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The present paper deals with a system with a single activated unit. We do not
assume (as is usually done) that the unit is completely effective until it fails. We
suppose that the unit can be in k + 1 states denoted by 0, 1, ..., k (k = 2 and finite)
at any time. The state i, i e {0; 1;,..., ;k} can be interpreted as a level of the wear
of the unit. The states 0 and k correspond respectively to the full operative ability
of the unit, and to the failure of the unit. Let us put K = {0; 1;...; k}.

Let us suppose that inspections of the system are carried out at discrete time
instants ¢ = 0, 1, 2, ..., and that we have the possibility of replacing the unit used
before t by a new one, i.e. by a unit which is in state 0, at ¢, forevery t = 0, 1, 2, ....
Concerning the changes of states of the unit we assume:

A 1. The probability that the unit used in the system during (f;¢ + 1], ¢ =
= 0,1, 2,...1sin state j at t + 1 under the condition that it is in state i at ¢t depends
only on i and j, i.e. this probability depends neither on ¢ nor on the changes of states
of the units used in the system before ¢ nor on the particular unit used in the system
during (¢; ¢ + 1]. Let us denote this probability by p;;.

A 2. We have
pi;; =0 forall ieK—{k}, jeK—{i;i+1;k},
pii + 1 forall ieK — {k}.

If the unit fails during the interval (t; t+ 1] between two successive inspections
of the system, we must replace it at ¢ + 1. On the other hand, if it does not fail during
(1; 1 + 1] then one of two possible actions (replace or do not replace) can be taken.
We shall be interested in such replacement strategies according to which the decision
at time t, t = 0, 1, 2, ... depends only on the state of the unit used during (t — 1; 1],
at ¢ (independently of 7). Every such replacement strategy is determined by a set
A < K such that ke A, and has the form: The decision is “‘replace” at time ¢ if and
only if the state at ¢ of the unit used in the system during (¢t — 1;¢] is an element
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of A. The assumption A 2, however, implies that we can limit ourselves only to the
replacement strategies &, n € K, determined by the sets

(1) A,={i;ieK,izn}.

Let R (R > 0) be the costs for replacement of the unit and let m;;, for i e K — {k},
je{i;i+ 1;k}, be the income of the system reached during the interval (say
(t; t + 17]) between two successive inspections of the system under the condition
that the states of the unit used during this interval are i at t and j at ¢ + 1.

The aim of the present paper is to calculate the average income per unit time C,
of the system with the replacement strategy &, for all n € K and to characterize the
value of k* fulfilling

(2 k* = min{n;nekK,C, = C; forall ieK}

under some reasonable conditions on p;; and my;, ieK — {k}, je{i;i + 1;k}.
Let us note that Derman showed in [2] that the strategy which maximizes the
average income of the system per unit time is stationary and deterministic. Hence,
we may limit our considerations to the strategies &, n € K, only.

Let us further suppose that the inspection of the system at time ¢, for every t =
=0,1,2,..., involves also a preventive maintenance of the unit which will be used
during (¢; ¢ + 1]. If the costs for this preventive maintenance m; depend only on the
state i of the unit at ¢, then this much complicated model can be converted into
the one described above, i.e. into the model without preventive maintenance, by
substitutions m,; — m; for m;;, forall ie K — {k}, je{i;i + 1; k}.

A model very close to that just described is considered by Kolesar in [4]. In Kole-
sar’s model, the matrix of state-transition protatilities is almost fully general and the
replacement strategies prescribe replacements of units with the delay equal to a unit
of time, i.e. if at an inspection, say at time 7, a unit is in such a state that its replace-
ment is either necessary or recommended by the applied strategy then this replace-
ment is carried out at time ¢ 4+ 1. Corollary 1 of [4] and Theorem 2 of the present
paper have similar assertions — the ditonic property of the sequence of average
costs (incomes) per unit time of the system with control limit rules. Corollary 1 of [4]
is, however, false as we can find out in [7] where a counter-example is given. The
paper [8] shows, moreover, that the delay of replacements, i.e. the main difference
of the two models in question, is much more important than one might expect.

1. AVERAGE INCOME OF THE SYSTEM PER UNIT TIME
Let the replacement strategy &,, n € K, be accepted and let the unit used during
(0; 1] be in state i, ie B, = (K — A4,) u {0}, at time ¢ = 0. Let us denote by D,(i)
and R,(i), respectively, the expected time to the first replacement of a unit and the

expected income of the system up to the first replacement of a unit with the costs
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for this replacement included. Using the renewal theory, it can be easily verified
that the average income of the system with the replacement strategy %, per unit time

C, can be expressed as

«(0)

3 C,=—= forall nekK.
®) ‘

n

The values of D,(i) and R,(i) satisfy the relations

“ D,(h) = 1 + pu D(h) + Poper Do(h + 1) for neK — {0},
heB, —{n—1},

(%) Dn—1)=14p,_1,-1D,(n—1) for neK — {0},
(6) DO(O) =1,
(7) R,(h) = pulmum + R(W)] + Puysi[muper + Ri(h + 1] +

+ pw[mw — R] for neK — {0}, heB,— {n—1},

(8) Rn(n - ]) = pn~1,n—1[n1n—1,n-1 + Rn(n - ])] + pn—l,n[mn-l,n - R] +
+ Dot au[Mu-14— R] for neK — {0;k},

(9) Ry(k — 1) = Pk—l,k-1[mk—1.k~1 + Rk = V)] + peoaa[mi—ip — R] ,
(10) Ro(0) = poomoo + PoiMoy + PoxMox — R.

Solving these difference equations we obtain the following theorem.

Theorem 1. The values of C, for ne K are

(11) C, = m(0) — R,

n—1
, —R + Y m(j)P;

=, -

(12) C,=——2 7 Jor neK - {0},
2P
ji=0

where

(13) m(’) = PiiMi; + Piiv1Miiv1 T P for ieK — {k =1 k} s

(14) m(k - ]) = DPr—1k-1Mk—1k=1 + Pr—1 M1 »
1 -1 Dii
(15) P; = 1 L for jeK — {k}.
1 —pj; i=ol —py

Proof. The values of Dy(0) and R,(0) are given in (6) and (10), respectively.
Further, the unique solutions of the systems of difference equations (4), (5) and (7),
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(8), (9) have, respectively, the forms

n—1
(16) D,(h)y =Y P% for neK — {0}, heB,,
Jj=h
n—1
(17) R,(h) = —R + th(j) P" for neK — {0}, heB,,
f=
where
1 -1 Pi
Pl = g1 S for hyjeK —{k}, h<j.
1 —pj; i=n 1 — py

Substituting (16) and (17) for h = 0 into (3) we obtain (12).

In the next section we shall need the following relation, based on (16) and (17),

of the average incomes of the system per unit time corresponding to different replace-
ment strategies .

Lemma 1. Let n, ' € K — {0} be such that n’ > n. Then
n'—=1

C, D,(0) + 3. m(j) P;
(18) C, =

n’'—1
D,(0) + ) P;
j=n
2. OPTIMAL REPLACEMENT POLICY

In this section we introduce an algorithm for finding the value of k* without

calculating C, for all n € K. The following theorem characterizes the structure of the
sequence {C,}u_.

Theorem 2. We have

(19) C,>Cy if pyo>0,

(20) C,=Cy if poy=0.

Let the sequence {m(n)}s_¢ be decreasing and let

(21) Pon+1 £ 0 forevery neK — {k}.
Let us put

(22) z = max {k*; 1} .

Then '

(23) {Chhzy is increasing ,
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(24) {C,)k_.,1 s decreasing ,

and the following implications are true provided z + k:
a) if C. =% m(z) then C. > C.4y;
b) if C. = m(z) then C. = C,,, .

Proof. According to Theorem 1 we have

Co = m(0) — R
and

(25) C; = m(0) — R(1 — poo)

so that (19) and (20) are obviously true. Concerning the relation (23) it is sufficient
to prove it only for k* = 2. We show that

(26) if k*=2 then m(k* —1)> C..

Indeed, if k* = 2 and m(k* — 1) < C,. then we obtain from Lemma 1 and from
the definition of k* the following impossible relation:

27) C,. < Cir—1 Dy 1(0) + CpoPro—y <c,..
Die_4(0) + Py,

The sequence {m(n)}%Z; is decreasing so that

(28) m(n) > C;. forevery nekK — A

and according to Lemma 1, the definition of k* and (21) (which secures that P, > O
for every ne K — {0}),

(29) C"+1 > Cn DII(O) + Ck‘Pn > Cn Dn(O) + CnPn — ;
D,(0) + P, D,(0) + P,

for every ne {1;...; k* — 1} so that the sequence {C,,} A L is increasing.
For the proof of (24) we need to verify

(30) if k* <k then m(z) £C,.

The proof of (30) will be divided into two parts:
1) If k* =0, i.e. z = 1, and m(1) > C, then we obtain from (19), (20), (21), Lemma 1
and from the definition of k* the following impossible relation:
C,2C, > C, D{(0) + C,P, —c,
Dy(0) + P,

v

Co -
2) If k* > 0, i.e. z = k* and m(z) > C. then we similarly have
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C.D(0)+ C,p. .
Cosr = Copy > ——(‘)“—“—‘ =C.=Cu.

D,_(()) + P,
According to (30) and Lemma ! and by virtue of the fact that the sequence {m(n)};Z¢
is decreasing the following relation holds for every ne A, — {k}:

C.0.0) + S m() P, m(n) D0) + . m(n) P,
(31) C,= = > — = m(n).

-1

D) +Y P, D0)+3 P,

Thus for every ne 4,,, — {k} the inequality

_ G, D,(0) + m(n) P,
D,(0) + P,

Cos1 <G,

is fulfilled and the sequence {C,}%_, ., is decreasing. The two last statenents of Theo-
rem 2 are easy consequences of Lemma 1 and of (30) because we know that m(z) +
+ C, is equivalent to m(z) < C,.

Theorem 2 can be applied in the following way: If we want to find k*, i.e. the least
subscript of the elements of {Ci}’lf:(, which maximize the values of C, for neK,
we need not calculate C, for all n e K. The complexity of the expressions for C,
given in Theorem 1 increases with increasing n. Therefore is seems to be convenient
to calculate the values of C, in the natural order: Cy, Cy, ..., C;. Theorem 2 guaran-
tees that for finding k* it is sufficient to start with C, and after calculating C, (n = 2)
to compare C, with C,,_ and to proceed to C, . in the case C,, > C,_,. On the other
hand, if C, < C,_, then Theorem 2 states:

if n>3 then k¥=n-—1,
if n=2 and pyo #0 then k¥ =1,
if n=2 and pgo =0 then k* =0,

and we need not know the values of C; for i > n.
Corollary 1. Let the assumptions of Theorem 2 be fulfilled. Then
(32) z =min[{n;neK — {0;k}, m(n) < C,} u{k}].
Proof. Let us put
Z = {n;neK — {0; k}, m(n) < C,} .

If z =1 then k* < k and according to (30), 1€ Z. Thus min[Z U {k}] = 1. If
z = k* = k then according to (26) and to the definition of k*

m(n) 2 m(k* — 1) > Ce > C, forevery neK — {k

——
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and thus Z = @ and min [Z U {k}] = k. Finally, if ze K — {0; 1; k} then z = k*,
according to (30) z € Z and using (26) we obtain

m(n) =2 m(k* — 1) > C,.. > C, forevery neK, n<z.

In the algorithm suggested above for finding the value of k* we can use the follow-
ing comparison of m(n) and C, based on (32) before calculating C, 4 :

it n=1, m1)<C, and pyo =0 then k*=0,

if n=1, m(1)<C, and po £ 0 then k*=1,

if n=2 and m(n) < C, then k*=n,

if n=1 and m(n) > C, then k¥ >n and C,.( >C,.

Using the criteria just determined instead of the comparison of C, and C,_; we do
not calculate the superfluous value of C. ;.

Remarks. 1) If the sequence {m(n)},q is only non-increasing then the results

similar to Theorem 2 are true.
2) If the relation (21) is not fulfilled and we put

(33) ny = min {n;ne K — {k}, py,s1 = 0}
then from Theorem 1 it is evident that
Cll()+1 = Cno+2 = ... = Ck'

On the other hand, it is obvious that the unit in state O can by no means enter any
of states ne {i;ie K — {k}, i > ny}, so we can pass to the model including only
the states of the unit 0, 1, ..., n, and k. In this model the condition (21) is fulfilled
and we can use Theorem 2. : .

3. A MORE EFFECTIVE ALGORITHM FOR FINDING THE VALUE OF k*

The procedure for finding the value of k* suggested in the preceding section is
very suitable if k* is small enough. For example, if k* = [ then, evidently, there
exists no better one. On the other hand, if k* = k we have to calculate all the values
of C,, n € K — {0; k}. Thus we can state that this procedure is very weak in this case.
Our aim is to minimize the number of those C,, n € K, which are to be calculated
for the least favourable value of k*. For this purpose, we introduce the following
algorithm.

Let the preceding considerations (at the beginning we can make use e.g. of the
results of Section 4 of the present paper) imply that

(34) a<:z<b,
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where a and b are certain elements of the set K u {k + 1} such that b — a = 2.
If at the beginning we know nothing concerning our task we obviously start with
a=0and b=k + 1. The case b = a + 2 is trivial and may be omitted, i.e. we

may suppose that
(35) b—a>2.

Let us calculate the value of C,, where d is the whole part of (a + b + 1)/2. It is
easy to see that

(36) a+2=<dsb-1.
Thus
(37) deK — {0;1} .

There are four possibilities:

1) C, = m(d — 1) — in this case we put a’ = a and b’ = d;

2) d * k and C; < m(d) — in this case we put a’ = d and b’ = b;

3) d # k and m(d) £ C; < m(d — 1);

4) d = kand C, < m(k — 1).

By (34), (37) and Corollary 1 of the present paper, and by Theorem 4 of the paper [6]

(stating that the inequalitics C; = m(d— 1) and z < d are equivalent if de K —
— {0; 1}) we have

(38) a <z<b,
where
(39) a,beKu ik + 1}

in the first two cases, and
(40) z=d

in the cases 3) and 4). We shall deal with the cases 1) and 2) only. The relations (38)
and (39) and the fact that ze K — {0} imply that b’ — a’ = 2. It may happen that
b" — a’ = 2. Then evidently z = a’ + 1. On the other hand, if

(41) b —a >2

we repeat this construction starting with the new parameters a = a’ and b = b'.
The relations (37), (38), (41) and the assumption that the original parameters a and b
are from the set K U {k + 1} guarantee that the new ones meet all the demands.

So the procedure of finding the value of z is divided into several steps each of which
has the form just described. The set of possible values of z is reduced approximately
to one half in every step.
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Lemma 2. It is necessary to carry out not more than log, k steps of the algorithm
to find the value of :.

Proof. Let g be the natural number such that
(42) 271 < k< 29,

Let exactly r steps of the algorithm have to be carried out and let a,, b, and d, be the
corresponding parameters a, b and d of the s-th step, s = 1, ..., r. By the mathematical
induction we shall prove that

(43) 2<b,—a;,—1 <27 forevery s=1,...,r.

We have b; — a; < k + 1 so that (43) is true for s = 1. Let » > 1 and let (43) hold
for some se {1;...;r — 1}. We know that

(44) bs+1 — dgiq Zb;'—H;>2,

because the s-th step is not the last one which is to be carried out. Further, the realiza-
tion of the (s + 1)-st step of the algorithm implies either C,, = m(d, — 1) or d, + k
and C,, < m(d,), i.e. either

(45) byiy — agey =ds — a;
or
(46) bs+l — G541 = bs - ds-

Let (45) be true. If a; + b, + 1 is even then we obtain

bosy — ayiy —1=3L+%il—ax—1=bs_—‘2's_l<zq*s.
Ifa, + by + 1 is odd then
boyy — @y — 1=l bemam o
On the other hand, if (46) is fulfilled then
bevy — ag,y — 1 gbs—ﬂ—:—l’f—1<f’~f—;’f——l<zq-‘.

In this way, the relation (43) is verified. In particular, for s = r we have 2 < 2¢7"*!
so that
r<q-—1=log, k.

Theorem 3. The number of those C,, n € K, the values of which it is necessary
to calculate for finding the value of k*, if the algorithm considered in this section

is used, is less than or equal to log, k.
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Proof. It is easy to see that exactly one C,, ne K — {0}, is enumerated with
every step of the algorithm in question. Let the value of z be found. If z & 1 we know
that k* = z. On the other hand, if z = 1 we obtain according to (19) and (20) that

if poo =0 then k*¥ =0 and
if poo >0 then k* =1

so that it is not necessary to calculate any further value of C,.

Remark. In the case of k = 2", where n is a natural number, it may happen that
the number of values of C, which have to be calculated is equal to n = log, k. Indeed,
if z=k*=1then a, =0, b, =2""*"1 + 1, d, =2"""+ 1 and C;, = m(d, — 1)
foreverys = 1, ..., n, so thatin the s-th step we obtain the resultsa; = 0 < z < b, =
=d, b, —a;,=d;,>2foreverys=1,...,n—land b, — a, = d, = 2.

We find that the number of those C,, n € K, which are to be calculated in the least
favourable case when using the algorithm of the present section is much less than
that when using the procedure considered in Section 2. It ought to be mentioned
thatif 1 + log, k < k* < 3(k + 1) the former method need not be quicker although
it may require the enumeration of a smaller number of values of C,, n € K. Namely,
we should calculate Cyy. 1/2; by the former one while the latter one stops with Cp._ ;.
The former may be essentially more difficult to obtain than the latter due to the
increasing complexity of the formula (12) when n increases.

4. ADDITIONAL COMMENTS

The following theorems serve for further decrease of the number of necessary
calculations of the values of C, and for the apriori upper estimate of this number.
We suppose throughout the present section that the assumptions of Theorem 2 are
fulfilled.

Theorem 4. If n€ K — {k} and m(n) < m(0) — R then n = k*.

Proof. It is obvious that n = 1. If n < k* then k* = z and from Theorems 1
and 2 we obtain

C,zC = m(O) - R(l - Poo) 2 m(O) - Rz m(n) s
but this relation contradicts (32)-
Lemma 3. Let the sequence {pji};=0 be increasing and let ne K — {0; k}. Then

(47) m(n — 1) — R(1 = Pa=1m-1) £ C, = m(0) — Rpoy -

Proof. Let us put E; = m(j) = iR for all je K — {k}. The sequence {E}izo
is obviously decreasing and
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n—1 n—1 n—1 n—1
=R+ Y m(j))P;=—R + Y E;P;+ RY (1 = p;)P; —RY p;;+,P, =
Jj=0 j=0 ji=0 j=0

n—1 n—1 n—1

n—1
=YEP;+RY pi_;Pioy —RY p;;j+1P;j =Y E;P; — Rp,_y ,P,_, .
j=o0 i=1 ji=o0 j=0
By the relation (12), we have

n—1
En—l Z Pj - an—l,nPn—l
j=o

C" n—1
2 P;
i=0

1%

2 Eu—l - an~1,n = ln(n - 1) - ]{(1 - pu—l,n—l)

and similarly
C, < Ey =m(0) — Rpyy -

Theorem 5. Let the sequence {p; }524 be increasing and let ne K — {0; k}. Then
1) if m(n) £ m(n —1) — R(1 — p,_q,—,) then n = k*;
2) if m(n) > m(0) — Rpy, then n < k*.

Proof. The proof of part 1) is based on (32) and on Lemma 3. If ne K — {0; k},

n = k* and m(n) > m(0) — Rpg, then k > n = =, so that according to (30) and
(31), m(n) £ C,. This result contradicts, however, the relation

m(n) > m(0) — Rpy, = C,

which can be easily obtained from Lemma 3.

Let us denote
(48) ny = max [{n; neK — {0; k}, m(n) > m(0) — Rpy,} U {0}],
(49) n, = min [{n; neK — {0; k}, m(n) < m(0) — R or

m(n) <m(n — 1) — R(L = p,_y n-1)} v {k}];
then

(50) n, < k* <n,

and if ny # O then n; < k*.

It is worth mentioning that the optimal replacement strategy .%,« does not involve
only the comparison of the mean incomes of the system achieved during the nearest
unit of time with the decisions ,,replace” and ‘“‘do not replace”. In other words,
the strategy %, is not generally equivalent to the strategy % determined by the set
A < K with the properties
a) keA,

b) if ne K — {k} and m(n) < m(0) — R then n € A4,
¢) f neK — {k} and m(n) > m(0) — R then n ¢ A.
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Theorem 4 guarantees that A < 4,. but the following example shows that
generally the sets 4 and A,« need not coincide.

Example 1. Let

k=2,

m(0) = 2R, m(1) = 3R,
Poo =13, Po1 = Po2 = %,
Pii =pia=1.

From the definition of the set 4 we see that A = {2}, particularly 1 ¢ A. On the
other hand, pox < p;,and

m(1) = 3R < ;R = m(0) — R(1 — pyo),

so that according to the first part of Theorem 5, k* < 1, i.e. 1 € A4,.. Altogether
we obtain

leA—A.
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Souhrn
O OPTIMALNI ZAMENOVACI STRATEGII
RAIMI AJiBOLA KASUMU, ANTONIN LESANOVSKY

V ¢ldnku je uvaZzovdn systém s jednim prvkem, ktery muze byt v k + 1 stavech.
Inspekce prvku jsou provadény v diskrétnich ¢asovych okamzicich. Proces zhor$o-
vani prvku se predpoklddd markovovsky. Prvek svou Cinnosti pfindsi ur€ity zisk,
ktery klesd se zhorSujicim se jeho stavem. Vyména prvku je spojena s ndklady
na potizeni jiného. Cldnek prindsi efektivni algoritmus nalezeni takové strategie zimén
prvki, kterd maximalizuje primérny vynos systému za jednotku casu. Pouziti
tohoto postupu vyZzaduje zkoumat nanejvys log, k ¢asové staciondrnich strategii.
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