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SVAZEK 28 (1983) APLIKACE MATEMATIKY ČiSlXM 

OPTIMIZATION OF THE SHAPE OF AXISYMMETRIC SHELLS 

IVAN HLAVACEK 

(Received December 6, 1982) 

INTRODUCTION 

Axisymmetric thin elastic shells of constant thickness are considered and the me­
ridian curves of their middle surfaces taken for the design variable. Admissble func­
tions are smooth curves of a given length, which are uniformly bounded together 
with their first and second derivatives, and such that the shell contains a given volume. 
The loading consists of the own weight, the hydrostatic pressure of a liquid and an 
external or internal pressure. 

As a cost functional, the integral of the second invariant of the stress deviator on 
both surfaces of the shell is chosen. 

In Section 1 we formulate an abstract optimal design problem and prove the 
existence of a solution. Section 2 contains the application of the abstract existence 
theorem to the design of axisymmetric shells. In Section 3 we introduce some ap­
proximate optimal design problems and in Section 4 we study the convergence of 
the approximate solutions. Some comments on the numerical solution of the approxi­
mate design problem are given in Section 5. 

1. AN ABSTRACT OPTIMAL DESIGN PROBLEM 

First we establish a general existence result for a class of optimal design problems. 
Let U be a Banach space of controls and Uad a set of admissible design variables. 

Assume that Uad is compact in U. 
Let a Hilbert space Fbe given with a norm || • ||. Consider a bilinear form a(F; •, •) 

and a linear continuous functional <f(F), •> on V, both depending on a parameter 
FEU. Assume that there exist positive constants a0, a t and a subset U°. Uad c L7°c 
c U, independent of F, w, v and such that 

(1) a(F; u, v) ^ ai | |w| | \\v\\ , 

(2) a(F; v, v) ^ a0 | |t?| |2 

hold for all F e U° and u, v e V. 
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Moreover, assume that: 

(3) if F, F„ e U°, Fn -> F in U and un -* u (weakly) in V for n -> oo . 

then 
a(F„; un, v) -> a(F; w, v) VveV ; 

(4) if F, Fn e U°, F„ -> F in U, then <f(F„), v> -> <f(F), v> Vv e V; 

(5) a positive constant y exists, independent of F, v and such that 

\<f(F),v}\^y\\v\\ 

holds for all F e U° and v e V. 

We consider the following state problem: 

for F e Uad find u(F) e V such that 

(6) a(F; u(F), v) = <f(F), v> VveV . 

Under the assumptions (1), (2), (5), the state problem (6) is uniquely solvable for any 
FEU0. 

Let a functional 

j:(U x V)->R, 

be given, which satisfies the following condition 

(7) if F„, F e U°, Fn -> F in U, wB -> u in 

V (weakly) => lim inf j(F„, un) ^ j(F, u) . 

Defining the cost functional as 

/(T) = XI7, "(I7)), 

where u(F) denotes the solution of (6), we may consider the optimal design problem: 
find F° e Uad such that 

(8) S(F°)£S(F) VF6U f ld. 

We are able to prove the following existence result-

Theorem 1. Under the assumptions (l) to (5) and (7), the optimal design problem 

(8) has at least one solution. 

Proof. Let {Fn} cz Uad be a minimizing sequence for tf, i.e. 

(9) l i m / ( F n ) = i n f / ( F ) . 
n-+co FeUaa-

Let us denote the solution of (6) by un = u(F„). Using (2), (6), (5), we may write 

<*oK||2 S a(F„; un, u„) = <f(Fn), un} ^ y\\un\\ . 

270 



Consequently, the sequence {un} is uniformly bounded in V. Then there exist a sub­
sequence {um} and an element u G Vsuch that 

um -*> u (weakly) in V. 

Since Uad is compact in U, there exist a subsequence {Fk} of {FOT} and F e Uad such 
that 

F*->F in U. 

Recall that 
a(Fk; uk, v) = (f(Fk), v> VveV. 

Passing to the limit with fc -> oc and using (3), (4), we obtain 

a(F;u, v) = <f(F), v> VveV. 

Consequently, u = u(F) follows from the uniqueness of the solution of (6). 

By virtue of (7) and (9) we have 

inf / ( F ) = lim inf f(Fk) = lim inf j(Fk9 uk) ^ j(F, u(F)) = / ( F ) 
FeUad fc-+oo 

and therefore F is a solution of the problem (8). 

2. SHAPE OPTIMIZATION OF AN AXISYMMETRIC SHELL 

We shall apply the abstract theorem to the optimal design of a shape in the case of 
axisymmetric problems for thin elastic shells. 

Let z and r denote the axial and radial coordinates, respectively. We describe the 
meridian curve by means of two functions F and G as follows: 

r = F(s) , z = G(s), 0 ^ s ^ / , 

where s denotes the arc parameter and the length / is given. Denoting the derivatives 
by primes, we set 

GXs) = [i-(F>(s)yy^. 

Let us choose U = C(1)(I), I = (0, /), 

Uad = {FeC^I) : r0 S F(s) ^ rl9 \F(s)\ ^ C, < 1 , 

\FXs)\^C2,^F2(s)G'(s)ds = C39 

where r0, rl9 C1? C2, C3 are given positive constants. 

The integral condition means that the volume of the shell is prescribed. C(i),1(I) 
is the space of continuously differentiable functions in I, the derivatives of which 
are Lipschitzian. 
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Moreover, we define an auxiliary set 

U° = {Fe C(1)(1), ir0 £ F(s) = 2ru \F'\ = | ( l + Q ) < 1} . 

We shall use the linear theory of shells (see e.g. Zienkiewicz [l]-Chapt. 12) and 
formulate the equilibrium in terms of the displacement vector u = (u, w), where u 
is the meridional and w the normal displacement (see Fig. 1). Let us define the fol­
lowing system of strains 

(10) Nt(u) = u', N2(u) = (F'u + G'w)\F, 

N3(u) = - w " , N4(u)= - F V / F , 

TZ 

and the matrix 

( i i ) K = 
Fe 

— - Ғig. 1. 

1 v 0 0 
v 1 0 0 
0 0 e2/12 ve2/12 
0 0 ve2/12 e2/!2 

where E is the Young modulus, e the (constant) thickness of the shell and v Poisson's 
ratio (0 = v < 1/2). 

We define 

(12) a(F; u,v) = f £ Ku Nt(u) Njy) F ds , 
Jnj=i 

(13) <f(F), u> = | [k0w(G(/) - G(s)) + kt(FV - G'u) + k3w] F ds , 

where k0 and kx are positive constants denoting the specific weight of a liquid and 
of the shell, respectively. The first part of the loading corresponds to the volume of 
the shell full of the liquid. The constant k3 denotes an internal or external pressure. 

Henceforth Hk(l), k = 1,2, denote the usual Sobolev spaces with square-integrable 
derivatives and || • ||fc their norms. The norm in L2(I) will be denoted by || • ||0 and the 
norm in L^I) by |j • 1^. Let us consider the space 

W = HX(I) x H2(I) 

and write for brevity ||u| = ||II||-^ = (||u||2 + [|w||f)1/2 . 
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We introduce the subspaces 

(14) V = {u = (II, w)eW: u(0) = w(0) = w'(0) = 0} , 

& = {ueV: Nt(u) = 0, i = 1, 2, 3, 4} . 

The boundary conditions in V correspond to the clamped edge s = 0, The subspace 0> 
represents the virtual displacements of a rigid shell. 

It is easy to see that 0* = {0}. In fact, 

(15) Ni(u) = 0 => u = u0 = const. , 

N3(u) = 0 => w = w0 + wts , w0, wx = const. 

Inserting the boundary conditions, we arrive at u0 = w0 = wt = 0. 

If we define a(F; u, v) and <f(F), v) by the formulas (10), (11), (12), (13) and V 
by (14), the state problem (6) corresponds to the equilibrium of a shell, the lower 
edge of which is clamped and the upper edge free, under the combined effect of its 
own weight, of the weight of a liquid and of a pressure. 

Lemma 1. The form a and the functional f satisfy the conditions (1), (2), (3), 

(4), (5). 

Proof. By virtue of the definition of U°, the condition (1) is easy to see. 

To prove the inequality (2), we first realize that K is positive definite, i.e. xTKx k 

= %xTx Vx e R4, x > 0, and we may write 

(16) a(F;u9u)s%i7cr0\ [N2(u) + N2(u)] ds VFeU f l d , u e V . 

By virtue of (15) and the boundary conditions, we have 

(17) f [(u ')2 + (w")2] ds = C||u||2 Vu e V 

with C > 0 independent of u (see e.g. [2] — Chapt. 11, Lemma 3.2). Combining (16) 
and (17), we obtain (2). 

Let us prove the condition (3). We may write 

(18) \a(Fn;u„,v)-a(F;u,v)\ = 

= \a(Fn; un, v) - a(F; un, v)\ + \a(F; un, v) - a(F; u, v)\ , 

(19) \a(Fn; un, v) - a(F, un, v)\ = 

= f |NT(un, Fn) KN(v, Fn) Fn - NT(un, Fn) KN(v, Fn) F| ds + 

f |NT(un, F„) KN(v, F„) F - NT(un, F) KN(v, F) F| ds . 

273 

+ 



For the first integral we have 

[j/VT(u„, Fn)KN(v, F„)\ . \F„ -F\dsS 

r ri 4 ni/2 r n 4 -11/2 

< C\\F„ - F U [j o I ^ K I7.) d*J [J o I N2j(v, Fn) dsj - 0 , 
srnce 

(20) I | iV, (u„ ,F„) | |Uc | |u„ | | 2 _C Vn, VF„eU° 
J = I 

can be written on the basis of the weak convergence of u„. 

For the second integral we have the following upper bound: 

(21) f V T K ' F„) KN(v, F„) - NJ(u„, F„) KN(v, F)\ + 

+ \Nr(un, F„)KN(v, F) - NT(un, F)KN(v, F)\} ds = 

= [j|-VT(u, F„) K(N(v, F„) - N(v, F))\ + 

+ |(JVT(u„, F„) - _VT(u„, F))KN(v, F)\} ds ^ 

rri 4 -|i/2 rri 4 -11/2 
= C [j Q I N2(un, F„) dsj y o l(Nj(v, Fn) - Nj(v, F)f J 

r r i 4 "I1/2 rri 4 -11/2 

+ cyo n % E „ ) - N,(U„,.?))»j y o | N K V , E ) j 

From (10) we deduce that 

(22) [ \N2(u„, Fn) - N2(u„, F)f ds ^ 

< 

since 

and 

lim 

holds if Fn-+F in C(1)(I). 

In a parallel way, we obtain 

"„1 • ______ 
ғ„ ғ 

1 1 1 

+ Ыl • -
J 

_? _ _ľ[ 
ғ„ ғ | . 

IM0 + lЫlo _ |«„|ľ < C 

___ 
ғ„ 

F'\\ 

FII c(/) 
= 0 , lim 

n->oo 

_ _ _ _ _ 
k I7 

ds-> 0 , 

- 0 

(23) [ [7V4(u„, F„) - 7V4(u„, F)f ds á [ |w„|2. 
Jo Jo 

Ш ) 

ғ: ғ' ds -* 0 . 
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Inserting (22), (23) and analogous relations with un replaced by v into (21) and using 
also (20), we are led to the assertion that the second integral in (19) tends to zero.. 

For any fixed v e Vand F e U°, the functional 

u - • a(F; u, v) 

is linear and continuous on V, as follows from (1). Consequently, 

(24) \a(F;u„v)- a(F; u, v)| -> 0 . 

Inserting (24) into (18) and using the above results for (19), we can verify the con­
dition (3). 

To prove the condition (4), we first realize that 

(25) \\G'n-G'\\ca)£C\\F'n-F'\\ca)-+0 

holds if Fn e U°, F„ -> F in C(1)(I). 

Then we have also 

(26) |G„(/) - Gn(s) - (G(l) - G(s))\ ^ 

S P j C - ; - G'\dt^l\\G'n-G'\\ca)-+0. 

For any v = (w, w) we may write 

|< f (^ ) ? v>~< f (F ) ,v> | = 

= \^{kow[(Gn(1) - Gn(s))Fn - (G(l) - G(s))F] + 

+ kxw(F;Fw - FT) - kAu(G'nFn - G'F) + k3w(F„ - F)} ds . 

Using (25), (26) and the convergence of Fn in C(1), the condition (4) follows. 

The condition (5) is an immediate consequence of the definition of U° and (13). 

Lemma 2. The set Uad is compact in C(1)(I). 

Proof. Since the functions from Uad are uniformly bounded and uniformly con­
tinuous, we apply Arzela's theorem. In every sequence there is a subseuqnece {Fn} c= 
c= Uad such that F„ -> F uniformly on [0, / ] . It is easy to see that F fulfils the condition 
\F'\ ^ Cj . 

Since the derivatives Fn are uniformly bounded and uniformly continuous, there 
exist a function H and a subsequence {Fm} such that F'm -> H uniformly on [0, / ] . 
Using a classical theorem, we obtain H = F', so that Fm -> F in C(1)(J). Moreover,, 
\F"\ g C2 and 

C3 = lim FmGm ds = J F2Gf ds 
m-+ooJo J o 

follows. Q.E.D. 

275: 



Next we define the cost functional. As in [3], let it be related to the second in­
variant of the stress tensor deviator (intensity of the shear stress or the von Mises 
equivalent stress) 

(27) l2(a) = i(o2
s +o2- oso,), 

where as and r/d denote the meridional and the circumferential normal stress, respec­
tively. Thus we define 

(28) j(F, u) = j <TT(U) C o(u) F ds , 

where 

a(u) = = HKN(u), H = 1/e 0 - 6 / e 2 0 
1/e 0 6/e2 0 
0 1/e 0 - 6 / e 2 

0 1/e 0 6/e2 

the superscripts i and e denote that the stress is considered on the internal and 
externa] surface of the shell, respectively; 

C= fi,{s) 0 -tffa) 0 
0 Pe(s) 0 -ipe(s) 

-W«) ° Pfc) ° 
0 -if}e(s) 0 fSe(s) 

where /^(s), fye(s) are (positive, bounded) weight functions. 
Note that 

(29) j(F, u) = iťtfthWu)) + PJ2(o*(u)) r ás . 

Lemma 3. The cost functional (28) satisfies the condition (7). 

Proof. We write 

(30) j(FH, un) - j(F, u) = (j(F„, un) - j(F, un)) + (j(F, un) - j(F, u)) . 

For any fixed F eU° the functional j(F, •) is weakly lower semicontinuous in V. 
Indeed, it is differentiable and convex, since 

D2j(F; u, v, v) = 2 oT(v) C o(v) F ds = 2j(F, v) . 

Combining (29) with positive definiteness of the form (27), we conclude that j(F, v) 
is non-negative. Consequently, 

(31) 

provided un —> u. 

Denoting 

l i m i n f ( j ( F , ü „ ) - Д F , ü ) ) = 0 

M = кнтcнк, 
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we may write 

(32) \j(Ftv un) - j(F, un)\ = I !\NT(un, Fn) MN(un, Fn) Fn -
IJo 

NT(un, F) MN(un, F) F ds \ t% I {|NT(F„) MN(Fn) Fn - NT(Fn) MN(Fn) F| + 
I Jo 

+ |NT(F„) MN(F,,) F - NT(F) MN(F) F|} ds g 

- ( K ( F « ) MN(Fn)\ \Fn ~ F| + |NT(F„) MN(F„) - NT(F) MN(F)| |F|} ds . 

Since the entries of M are bounded functions, we have 

\l\NT(Fn) MN(Fn)\ \Fn - F| ds S \\Fn - F||C(J) C £ \\N2(un, Fn)\\
2
0 - 0 , 

Jo j = l 

where also (20) has been used. 

The second part of the integral on the right-hand side of (32) has the following 
upeer bound: 

(32') 2rt \\\N7(Fn) M(N(F„) - N(F))\ + \(NJ(F„) - NT(F)) MN(F)\} ds ^ 

= r i C E \\Nj(Fn)\\lY» E ||JV,(E„) - N^Mf12 + 
1 1 

+ r i C E \\Nj(Fn) - Nj(P)||o]1/2 E | | ^ ( ^ ) | | ? ] 1 / 2 - 0 , 

by virtue of (20) and (22), (23). 

Altogether, the right-hand side of (32) tends to zero. Combining this and (31) 
with (30), we obtain 

lim mf (j(Fn, un) - j(F, u)) §: lim inf (j(F, un) - j(F, u)) ^ 0 . Q.E.D. 

From Theorem 1 and Lemmas 1, 2, 3 one concludes the following assertion: 

The optimal design problem (8), where the data are defined as above, has at least 
one solution. 

3. APPROXIMATION BY FINITE ELEMENTS 

The optimal design problem has to be solved approximately. To this end, we intro­
duce the following approximate problem. Let N be a positive integer and ZTh a parti­
tion of the interval [0, l] into N subintervals Ak = [sfc_1? sk~\ of the length h = IJN, 
k = 1,2, ...,N; s0 = 0, sN = I. Let Pm(Afc) be the set of polynomials the order of 
which is at most m. 
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We define the following external approximations of the set Uaa: 

U* = {FheC^(l) :Fh\AkeP3(Ak), k = 1, 2, ..., N , 

r0 ^ Fh(sk) ^ n , \F'h(sk)\ ^ Ct , \Fl(sk + )\ ^ C2 , \FK
h(st-)\ ^ C2 , 

fc = 0, 1,...,JV, 

I £ h[F2
hGhl=ik - C3| = e} . 

Here e denotes a (small) positive constant; F'h(sk±) denotes lim F'h(s) and lim F"h(s), 
respectively; {h = i(sk^i + sk).

 s~*Sk + s^Sk~ 
Moreover, let us introduce 

Vh = {u = (u, w)eV: u\Ak e Px(Afc), w\Ak e P3(Ak) Vfc} . 

We shall employ some simple formulas of numerical integration and instead of 
a(Fh; uh, vh) we introduce 

(33) ah(Fh; uh, vh) = £ Ku £ A?j(Fh; uh, vh) , 
ij=l k=l 

where 

(34) Afj = h[N{F„, uh) Nj(Fh, vh) F„] s = & 

for 1 ^ i, j S 2 and 

4*3= f wl(s)dwl(s)Fh(Qds, 
jAfc 

4*4 = f w;'(s)5wA(s)FA(^)ds, 

Af3= f w,(s)5w;'(s)F;(4)d5, 
jAfc 

Aft
44= f w;(s)5w;(s)(F;(4)) i(Ffc(^))-1d5 

J A* 

with uft = (uh, wh), vh = (3uh, Swh). 
Instead of the functional (f(Fh), uh} - see (13) - we introduce 

(36) <fh(Fh), uh} = £ h[k0whGh + k,(F'hwh - G'huh) + k2wh\^k Fh(Q , 
k=l 

where 

(37) Gh(Q= £ hG'„(Q. 
m = k+l 

We also introduce the approximate functional (assuming /?, = const., pe = 
= const.) 

(38) jh(Fh, uh) = £ Ml7 £ Afj(Fh; uh, uh), 
i,J = l * = 1 
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where M = KHTCHK (cf. the proof of Lemma 3) and 

A\\(Fh; uh, uh) = f - « > ; ' Fh(Q ds = A* , 

A\\(Fh; uh, uh) = I -u'„w'k F'h(Q As = Ah

4\ , 
jA f c 

A2\(Fh, uh, uh) = - h [ ( F > „ + G'hwh) wj].-fa = 4 * , 

ifo; «/,, « * ) = - [ [(n«* + G>») W ] s = ? k w; ds = A 
jAt 

-?Д 

The approximate optimal design problem will be defined as follows: 

to find F£ e U^ such that 

(39) SM^M**) VF„eU*<, 

where 

/* ( /* ) = 7*(r*, "fcO7*)) 

and uh(Fh)e Vh solves the following approximate state problem: 

(40) a„(F„; el,, n ) = <fft(F„); vh} W„ e V,. 

Theorem 2. The approximate optimal design problem has at least one solution 
for any sufficiently small h. 

Proof is based on several auxiliary lemmas. 

Lemma 4. Let Fh e U
h

ad. Then 

(4i) inn * ^ c 2 , 

(42) llnlU ^ C 1 + 4 - C 2 / . , 

(43) r0 - \Cxh - iC2h
2

 = Fh(s) = rx + \CJx + iC 2 h 2 Ms el 

and there exist positive constants h0 and C independent of h, Fh and such that 

(44) \\lF2
hG'hás-

IJo 
й e + Ch š K 

Proof. The estimate (41) follows from the linearity of F'h in Ah. In any subinterval 
Ak we may write 

Ш = 
ľ;(s,) + ľ n ( t)åt ú C, + \S - Sj\ C2SCy+ \hC2 , 

taking for Sj the node closest to 5. 

In a parallel way, we have 
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Fh(s) = Fh(Sj) + \F'h(t) dt £ r1 + |s - s,| (C. + iC 2 h ) ^ n + iCxfc + iC2fr2 

Js j 

and an analogous lower bound. 

Using (41) and (42), the following estimates can be derived: 

G; >= (1 - (C?.)2)1/2 > 0 , |G2| = \F'hFHG'h\ g c 

for sufficiently small h ^ h0. Consequently, for h ^ h0 we may write 

IÍ 
|J( 

fc\2 /^'fc F 2 G;ds- Ih(F*) 2 G, = ľ 
fc 

Ak 

\FІ(s)G'h(s)-(Fk

hУG'k\åsйCҺ 

by virtue of the estimâtes 

|c;(s) - G'Í\ á Vi\ci\n Ú ch, 

\Fh(s)-Fk\ šifc|n|U = c / i-

Here the superscript k denotes the value at the point s == £fc. Then we arrive at the 
estimate 

+ I {lF2
hG'h ds - c 3 U I PF 2 G; ds - x W G; 

IJo |Jo fc 

+ II W G'h
k - C3\ SCh + e Vh S K . 

Lemma 5. Positive constants c, h0 exist, independent of h, uh, vh, Fh, such that 

ah(Fh;uh,uh) ^ c\\uh\\
2 

holds for all Fh e Vh
a\, uh e Vh, h ^ h0. 

Proof. For sufficiently small h we may write Fh ^ \r0 by virtue of Lemma 4 and 

(45) ah(Fh; uh, u„) = I [ I KuA
hk(Fh; uh, uh) + £ KijA%Fh; uh, uhJ] , 

fc=l i,j=l i,j=3 

(46) £ KtjAfj = hFk
h £ KyN^)N*(<> ^ 

^ \hr0xx £ (N^ci,))2 l> ir0K, [ (u'h)2 ds , 
i = l j A k 

where xl is the minimal eigenvalue of the submatrix [Kij]2j=v 

In a similar way, we obtain 

(47) £ KijA* = [ Fk
h [K3 3«J2 + 2K34w; (Z± w>\ + K44 (?1 

f J = 3 jA k L \*h J \*h 

^ i ^ o W)2 d^, 
jAk 

ds > 
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where x2 denotes the minimal eigenvalue of the submatrix [K,j]tj = 3- Inserting (46), 
(47) in (45), we derive the estimate 

ah(Fh; uh, uh) ^ c \'[(u'h)
2 + (w'h)

2] ds . 

Since Vh c V, we may employ (17) to complete the proof. 

Lemma 6. There exist positive constants C, h0 independent of h, e, Fh, uh, such 
that 

| < A ( n W ! £C\\uh\\ 

holds for any Fh e U
h
ad, uh e Vh, h S h0. 

Proof. For sufficiently small h we have Fh :g 2rx and 

\(fh(Fh), uhy\ ^ 

= 2r, £ f [fc0|wB| \G\\ + kt(\F'h\ \wk
h\ + |G;| |«*|) + \k3\ |wft|)ds ^ 

= C£ f ( k | + |«J|)ds g Cdw.lU + I^IU) f ds 5g 

gc(||w.,||. + |«t||.) g c||u»||, 
where the Sobolev imbedding theorem and the following estimate has been used: 

13.1-= i |«G;(UI = I I" |G;fe,)|ds^i f 
m = & + 1 m = l j Am m = 1 J A 

ds = / . 
1 Am 

Lemma 7. There exist positive constants C, h0 independent of h, uh, vh and such 
that 

(48) \ah(Fx; uh, vh) - ah(F2; uh, vh)\ ^ C\\F1 - F2||C,(J) \\uh\\ \\vh\\ , 

(49) \<fh(Fu uhy - <f„(F2), uhy\ = c||F, - F2||cl(/) ||u,|| 

holds for any uh, vh e Vh, Fl5 F2 e U°, h ^ h0. 

Proof. We have 

\<*h(Fil "h>
 vh) ~ ah(F2; uh, vh)\ ^ 

= I Ku I \A*(Ft; uh, vh) - Afj(F2; uh, vh)\ . 
i,j=l k=l 

Let us show the estimate for i = 1, j == 2 in detail. 

l U f 2 ( F 1 ; u » , v » ) - . 4 » l
2 ( F 2 ; H 4 , i r , ) | ^ 

= I [ l«i| (Nl I-7\ - F'2
k\ + N | \G'k - G?|) ds £ 

* = 1 J Afc 
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š CflF..-F3||c,Ef K|(|««Íl + H|)d5á 
íc jAfc 

^ CflE! - F 2 | | c , (||5«4||. + | | M | | i ) í |«; |ds ž 

= C\\Ft - F 2 | | c l ||uft|| ||vft|| . 

Derivation of the estimates for the other terms is similar. 

To verify (49), we write 

|<A(Fi), «„> - <fh(F2), uhy\ = 

= I f [fc0wA(FiGt - F2G2) + k^F'.F, - F'2F2) + 
fc=ljAfc 

+ fci«A(G2F2 - G\F,) + fe3wA(F1 - F2)]s=ikds 5£ 

І í (l> 
= 1 jÄfc 

3s C||F. - F 3 | | c l £ 

^ C||F, - Faflcdlw*!, + flttnlO ^ CflE! - F 2 | | c . ||u„|| , 

where also the following estimates have been used: 

\G\k - G'2
k\ ^ C\\Fl - F 2 | | c . , 

IS* - G\\ rg £ f |Gira - G'2
m\ ds ^ Cl\\Fl - F 2 | c , . 

m = 2 J A m 

Proo f of T h e o r e m 2. 

1° The problem (40) has a unique solution for h ^ h0. In fact, the inequality (1) 
holds also for the bilinear form ah(Fh; •, •) as follows from Lemma 4. 

By virtue of Lemmas 5 and 6, we may apply the Lax-Milgram Theorem in the 
space Vft. 

2° The set Uh
ad is compact in CX(T). Infact, Uh

ad is a finite-dimensional, bounded 
set. Its closedness follows from the definition. 

3° We show that the mapping Fft -> uh(Fh) is continuous from Uh
ad into Vft. Let h, 

3~h, Vh be fixed. Consider a sequence of Fft e Uad, n -• oo, such that 

Fn
h->Fh ^ C ^ I ) . 

Consequently, Fft e U^. Denote for brevity Fn
h = F", Fft = F, uft(F

n) = u", uft(F) - u. 
From Lemmas 5 and 6 we obtain 

c||u"||2 = ah(F
n; u\ u") = <f„(F"), u"> ^ C||u»|| , 

so that the sequence {un} is uniformly bounded. 

By definition, we have 

ah(F
n; u\ v) = <fft(F"), v> , ah(F; u, v) = <fft(F), v> 
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for any v e Vh. For sufficiently small h, Uad c U° fioMs. Inserting v = u — u" and 
using Lemma 7, we may write 

c||u" - u\\2 S ah(F; u - un, u - u") = a^(F; u,u - u") -

- ah(F
n, un, u - u") + {a„(F"; u", u - u") - ah(F; u", u - u")} -

= <A(F), u~un) - <f„(F"), u~un} + aft(F"; u", u - u") -

- a„(F; u", u - u") S C\\F ~ Fn\\cHI) ||u - u"|] (1 + ||u"||). 

Since ||u"|| are bounded and F" -> F in CX(I), un -+ u in Vfollows. 

4° Let us show that fh(Fh) is continuous in Uh
ad cz C^/) . To this end, we use the 

abbreviations of the point 3° and write 

! A(F") - A ( F ) | = \j„(Fn, u") - jh{F, u)\ = 

I MtJ £ (A.}(F"; W, u") - Afj(F; u, u))\ ^ 
i,j=l fc=l 

4 N 

^ I M I (MSO7"; "n> u") - 4fc(F";u> u)l + 
i j = i fc=i 

+ |A^(F"; ", «) - Afj(F; u, u)\) S 

S C((\\un + \\u\\) ||u" - u|| + ||F" - F||C1(J) | |u | |2) , 

where an argument similar to that of Lemma 7 (48) has been used. Using also the 
results of the point 3°, we arrive at the continuity of #h. 

5° The existence of a minimum follows from the continuity of $h and the com­
pactness of Uh

a\ in CX(I). Q.E.D. 

4. CONVERGENCE OF THE APPROXIMATE SOLUTIONS 

We can show that some subsequence of the approximate solutions converges to 
a function for which the cost functional is lower than for any F e Uad. To this end 
we introduce a new definition and establish several auxiliary lemmas. 

Let us define 

U?d = | F e C^1 (I):-S + r0 S F(s) g rx + 5 , |F^(s) | SCj+S, 

7 = 1,2 Vs e / , J F2G' ds - C3 ^ e + d\, 

where e and S are (small) positive constants. 

Lemma 8. There exists a positive constant C independent of h, F, uh, vh and such 

that 

(50) \ah(F; uh, vh) - a(F; uh, vh)\ ^ Ch\uh\\ \\vh\\ , 
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(51) \<fh(F), uh} - (f(F); u„}\ ^ Ch\\uh\\ 

holds for any F e UE
ad, uh, vh e VA provided 3 is sufficiently small. 

Proof. Let us consider 3 < min (r0, 1 — Cx). We have 

A*- [ N{uh)Nj(vk)Fds 
jAfc 

4 N(h) 

\<*k(F; uh, vh) - a(F; uh, vh)\ = £ Ku £ 
i,j=l fc=l 

and it suffices to estimate the particular terms individually. Inserting uh = (uh, vh)9 

vh = (Suh, 3wh) and realizing that the first components are piecewise linear, we may 
write for i = 1 and j = 1, 2: 

(52) £ A* - f u'h N-(vh) F ds = £ I f u'h(N%vh) F" - Nj(vh) F) ds 
fc jAfc fc |jAfc 

= X f l«il kfe) - »(s)| ds ^ x ||«;||o,Ak(f l#fe) - »(s)|2 dSY /2, 
fc j A f c fc \jAfc / 

where g(s) = Nj(vh) F. Using the estimate 

(53) \g(s) - g(Q\ g (s - Q^ (fV(0|2 ^ * #'*\9%M 
we obtain the upper bound 

( 5 4 ) I l|M*l|o,Ak % ' | | o , A f c = h\H\\o • | | g 1 | o • 
fc 

Since g' = F'duf
h for j = 1, 

g' = F'<5uA + F"<5u„ + G'<5wA + G"<3wA for j = 2 
and 

1 = G' = [1 - ( F ' ) 2 ] 1 / 2
 = c > 0 

holds for sufficiently small 3, we have 

|G"| = |F ' | . |F"|/G' = ( d + <5)(C2 + <3)c-x 

and consequently 

(55) |#'| = C(|<SuA| + |OX| + | H + |OwA|), 

| a ' | 2 d5 = C(||O-u,||2+ | O - W A | | 2 ) = C | | V A | | 2 . 

Inserting (55) into (54), we obtain the upper bound Ch||uA|j ||vA||. 
Next we may write 

N 

I Afi- í N2(uh)N2(vh)Fds = X l í {"»(-) l>ifó.) - 0i(-)] 
j A f c fc IJA f c 

+ 5 uA(s) [g2(^fc) - g2(s)] + g3(4) - g3(s)} d5 , 

+ 
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where gx = (F'3uh + G'3wh) F~lF' , g2 = F'GfF~xwh, 

g3 = (G')2F~1wh3wh. 

Here we have again utilized the piecewise linearity of uh9 3uh. It is not difficult to 
derive the estimates 

llgilo ^ C||v„|| , |<72||o S C\\uh\\ , l^flo = C\\uh\\ \\vh\\ . 

Combining these results in a way similar to (52), (54), we obtain the desired 
bound. 

We also have 

£ I-4&- f N4(u,)N4(v,)Fd5 = 
fc=l| j A k 

= 1 1 f <zw'h[{F'kf (Fky» - (Eo2 F - n ds ^ 
fc | jAfc 

= I f \<\ | K | |<?fe) - flr(s)| ds = 
«: j A f c 

fc 

^ C||wfc|2 ||<5w„||2 %'Ho , 

and |g ' | ^ C holds for sufficiently small 3. Consequently, the upper bound can be 
again Cft||uA|| ||vft[|. Similar arguments apply to the remaining terms and therefore 
(50) is true. 

Furthermore, 
l</(E), uh) - </„(E), uhy\ = 

= I I f {[feOwA(G(0 - G(s)) + k,{F'wh - G'uh) + k3wh-] F -
| t=l jAk 

- [fcowJ(G(0 - Gk) + fc!(E'X - G'kuk) + k3w
k] Fk} ds + 

+ 1 i k0w
k
h[G(l) - Gk - Gk] Fk ds . 

k=ljAk 

Denoting 
g = [fcowfc(G(0 - G) + fc.(Fw» - G'«») + fc3wj E , 

we can estimate the first sum from above as follows (cf. (53), (54)): 

І ľ \g(s) - 9(ţk)\ds й ҺЃ'2\\g'\\0 . 
k=ÍJÅk 

Using the boundedness of G" and the estimates 

|a'l ^ C(|u„| + |u;| + \wh\ + \w'h\) , llg'fo £ C||u,|| , 

we arrive at the desired upper bound for the first sum. 
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< 

Using (53), we may write 

\G(l) - Gk - Gk\ = I f G'(t) dt - f hG' 
\j$k m = k+l 

I fS k N f 
= | G' dt + £ (G'(t) - G,m) dt 

|J<*fc m=k+ljAm 

fsk N r 

g |G'| dt + £ h|G"| ds = ih + Chi S Ch . 
J&c m=2jAm 

Therefore the second sum can be estimated as follows: 

I f \k0w*h[G(l)-G<<-Gk]F><\ds = 
k=lJAk 

= ch Z KIU d5 = C/*IW|2 / = Clh\\uh\\ . Q.E.D. 
fc j A k 

Lemma 9. Let F e Ua°d and a sequence {Fh}, Fh e U
h
ad be given such that lim Fh = F 

ft-*0 

in Cx(l). Let uh(Fh) be the corresponding solutions of the problem (40) and u(F) 
the solution of (6). 

Thm W^*) - «(F)||-> 0 for fc-0. 

Proof. Denote for brevity uh(Fh) = uh, u(F) = u. By virtue of Lemmas 5, 6 we 
have for h = h0 

c\\uh\\
2
 = ah(Fh; uh, uh) = (fh(Fh\ uh} = C\\uh\\ . 

Consequently, 

(56) || u j ^ C\c Vh = K 

and there exists a subsequence, denoted again by {uh}, such that 

(57) uh — u* (weakly) in V. 
We shall show that u* satisfies the condition (6). Let v e Vbe arbitrary, v = (y, z), 

y e Hx(l), zeH2(l). There exists a sequence of vx = (yx, zx) such that vxeVr\ 
n [C°°(I)]2 and 

(58) \\vx — v[| -> 0 for K -* 0 . 

Let us construct the function 

<Ph = RhV* = (̂ Ay*, fe) > 
where Rlyx denotes the linear Lagrange and Rhzx the cubic Hermite interpolate on 
the mesh &~h9 respectively. Then cph e Vh and 

(59) \\cph - vx\\ = (\\Rlyx - yx\\l + \\R3
hzx - zx\\\)^ = 

= Ch(\\yx\\l + h2\\zx\\lY'2 . 
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Consequently, combining (58) and (59), we obtain 

(60) \\<ph - v|| ->0 for h->0. 

Inserting vh = (ph into (40), 

<*h(Fh; "h, <Ph) = <fh(Fh\ <Ph> 

follows. This equation can be rewritten in the form 

(61) a(Fh, uh, (ph) + {ah(Fh; uh, <ph) - a(Fh; uh, cph)} = 

= <f(Fh\ <Ph> + {<fh(Fh\ <Ph> - <f(Fh), <Ph>} -

It is easy to deduce that 

(62) lim a(Fh; cph) = a(F; u*, v) . 

In fact, since Uh
ad c= U° for sufficiently small h, 

\a(Fhl uh, <Ph) ~ a(Fh; uh, v)j ^ a i | |u*|| \\<ph - v|| -> 0 

according to (l), (56) and (60); 

\a(Fh; u„ v) - a(F; u*, v)| -> 0 

by virtue of (3) and (57). Combining these two results, we arrive at (62). 

Moreover, 

(63) lim <f(Fh), q>„) = <j(E), v> 
*->o 

holds. It is a consequence of (5), (60) and (4), since 

\<f(Fk),<ph-v)\sy\\<ph-y\\-+o, 

\<f(Fh),v)-<f(F),v)\^0. 

By virtue of Lemma 8 and (60), (56), we have 

(64) \ah(Fh; uh, <ph) - a(Fh; uh, cph)\ ^ Ch\\uh\ \\<ph\ - 0 , 

(65) |<jA(Efc), cph) - <f(Fh), q>h)\ ^ Ch\\<ph\\ -» 0 . 

Passing to the limit with h -> 0 and using (62), (63), (64), (65), we arrive at 

(66) a(F; u*, v) = <f(F), v> . 

Since Ufd c U°, (66) is uniquely solvable, u* = u(F) and the whole sequence 
converges: uh -- u. 

To prove the strong convergence uh -» u in V, it sufficies to show that \\uh\\ -+ j|u||. 
First we realize that 

(67) ah(Fh; uh, uh) = <fh(Fh), uh) 
and 
(68) lim <f„(Fft), uh} = <f(F), u> = a(F; u, u) . 

h-+0 
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In fact, 

(69) |<j(Eft), uft> - </(E), Uft>| g C|Eft - E||cI |u f t | 

can be proved by an argument similar to that of (4) in Lemma 1. 

Moreover, 

(70) |<j(E), uft> - </(F), u>| -> 0 

follows from the weak convergence of {uh}. Combining (70) and (69) with (56), we 
arrive at (68). 

Since U£
a°d a Ufd for any S > 0, we may use (50) for F. Since Uh

a\ c Ufd c U° 
follows from Lemma 4 for sufficiently small h and (5, (48) can also be emploeyd with 
uh = vh. Thus we obtain, using also (56), (67), (68), the following result: 

(71) \a(F; uh, uh) - a(F; u, u)[ = \a(F; uh, uh) - ah(F; uh, uh)\ + 

+ \ah(F; uh, uh) - ah(Fh; u/p uh)\ + \ah(Fh; uh, uh) - a(F; u, u)| -> 0 . 

By virtue of (1), (2), the bilinear form a(F; •, •) can be introduced for the scalar 
product in V. Then (71) implies that the associated norms \\uh\\A tend to \\u\\A. Since 
the norms || • || and ||-||^ are equivalent (see (l), (2)), combining the convergence of 
norms with the weak convergence, we deduce the strong convergence uh -+ u in V. 

Q.E.D. 

Lemma 10. Let the assumptions of Lemma 9 be satisfied. Then 

lim /ft(Eft) = S(F) • 
h-+0 

Proof. We may write 

\SH(F„) - S(F)\ = \jh(F„, uh(Fh)) - j(F, u(F))\ = 

= | I MU I A1J(FH; "H, «*) - f V ( u , E) MN(u, F) F ds| = 
i,j=l k=l J O 

= I I Mti ^Afj(Fh; uh, uft) - X f !V>„, Eft) MN(uh, Fh) Fh ds\ + 
i,j k k J Ak 

+ J V T K > Fh) MN(uh, Fh) Fh - NT(u„ F) MN(uh, F) F ds + 

+ J \NT(uh, F) MN(uh, F)F - NT(u, F) MN(u, F) F| ds . 

Since Uz
ad =) Uad for sufficiently small h, the argument of Lemma 8 (50) can be applied 

to the first term on the right-hand side, to obtain the upper bound Ch||uft||
2
 = Ch 

(by virtue of (56)). 
Since Uad a U° for h small enough, we can use the estimates parallel to (20), (22), 

(23), (32), (32') to show that the second term tends to zero. 
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Finally, 

I K K F) - Nj(u, E)||o - 0 

easily follows from Lemma 9. Hence the third term tends to zero as well and the proof 

is completed. 

Lemma 11. For any F e Uad there exist a sequence {Fh} and a positive constant 

h0(e, F) such that Fh e Uh

Qd V/z = h0(e9 F) and Fh -> F in Cl(l)for h -> 0. 

Proof. 

1° Introduce a new coordinate x = s — \\2 and denote 

F(x + f/2) = F(x), 

F,(x) = F((l -X)x), 2 e ( 0 , 1 ) . 

Then Fx is defined on the interval 

/ 1 - . [ ( l - A ) - 1 / / 2 , ( l - A ) - l / / 2 ] , 

F A e C(1>'1(/A) and r 0 < F,(x) < rx , |F</>| < (1 - X)> Cj , 

7 = 1,2, Vxe/ , , 

| | n y ) - r U ) | o o . / ^ C ; . , (J = [-//2,//2]). 

2° Applying the regularization 

1 

*»' - «н 
<°i(x — y> H)f(y) dy , where H = const. > 0 , 

©-.(z, H) = exp ^ - J i L j , if | z | < H , ^ = 0 if |z| = H, 

%H = C0j(z, H) dz , 

J|2|<H 

we obtain 

RHFX e C-(J) , 

r0 < RH F,(») < r, V x e [ - / / 2 , / / 2 ] , 

| (R H E A )^ (x)| = |RH(F/)(x)| < - L «,.(x - J, H)|F'/>| dy < 
^ 1 1 J - 0 0 

< ( 1 - A V ' C , . , V H < - - i - , / = 1 , 2 
- v 7 , - 2 1 - / 1 

Moreover, since F , e C ( 1 M ( / ) <= W2'p(i) Vp > 1 and 

||/||ca)=sc||/||„,P(/), 
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we obtain for j = 0, 1 

\\RHF(P ~ Filled) = C||RHFA - FA||^(r). 

The right-hand side tends to zero with H -> 0 and therefore 

^H^ -> I";. 1n CX(T) for H -> 0 . 

3° Let us define an auxiliary mapping 3£^ as follows: 

-VM = - - ^ - + (i - n) (/(*) - ^ ) , 

where /j = const. > 0. Then it is easy to see that 

(.*„/)«> = (1 - / . ) / ' > , j = 1,2, 

ro + ,« ^ 1 1 ^ 2 = ^џfйr,-џ 

џj-f\U,, = џ 

rj-^4 for r 0 = j = r l 5 

r 0 + r 

w 00,1 

l(-r(f)'-T|U,/=V|T|U,r. 
4° Let us introduce the cubic spline interpolation Sp/ of/ on the mesh STh (see [4], 

[5]) with (Sp/)" = / " at the endpoints. 

We define 

Fh = Sp(^K H F A J , 
where 

h = - ^ L A , H = J/A/(l - A) , 
6C 2 

/i = 5a>(h, (RHFxy)jC2 , 

OJ(/I, / ) denoting the modulus of continuity of/ on I. 

We shall utilize the error estimates 

| ( s p / ) ' - / i „ . , . s 5 f f l ( f c , / * ) . 

||(spjr -j0">|U, ^ n-i^h^wrUj, j = o, i 
(see [5], Theorems 9, 10 in Chapter II). 

Then we may write 

\\F'h' - (Z,RHF\)"\\xJ = 5co(h, (RHFX)") = / .C 2 , 

since 

co(h, {ZfrFtf) = (1 - n) w(h, (RHF,)") ; 

i m £ (i - /.) KRHE;.)"| + Mc2 ^ (i - /O (i - A)2 C2 + UC2 = c2, 
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| | E ; - ( ^ R H E A ) ' | o 0 ! / ^ 6 c 2 / T , 

|E; | *(l-n) \(R„FX)'\ + 6C2h ^(l-fi) (1 - X) c + C . A ^ c , . 

At the nodal points we have 

r0 S r0 + Z-1^— I f » = ^ „ K „ F , ^ r, - A, ^ - 1 ° 5£ r, . 

Let us estimate the error 

\Fh -F\S \Sp(^,RHF,) - %,RHFk\ + \arHRHFx - RHFX\ + 

+ \RHFX - Fx\ + \FX - F| ^ 3/i2(l - u) (1 - A)2 C2 + 

+ /x||i(ro + ri) - -RHFAIU./ + H^H Â ~ Fx\\xJ + CA . 

Passing to the limit with A -> 0, H -> 0, h -> 0 and \i -> 0, we conclude that 
Fh -> F in C(J) for h -> 0. A parallel estimate is valid for \F'h — F'|. 

5° Using the convergence of Fh in C1, we may write 

(72) FiG' dx - C- (E2G,;-E2e')dx II 
Ą(n 

й j(2n\F„ - E| + r2C,(l - C 2 ) - 1 ' 2 | П - r'|)dx ^ 

E2||G[! + f 2 І G ' - Є ' | ) d x á 

ѓ C Fh - EL, (/) 0 if h -* 0 . 

Furthermore, we have 

(73) I Л r ø G'h
k 

- l i l 
* JAfc 

í,< 
|E2(x) G;(X) - (Ei;)2 G;*| dx ^ ch 

by virtue of the estimates 

G U (i - c2)1'2 > o, \G;\ = |E;n'/G*| ̂  c , 
| G i ( x ) - G i * | ^ i f c | | G ; | | a ) , I ^ C f c , 

\Fh(x)-Fk
h\ Sih\\F'h\\WyI ZCh. 

Combining (72) and (73) we obtain 

| i / ) ( n ) 2 G ^ - C 3 | ^ C ( h + | E , - l , l c l ) ^ s 
fc=l 

for sufficiently small h ^ h0(e, F). Q.Е.D. 
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Theorem 3. Let \Fh}9 h -> 0, be a sequence of solutions of the approximate optimal 

design problems (39). 

Then there exists subsequence {Fh} such that 

(74) ғh-+ F in C ) , 

(75) Ыrí) ->u(r) in V 

nolds foг h --> 0 and F є vfđ, 

(76) f(ғ) й f(Ф) ЧФєUad 

Proof. Since Uhe

d c Ua*d Vfc g h0(S) by virtue of Lemma 4, and U^ is compact 

in CX(I) (see the proof of Lemma 2), there exists a subsequence {F/.}, F/j e Ua

E

d such 

that (74) holds, where F e U^. On the other hand, using Lemma 4 and passing to 

the limit with h -> 0, we deduce F e Ua°d. 

Let us apply Lemma 11 to an arbitrary function <t>eUad. Consequently, there 

exists a sequence <Ph e Uh

ad such that 

0h -> <2> in C^I) for h -> 0 . 

By definition, we have 

(77) /«(/•«) g /-(*«) Vh. 

Since Uad c= Ua°d9 Lemma 9 and 10 hold for both the sequences {Fh} and {#/;}. 

Passing to the limit in (77), we obtain (76). Q.E.D. 

R e m a r k . A question arises whether s = e(h) in Theorem 3 can be chosen so that 

e(ti) -> 0 for h -> 0, F^ -> F e Uud and (76) hold. Unfortunately, I was not able to 

solve this problem. 

5. SOME REMARKS ON THE NUMERICAL SOLUTION 

Let us consider the approximate optimal design problem (39) and discuss some pos­

sible algorithms of solving this problem. The functional fh is differentiable, non-

convex and we can choose some of the methods of nonlinear programming for con­

strained minimization of a differentiable functional, e.g. the Frank-Wolfe algorithm 

[6]. In any case, one will need an efficient method for evaluating the gradient V^(F f t). 

To this end, we employ an a d j o i n t state problem, which is classical in Optimal 

Control. 

Lemma 12. The state equation (40) is equivalent to the linear system 

(78) ^h(q>h)xh = ^h((ph), 
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where s/h(cph) is a symmetric, positive definite matrix n x n, n = 3N and ^h(cph) 
is an n x 1 matrix. Denote the solution Of (78) by xh(cph). 

Let us introduce another linear system (the adjoint problem) 

(79) s/h(<ph) Ph = ̂  (Fh; xh(<ph)) 
dxh 

and denote its solution by ph(<ph)-
Then the gradient of the cost functional is given by the formula 

(80) Vfh(cph) = | - - (<ph, xh(<ph)) + \*f± MJPM ~ 
o<Ph Ld(Ph J 

- g W ^ ( ̂ )jP*W-
Proof. The equivalence of (40) and (78) follows from the expansion of Fh and uh 

in terms of Hermite basic functions. The vectors of nodal values of Fh, uh and of their 
derivatives are denoted by <ph and xh, respectively. The positive definiteness of s/h 

is a consequence of Lemma 4. 
We may write (omitting the subscripts h everywhere) 

(81) df(<p)=(^-((p,x((p)),d<p) +(^((p!(x((p)),5x) , 
\S<P )Rm \8X JRn 

where m = 2N + 2 (note that the nodal values of Fh e UJj belong to a subset of R,„). 
Differentiating the equation (78), we obtain 

(82) .*/(„) S x(<p) + **M x(<p) Sep = - ^ - 2 ) Sep . 
dep dep 

Using (79) and (82), we may write 

(83) (J± (<p, x(<p)\ S x(<p)\ = (s/(q>) p, S x(<p))Rn = 

= (s/(<p) S x(cp), p)Rn = (j*m Sep (<p) x(<p) 5<p,p) = 
\ d<p dep JRn 

= {[%{<p)lp ~[%{(p)x{(p)l p'3(p)^ 
Substituting from (83) into (81), we arrive at (80). 

Remark . The systems (78) and (79) differ only in the right-hand sides, which sim­
plifies the algorithm. 
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S o u h r n 

OPTIMALIZACE TVARU ROTAČNĚ SYMETRICKÝCH SKOŘEPIN 

IVAN HLAVÁČEK 

Uvažují se pružné rotačně symetrické skořepiny konstantní tloušťky a jejich meri-
diánová křivka se bere za návrhovou proměnnou. Je předepsána její délka a objem, 
který jí odpovídá, derivace do 2. řádu jsou v daných mezích. Zatížení se skládá 
z hydrostatického tlaku, vlastní váhy a přetlaku. Cenový funkcionál je integrál 
druhého invariantu napětí při obou površích skořepiny. 

Dokazuje se existence řešení optimalizačního problému, a to nejprve na abstraktní 
úrovni. Jsou navrženy aproximační úlohy a dokázána konvergence jejich řešení 
k funkci, která je v jistém smyslu blízká řešení spojitého problému. 

Authoťs address: Ing. Ivan Hlaváček, CSc, Matematický ústav ČSAV, Žitná 25, 115 67 
Praha 1. 
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