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1. INTRODUCTION

In dealing with the motion of viscous electrically conducting incompressible fluid
the following system of equations for the velocity v = (vy, v,, v3) and the magnetic
field B = (B,, B,, B,) if often considered as relevant [1], [7]:

(1.1) Q(v,+(v,V)v)—;1Av:——Vp+QF+1rotB><B,
U

(1.2) dive =0,

(1.3) ouB, + rotrot B = oprot (v x B),

(1.4) divB=0.

Here g, 1, 1 and ¢ are constants. When the fluid occupies a region © = R*® with
perfectly conducting boundary the following boundary conditions are added to the
above system of equations:

(1.5) v=0 on 0Q,
(1.6) B,=0 on 0Q,
(1.7) rot, B=0 on 0Q.

We shall suppose that  is a bounded region with a C? boundary. Here and in what
follows, the subscripts n and 7 denote the normal and tangential components of
a vector, i.e., if n denotes the unit outward normal to 69 and (,) the scalar product
in R, then B, = (B, n) and rot, B = rot B — (rot B), n.

The global existence of weak solutions and local existence of regular solutions
to the initial-value problem (1.1)—(1.7) have been proved in [2] and [3].
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Looking for a more complete system of governing equations we are led to the
following system [1], [7]:

(1.8) o(v, + (v, V)v) = nAv = —~Vp + oF + gE + j x B,
(1.9) diveo =0,
(1.10) v=0 on 0Q,
(1.11) B, + rotE=0,
(1.12) divB =0,
(1.13) B,=0 on 0Q,
(1.19) sE,+j—lrotB=0,
u
(1.15) edivE =g,
(1.16) E.=0 on 0Q,

to which Ohm’s law, an equation relating j to the other quantities, ought to be
added. This law can take up a form as complicated as the following one:

j=06{E+vxB+jx B/f,+ ofj x By x B} +qu.

In our investigation we shall keep only the first two terms on the right-hand side,
to obtain Ohm’s law in its simplest form, namely,

(1.17) j=0(E +vxB).

We reduce the system (1.8)—(1.17) to one for v and B to be able to compare it with

(] 1) (1 7)
We begin by defining an operator ¢,, ¢ = 0, assigning to a function h(t, x) the
solution w(t, x) of the equation

€
-w, +w=h.
c

‘As we shall deal exclusively with functions periodic in ¢ with a period w, i.e. both h
and w are supposed to be w-periodic in 7, the function w = ¢,(h) is uniquely defined.
For h = (hy, hy, hy) we set ®(h) = (@, (hy), @(h,), @(h3)). With the help of the
operators ¢, and @, the system (1.8)—(1.17) can be reduced to

1
(1.18) ov, — n Av = —Vp + oF — o(v, V)v + —r0t B x B —

u

— ¢[@.(rot B)], x Blou + e[®,(v x B)], x B —
— e @,(div (v x B))¢£(—1~rotB — v x B) ,
ou

(1.19) divo =0,
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(1.20) v=0 on 0Q,

(1.21) euB,, + ouB; + rotrot B = gurot (v x B),
(1.22) divB =0,

(1.23) B, =0 on 09,

(1.24) rot, B=0 on 0Q.

In the case of functions w-periodic in t, it is easy to see that if v, p and B satisfy
(1.18)—(1.24), then v, p, B, E = & (rot Blop — v x B), j = o(E + v x B) and
g = ¢ div E satisfy (1.8)—(1.17).

If we put ¢ = 0 in the system (1.18)—(1.24), we get (1.1)—(1.7). The question
arises whether for ¢ \. 0 the time-periodic solutions of (1.18)—(1.24), say (v*, Vp®, B°),
tend to (v°, Vp°, B®), a solution of (1.1)—(1.7). The answer is affirmative at least
if we deal with a small forcing term F and therefore with small solutions. The result
formulated in the spaces defined in the next section is given in Theorem 1.1 below.
We recall that all the functions involved depend on ¢ in the w-periodic manner.

Theorem 1.1. Given g, > 0, there exist positive numbers r, and # such that the
following three assertions hold:

(1) If FeG?, F“Ga < P, then for every ¢, 0 < ¢ < g, there is a unique solution
(v, V', B) e X* x G® x Y? of (1.18)—(1.24) satisfying ||v*|xs < ro and |B*|y. <
< ro.

(2) If FeG?, ||F|gs £ #, then there is a unique solution (v°, Vp°, B®) e X* x
x G x X* of (1.1)=(1.7) satisfying |[v°|xs < ro and |B®|xs < ro.

(3) Finally, we have |[v — v*|x2 + |V(p° — P°)|l¢2 + |B* — B®|x2 = O(e).
Proof will be given in Section 4.

Various questions arising in the study of the system consisting of (1.18) taken for

= 0 and (1.19)—(1.24) have been investigated by L. Stupjalis [8], [9] and [10].
In these papers no attention has been paid to either the existence of time-periodic
solutions or to the behaviour of solutions for ¢ \ 0. It is the approach of [9] which
has been modified for the purpose of this paper. Some aspects of the singular per-
turbation problem for Maxwell’s equations have been investigated in [5] and [6].

In the next section, Section 2, the spaces will be defined and basic auxiliary results
concerning the linearized equations will be formulated. In Section 3, we establish
some lemmas needed when treating nonlinear terms in the equations. In Section 4,
the proof of Theorem 1.1 will be given.
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2. SPACES AND AUXILIARY RESULTS FOR THE LINEAR PART
OF THE PROBLEM

We shall make no difference in notation between spaces of functions and vectors.
The same symbols will be used for both of them. Essentially, we shall keep the

notations from [3] and [4]. It is well-known that [4]
I}(Q) = J(Q) @ G(Q),

where J(Q) is the closure in I>(Q) of all solenoidal vectors from 2(2) and G(Q) is
the space of all vectors u = Vo, ¢ € HI(Q). By P we denote the orthogonal projector

on J(Q).
We shall frequently use the following two basic spaces:

J}(Q) = {ueH*(Q);divu =0, u =0 on 0Q}
F3(Q) = {ue H*(Q);divu =0, u, =0 and
rot,u = 0 on 0Q} .
By [4], for u € J*(Q) we have
o Hu|uza) < [P A2y = alftt]uza) »
and by [3], for u € #%(Q) we have

(2.1) o ufuey = [rot rot uf iz < afulu2e »

(22 o ulluio) < [rot ufia) < ofuluie
with a constant o independent of u.

By [3] and [4] the following result holds :

Lemma 2.1. The operators — P A mapping J*(Q) onto J(Q) and rot rot mapping
F2(Q) onto J(Q) are positive definite, selfadjoint operators with compact inverses.

We now introduce the spaces of functions depending on z. In what follows functions
will be supposed to be w-periodic in ¢ without any particular reference. We set

\ 0 =[00] x Q.

By J(Q), J*(Q) and #2(Q) we shall denote the spaces of functions u € I*(Q) which,
respectively, satisfy u(t, -) e J(Q), J2(Q) and #*(Q) for almost every t.
Further, we set

[[ul| = max {| D/D%u] 120, : 2/ + || < 2}
where o = (o, a5, @3), and «;, j are nonnegative integers. Finally, we denote
H"(Q) = {us; |

X? = {u;u, Dlue H"*(Q)},

Ju]|| < +co}
and
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Y? = {u; u, Dfue H*(Q)} .

Z? = {u;u, Dfue H'(Q)} ,

G” = {u; u, D?u e I’(Q)}
with norms given by

Julx» = max {luflar 2y [ D] nr ) »

etc. We now give some lemmas about the linearized equations.

Lemma 2.2. For every fe G” N J(Q) there is a unique ve J*(Q) N X” satisfying
ov, — nP Av = f, divo = 0 and o(t, -) = 0 on Q. Moreover, ||v|x» < ¢|f]|ce-

Lemma 2.3. Let 0, p1, &, and g € G**' 0 J(Q) be given. For every ¢, 0 < & < &,
there is a unique B*e Y 0 #%(Q) such that euB; + ouB; + rotrot B* = g,
div B* = 0, By(t, *) = 0 and rot, B¥(t, -) = 0 on 0Q. Moreover, ” B|y» < cHg”GPH,
where ¢ does not depend on € and g.

Lemma 2.4. For every g € G? 0 J(Q) there is a unique Be X? 0 #2(Q) such that
ouB, + rotrot B = g, div B = 0, B,(t, -) = 0 and rot_ B(t, *) = 0 on 0Q. Moreover,
|Blx» = c|g]cr-

Lemma 2.5. Let ¢ > 0 and h € Z,. Then ¢,(h), the w-periodic solution of ec™'w, +
+ w = h, satisfies

eloMllzes + oM)zr = c|h]lze
with ¢ independent of e.

Proofs of these lemmas are all alike. We give a brief account of the proof of
Lemma 2.3. By Lemma 2.1, there is a sequence of vectors ¥, € #%(Q) n J(Q) satisfying
rotrot Y, = Ay, A4 > 0, k= 1,2,... such that {y,};>, forms an orthonormal
base in J(Q). Let

M,, = lin {\/]— ey i gm 1Sk < m} )
w
For g € J(Q) we set

gjk = _I_J J g(t, x) e—iant/m |//k(x) dx dt ,
\/w 0oJo

2mj\? . 2mj !
Bj = <—s,u (——]) +opi oy lk) 9k
) )

Bm — z B_Ik eiant/wwk .
. |i|§m

=m

and
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Obviously B" is a real-valued function from M,, which, for any w e M,,,, satisfies

(23) (euBY; + ouBy' + rot rot B™, w) 20, = (9, W)L2(g) -

For brevity we denote | *|| 2(o, simply by ||+ |. Taking w = rot rot B" in (2.3) we have,
in virtue of w-periodicity in ¢,

(2.4) oplrot BY'|> = — (rot rot B", g,),20, <

ot rot B”

lg.ll -
For w = rot rot B™ we get

[rot rot B”|* < ||g] |jrot rot B™| + eurot BY|
which by (2.4) implies

2
’

29 ot ot 5% = o] + o]

This applied to (2.4) gives

(2:6) [rot BY| < ([ + [a.]) -

Taking w = — D}B" in (2.3), we get ou|| BYy|> = (9., B) < ||g.| | B, i-e-,

27) 185 < L g -
ou

In virtue of (2.1) and (2.2), we get from (2.5), (2.6) and (2.7)

1B = (g + g
Similarly we obtain

|DEB" |20, < €(([ D9 + [ D7 q]) -

Letting m — oo, we complete the proof of Lemma 2.3.

3. AUXILIARY RESULTS FOR NONLINEARITIES
For the purpose of this section we denote
_ 2 1/2
lullmosir = € X [ DRufZ20)""* -
lal=s
We shall frequently use the Sobolev inequality

lulle@ = elulluze
and the well-known inequalities
lulloar < clufl i
and
supess { |u(t,*)

lnsays t€ R} < cl]|ullnougy + [t noso} -
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The following series of lemmas make it possible to show in a nearly obvious manner
that for p = 1 the mappings given by the right-hand sides of the equations (].18) and
(1.21) map ve X?*' n J*(Q) and Be Y? n #2(Q) into G’ N J(Q) and satisfy the
assumptions of the next section. The first three lemmas are obvious.

Lemma 3.1. X?*! < Y”.

Lemma 3.2. Let |ot| < 1. Then D% :Y? - ZP? is a linear and continuous mapping.

Lemma 3.3. Z” < GP*!,

Lemma 3.4. Let p = 1. For any a, € Z? and aze Y?, we have a;a, e G**' and
lasasgrr = clas]ze [azys.

Proof. For j, + j, = p + 1 we must estimate the quantity

V= |(Diay) (DFas)| 2, = j j (DVa,)? (Diay)? dx dt <
0 (o]

< ¢ [ Dl as(e Wi [ Dl i 1
For j, = 0 we get ’
V£ e{|Dias|on + [ai]fon) [ PPaz]io g = clai]z]az)7e
and similarly for j; < p, j, < p we have
V< | Diay|fong {| DI asfongy + [ DI azfo oy} < cllar]ze las| 7 -

In the last case when j; = p + 1 and j, = 0 we have

_ J J (D?*'a,) a2 dx dt < ¢ j 102 Yay(t, )| Zacey las(t, *)| 2 0 <
0J0 0

< ¢| DY ay|Zag) { | Di 2] fiox0) + |a2lo e} = cllas]|Zs azl7s -

This completes the proof.

Lemma 3.5. Let p = 1. For any ay, a, € Y, we have a;a, € Y? and |a,a,|y» <
< clasfys |as]yr-

Proof. For |oy] + |oy| £ 2, j; +j, + || + |ea| 2 + p we must estimate

V = |(D{'D%'a,) (D{?DFa5)| fa) -

We shall distinguish several cases.

(1) Let |oy| + |ay| = 2. Firstly, we shall suppose |o;| = 2 and |a,| = 0. Then

Jji1 +Jj2 = p and we have
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- [ [(ot0zar e oca =
0J0

IIA

j | D3 D%a (1, ey | DFas(t, -)|2ay i <
0

IIA

cfj DI as(t, )z | DFax(t, <) dt -
V]
For at least one j; we have j; < p — 1. As the last expression is symmetric in j, and
j» we can suppose j; = p — 1. Then
Vs o[ DI as|focg + [Py [foao) | DI | foae) <
< sl faaln-
Secondly, we shall suppose |o;| = |o,| = 1. Then
V= J f (D{'D%'a,)* (D{*D3%a,)?* dx dt <
0Jo

| Di*DYay(t, *)||Zua) | DEDTas(t, *)| Loy dt <
0

=

—

w
< j |D2ay(t, ) [ D2as(t, ) 2ecay
0

which gives V < c||a,||3» | a,||7» as in the preceding case.
(2) Let |oy| + o] = 1. Then j, + j, £ 1 + p. With no loss of generality we can
assume |o;| = O, |oc2 = 1. Then we have

V=J‘ f (D{lal)z (D{ZD;ZHZ)Z dxdt <

0J0

é_[ DI (1, )| iney | DEDZas(t, -)| Loy dt <
0

@ .
= CJ- |Diay(t, )| fircay || DEas(t, )| icey dt -
0

If j; = pand j, < p, we have
V= e{|| DI ay | fonggy + || DI |Foy) lazlie < cllailis [az]ve -
Ifj, =p + 1,ie. j, = 0, we have
V < clay||3o {az]focy + |Diazlfone)} = clar]ie [laz]3s -

Finally, forj, = Oandj, = p + 1, we get
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Y éj fla(t. ')”g(m ||D‘,”*1(,2(;, Wiy dt £
0

< c{lDiafiore + arlioxo} a7 = cllai]is aa] -

(3) In this case we have |a1| + |<x2| =0, hc:nce,j1 + j, £ p + 2. Firstly, we shall
assume that j,j, = 0. Then at least one of j, J, is smaller or equal to p. Let us suppose
that j, < pand j, £ p + 1. Then

V=

nad . .
f (D}'a;)* (Df*a,)? dx dt <
0Jo
Sc [ “D{'al(t, ')Hi“(m“ D{laz(t, ')“i‘(ﬂ)dt =
Jo

w
= CJ [Ditay(t, )i [ DIas(t, *)|| ey dt <
0

< o{| DI ay|[fonio) + || D' |[fone)) | Das]fon0) = clar]| s a2 -

To complete the proof we investigate the case when j; or j, is equal to 0. Let us
suppose that j; = 0. Then j, < p + 2 and we have

V= f f ai(Dya,)” dx dt < j las(t. e [ DPas(t, )| L2a) dt <
0JQ 0

< c{[ Deas o) + [ar]fioro)} DAzl = efa]is [laallze -

This completes the proof.

Lemma 3.6. For any ay, a, € Z we have

3 (pe(al) <Ps(az) € Gp+1

.

and
le 0ar) oaz)gri < cllai]ze [az]ze

with ¢ independent of e.

Proof. Weset b, = ¢,(a;), i = 1,2. By Lemma 2.5 we have [[eb;|zo+1 + ||bi]|2» £
< ¢|a;|z». We must estimate, for j; +j, < p + 1,

V= [(Diby) (Db,)|? = &2 J J (DJ'b, )2 (Db,)? dx d <
. 0J2

= ngj ” D{Ibl(t9 ')”1211(9) ”D{sz(t’ ')“?i‘(!)) dt =
0
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< {[eD] by [foigy + [eD7b1[Foer) | PIb2] 010 =
< cleby|Foes [b2]30 < cllai|Zo @z 20
since with no loss of generality we can assume j; S p- This completes the proof.
Lemma 3.7. Let p = 1. For any a,, a, € Z° we have a,a, € G? and ||a,a,¢» <
= clai]|zo [as ]z
Proof. For j; + j, < p we must estimate V = |[(D{'a;) (D{a;)|7o) At least

one of j, j, is less or equal to p — 1. We can suppose that j; < p — 1. Then we have

vV

I\

w
[ ] It i Dt Vv 1 <
0 Q
< cf HD{‘Halllfw"(Q) + | D{'“lnfﬂ’-*(m} HD{Z%“IZN"(Q) s "”"1“122" |’f’2“§"~

This completes the proof.

4. PROOF OF THEOREM 1.1.

We denote by K, the inverse operator to ¢D, — nP A described in Lemma 2.2,
by K5 the inverse operator to euD? 4+ ouD, + rot rot described in Lemma 2.3 and
by K; the inverse operator to ouD, + rot rot described in Lemma 2.4. Writing
v* and Bf instead of v and B in (1.18)—(1.24) and applying P to (1.18) we get with
the help of K, and K5 the following two equations for v* and B*:

(4.1) v" = K {P{oF + ¥,(v", B°) + ¢ ¥3(i", B, ¢)}
(4.2) B = ouK5 ¥,(v, BY),
where
¥, (v, B) = — o(v, V) v + Lot B B,
I

¥,(v, B) = opurot (v x B),

W,(o, B.¢) = [®(v x B)], x B — - [@(rot BY], x B
op

. 1
— ¢,(div(v x B)) <1>£<~— rot B — v x B) .
op

Similarly, from (1.1)—(1.7) we get
(4.3) v® = K,P{oF + ¥,(°, B ,
(4.9) B® = ouK; ¥,(0°, B°)
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For a Banach space X we shall denote

\

20,r,X)={ueX;|u] <r}.

By using the lemmas of the preceding section it is easy to see that for any r positive
there is b such that for every v, e #(0,r, X>), B, Be #(0,r,Y?), r <71, 0<e <
< g, and i = 1,2 we have

(4.5) [¥iv, B)|gs < br?,

1% (v, B) — ¥(5, B)|gs < br(|v — 3|xs + [ B = By2),
(46) [#40.B) = %5, B2 < br{Jo = #|xa + B~ Bl).
(47) e ¥4(o. B, 6)]os < 17,
(439) |#:(0, B &)]o: < br",
(49) e ¥a(o,B,e) = ¢ ¥y(5 B, )]s < br(Jo — illcx + | B~ Blya)-

To get (4.5) we must, for example, estimate the term vD3, |oc| <1, in G3 for
v, 7€ X3. By Lemma 3.1, ve Y?, by Lemma 3.2, Dije Z2. Applying Lemma 3.4,
we have vD%5 € G* and the corresponding estimate. The other terms in ¥;, i = 1, 2,
can be treated along the same lines with the help of Lemmas 3.5 and 3.3. Similarly
for (4.6). To show (4.7) and (4.9) the following terms must be estimated in G>:

(4.10) goa)],b, aeZ? beY?,

(4.11) epa) o (b), a,beZ”.

By Lemma 2.5, |e[¢(a)],|2> < c|a] 2. Using Lemmas 3.4 and 3.6, we can estimate
(4.10) and (4.11), respectively. To prove (4.8) we must estimate in G* the terms

4.12 a)l,b, aeZ*, beY?,
(4.12) [o.(a)].

(4.13) ¢a) p(b), a,beZ”.

By Lemma 2.5, |[¢(a)]| 2+ < ¢|a| .- Hence using Lemma 3.4, we deal with (4.12)
and with the help of Lemma 3.7 the term (4.13) is estimated.
For (x, y) € X x Y, X, Y Banach spaces, we set

[Ges Peer = lxllx + 7]l -

By (4.5)—(4.9) we find two positive numbers # and r, such that for |[F| s < # the
right hand sides of (4.1) and (4.2) form a contractive mapping of (0, ro, X> N
N J*(Q) x Y* n #*(Q)) into itself. Similarly, the right hand sides of (4.3) and (4.4)
form a contractive mapping of %(0, ro, X* 0 J*(Q) x X* 0 #£%(Q)) into itself as
well as a contractive mapping of %(0, ro, X* 0 J*(Q) x X* 0 #£(Q)) into itself
with the contractivity constant o.
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N J*(Q) x Y? 0 #%(Q)) satisfying (4.1) and (4.2). Furthermore, there is a unique
(v°, B%) € #(0, ry, X3 N J*(Q) x X* n #£%(Q)) satisfying (4.3) and (4.4). Hence the
existence part of Theorem 1.1 is proved as Vp°® is uniquely defined when v*, Vp® and
B are to satisfy (1.18). Similarly for Vp°.

Denoting w* = v* — v° and b° = B® — B, find o(w; — nP Aw®) = P{¥ (v, B) —
— ¥,(t° B®) + Wi(v", B%, &)}, oub; + rot rot b° = ou(¥,(v*, B°) — ¥,(v°, B°) —
— euBy,). If these two equations are written in the form

w' = K, P{¥,(v", BY) — ¥,(v°, B°) + ¥;(v", B, &)},
b* = K {ou(¥,(v5, BY) — ¥,(v°, B°)) — euBg},

This shows that for every &, 0 < & < &, there is a unique (%, B°) € £(0, ry, X* N

we immediately obtain

”(W‘, bﬂ.)“x“x2 = “”(WE, bz)“xzxxl + ef(v", B, ¢)
where

B(v*, B%, &) = |K,P W3(v", BY, )| 2 + p|K3Bi||x: <
< o[ #a(v", B e)g2 + [|B°]v2) -
As |B|y2 £ ro and, by (4.8), |¥,(v", B%, &)|g. is bounded, we have the estimates

for ||v* — v°|y2 and |B® — B°|x:. The estimate of |V(p® — p°)|g: is a simple con-
se quence. This completes the proof.
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Souhrn

MALA CASOVE PERIODICKA RESENI ROVNIC MAGNETOHYDRODY-
NAMIKY JAKO SINGULARNE PORUSENY PROBLEM

MILAN STEDRY, OTTO VEIVODA

V ¢ldnku je vysetfovdn systém rovnic popisujicich pohyb viskdsni, nestladitelné
a vodivé tekutiny v omezené tiirozmérné oblasti, jejiz hranice je idedlné vodiva.
Posuvny proud v Maxwellovych rovnicich, ¢E,, neni zanedbdn. Je dckdzdno, Ze
pro malé periodické sily a malé kladné ¢ existuje IckdIn€ jediné pericdické reSeni
vySetfovaného problému. Je ukdzdno, Ze pro ¢ \ 0 toto fefeni konverguje k feSeni
zjednoduSeného (a obvykle uvaZovaného) systému rovnic magnetohydrodynamiky.

Author's address: RNDr. Milan Stédry, CSc., Doc. Dr. Otto Vejvoda, DrSc., Matematicky
astav CSAV, Zitna 25, 115 67 Praha 1.
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