21^2ř+l + ^22^2t + ^2ř + 2 • 
If we denote 

ч ^ 2 ґ - l 

- ^ 2 ř 
> 'Ӯf = 

! - * 2 f - l 

| У 2 < 
I , A0 = i, o 

- ь 2 1 , 1 
, -4, = 

- & 1 2 > 

o, ~" ^ 2 2 

the model can be written in the form 

A0£t+1 + Axct = >lr+1 . 

Thus we have the classical two-dimensional autoregressive process. (For general 
n and p see Pagano [12].) Obviously, 

|A0z + Ax\ = z2 - (bnb 2 1 + b12 + b22) z + b12b22 . 

Let Zj and z2 be the roots of the equation 

(6.2) z2 - (blxb2X + b12 + b22) z + b12b22 = 0 . 

It is well known that ( f j is stationary provided \zx\ < 1, |z2 | < 1. If this condition 
is not satisfied, {£,} has an explosive behaviour. Let us remark, however, that the 
results of previous sections do not depend on whether the condition \zA < 1, |z2 | < 1 
holds or not. 

A realization of the process (6A) with Yt ~ N(0, 1), bn = 0-2, b21 = 0-6, bJ2 = 
= b22 = 0-7 for t = 1, 2 , . . . , 80 is given in Fig. 1. The roots of equation (6.2) are 
zx = 1056 and z2 = 0-464. The explosive character of the series is clearly visible 
from Fig. 1. The results of the analysis are 

bti = 0096 , b*2 = 0-896 , b21 = 0-561 , b22 = 0-706 , a*2 = 0-963. 

40 

- V 
AvM^W^wv 

...vv'#f 

40 80 

Fig. 1. A realization of the process X2l+l = 0.2X2t+0.7X2t_l + Y2,^.i, X2t + 2 = 
= Q.6X2I+1 + 0JX2,+ Y2t + 2. 
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None of the statistics Ttj and F from Theorems 3.2 and 3.4 are significant at the level 
005 . To test the hypothesis bj = b2 we used formula (3.7) with the result FA = 53-6, 
which exceeds the critical value F2,7s(0-05) = 3-H. The difference between b*2 

and b22 is not significant at the level 005 (the correspondig F statistic was calculated 
by using Theorem 3.8). If we assume that b12 = b22, we can use Theorem 3.10 for 
calculating new estimates. In our case we have got rj* = (0-185, 0-499, 0-146)' as an 
estimate of rj = (0-2, 0-6, 0-7)'. 

Theresut of simulation of the process (6.1) with bn = 0-5, b12 = 0-6, b21 = 0-2 
and b22 = 0-6 for t = 1,..., 80 is given in Fig. 2. The roots of (6.2) are z t = 1019, 

Д4k 
r 

Fig. 2. A realization of the process X2, + x = 0.5X2t + 0 - 6 ^ , _ t + Y2t + 1, X2t+-
+ 0.6* 2 ,+ Y2t + 2. 

0-2X 2 ř + l 

z 2 = 0-481. Again, the process should have an explosive character, but this time the 
length of the realization is too short to recognize it visually. The estimates are 

'ьî, 0-380, b*í2 = 0 5 4 0 , b*2í = 0 0 1 0 , b*22 = 0-789, a*2 = 1098. 

The statistics Tu and F from Theorems 3.2 and 3.4 are not significant at the level 
0-05. However, FA = 2-34 is not significant either. 

The processes similar to that in Fig. 1 occur in economics. Our simulations show 
that for a given length of the record even a small change of the parameters of the 
model can lead from a clearly significant periodic autoregression to the decision 
for a classical autoregressive model. 

1000 

Ҷ І I I I 1 1 11 ! 

100 

Ҷ І I I I 1 1 11 ! 
10 1 

1949 1979 

Fig. 3. Numbers of deaths due to influenza in Czech countries. 
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Two real time series are given in Tab. 1. Series A contains numbers of deaths due 
to influenza in Czech countries from 1949 to 1979, which were obtained from more 
detailed data given by the Czech Statistical Institute (Cesky ufad statisticky). The 
first column of A summarizes data from April to September, the second column 
from October to March of the next year. Series B is formed by numbers of cases 

Tab. 1. 

A — numbers of deaths due to influenza in Czech countries 
B — numbers of cases of hepatitis in Czech countries 

4 B 

Year Apr.-Sept. Oct.-March Jan.-June July-Dec. 

1949 116 208 
1950 125 450 3 901 15 435 

1951 96 136 14 983 18 757 

1952 65 285 16 334 13 852 

1953 159 709 9 678 19 352 

1954 44 69 16218 21 326 

1955 25 32 14 815 19 491 

1956 18 131 15 347 13 699 

1957 23 522 8 713 8 326 

1958 79 1 119 6 574 9 973 

1959 288 139 7 313 12 749 

1960 189 152 10 281 15 422 

1961 22 2 259 11 688 15 641 

1962 78 116 10 096 11 134 

1963 56 372 9 078 16 664 

1964 221 80 12058 15 058 

1965 54 364 9 531 8 020 

1966 22 641 5 457 6417 

1967 26 471 4 432 4 904 

1968 56 150 4 023 4 436 

1969 183 2 146 3 803 5 012 

1970 35 48 4 402 5 840 

1971 22 906 4 461 5 074 

1972 25 706 4 059 5 543 

1973 23 217 5 879 5 325 

1974 24 1040 4 807 5 436 

1975 42 316 4 410 4 662 

1976 334 374 4 432 4 582 

1977 71 159 4 370 4 348 

1978 60 94 3 510 3 456 

1979 6 570 4 432 30 422 

1980 6 288 4 849 

1981 4 027 3 326 
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of hepatitis in Czech countries from 1950 to 1981. The data were obtained from 

a more detailed information given by the Institute of Health Information and Statis­

tics (Ustav zdravotnickych informaci a statistiky). 

Series A is plotted on the logarithmic scale in Fig. 3, series B on the usual scale 

in Fig. 4. 

30000 

15000 

1950 1981 

Fig. 4. Numbers of cases of hepatitis in Czech countries. 

We analyzed not only series A and B, but also their logarithms. The results of the 

analysis are summarized in Tab. 2. In all four cases the hypothesis o"i = o\ is rejected 

at the level 005 and thus the mcdel with non-equal variances must be applied. 

Tab. 2. Results of statistical analysis 

A lnA B l n B 

лr 62 62 64 64 

*îi 00449 0-3597 0-3757 0-6385 

bìг 0-4249 0-4726 0-4561 0-3424 

Ьìi 2-5149 0-5244 1-5233 1-5827 

Ь*2 
01024 0-6036 -0-2022 -0-5433 

°\ 9 103 0-8239 6 236 150 0-0578 

Ъ\ 454 795 2-5600 28 336 173 0-1379 

r 4-86 9-35 15-3 29-7 

The critical value for r at the level 0 05 is 5*99. Except for the series A, in all remain­

ing three cases the hypothesis bx = b2 is rejected. It seems that the non-significant 

value of r in the series A is caused (at least partially) by the large value of the ratio 

a\]o\, because the estimates bf and b* differ considerably. 

Acknowledgement. The author is very grateful to RNDr. Eva Svandovd from 

the Institute of Hygiene and Microbiology, Prague, for providing the data in Tab.F 
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S o u h r n 

STATISTICKÁ ANALÝZA PERIODICKÉ AUTOREGRESE 

JIŘÍ ANDĚL 

V klasickém autoregresním modelu jsou autoregresní parametry konstantní. 
Při vyšetřování sezónních časových řad lze však v některých případech předpokládat, 
že autoregresní koeficienty jsou periodickými funkcemi času s odpovídající periodou. 
Pak jde o tzv. periodickou autoregresi. V práci jsou navrženy metody pro odhad 
parametrů a testování hypotéz v modelu periodické autoregrese. Je vyšetřován jak 
model s konstantními rozptyly inovačního procesu, tak i model s periodicky se mění­
cími rozptyly. Statistická analýza je založena na bayesovském přístupu. O parametrech 
modelu se předpokládá, že to jsou náhodné veličiny s nevlastní apriorní hustotou. 
Teoretické výsledky jsou demonstrovány na simulovaných i reálných datech. 
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