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OPTIMIZATION OF THE SHAPE OF AXISYMMETRIC SHELLS
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INTRODUCTION

Axisymmetric thin elastic shells of constant thickness are considered and the me-
ridian curves of their middle surfaces taken for the design variable. Admissble func-
tions are smooth curves of a given length, which are uniformly bounded together
with their first and second derivatives, and such that the shell contains a given volume.
The loading consists of the own weight, the hydrostatic pressure of a liquid and an
external or internal pressure.

As a cost functional, the integral of the second invariant of the stress deviator on
both surfaces of the shell is chosen.

In Section 1 we formulate an abstract optimal design problem and prove the
existence of a solution. Section 2 contains the application of the abstract existence
theorem to the design of axisymmetric shells. In Section 3 we introduce some ap-
proximate optimal design problems and in Section 4 we study the convergence of
the approximate solutions. Some comments on the numerical solution of the approxi-
mate design problem are given in Section 5.

1. AN ABSTRACT OPTIMAL DESIGN PROBLEM

First we establish a general existence result for a class of optimal design problems.

Let U be a Banach space of controls and U,,; a set of admissible design variables.
Assume that U, is compact in U.

Let a Hilbert space V be given with a norm ||+ |. Consider a bilinear form a(F; -, -)
and a linear continuous functional (f(F), -> on V, both depending on a parameter
F € U. Assume that there exist positive constants o, ; and a subset U°. U,;, < U° <
< U, independent of F, u, v and such that

(1) a(F;u,v) < ayfuf [lv
) a(F; v, v) Z aov]?
hold for all FeU® and u,ve V.
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Moreover, assume that:
(3) if F,F,eU° F,— F in U and u, = u (weakly) in V for n —» oo .

then
a(F,; u,, v) = a(F;u,v) YoeV;

4) if F,F,eU° F,— F in U, then {f(F,),v) = {f(F),v) VveV;
(5) a positive constant y exists, independent of F, v and such that

[<f(F), 03] < 7]o]
holds for all Fe U® and ve V.

We consider the following state problem:
for Fe U, find u(F)e V such that

(6) a(F; u(F),v) = {f(F),v> YveV.

Under the assumptions (1), (2), (5), the state problem (6) is uniquely solvable for any
FeU° .
Let a functional
j:(UxV)->R,

be given, which satisfies the following condition
(7 if F,, FeU® F,>F inU, u,—~u in
V (weakly) = lim inf j(F,, u,) = j(F, u) .
Defining the cost functional as
#(F) = i(F. u(F).

where u(F) denotes the solution of (6), we may consider the optimal design problem:
find F°e U,; such that

(8) F(F°) < #(F) YFeU,.
We are able to prove the following existence result.

Theorem 1. Under the assumptions (1) to (5) and (7), the optimal design problem
(8) has at least one solution.

Proof. Let {F,} = U,, be a minimizing sequence for #Z, i.e.
© lim #(F,) = inf #(F).
n- o FeUgq
Let us denote the solution of (6) by u, = u(F,). Using (2), (6), (5), we may write
o [un|* < a(Fys ups ) = S(F,), ) < 3] -
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Consequently, the sequence {u,} is uniformly bounded in V. Then there exist a sub-
sequence {u,,} and an element u € V such that

u,, — u (weakly) in V.

m

Since U, is compact in U, there exist a subsequence {F,} of {F,} and F € U,, such
that
F,—>F in U.

Recall that
a(F; uy, v) = {f(F,),v> VoeV.

Passing to the limit with k — oo and using (3), (4), we obtain
a(F;u,v) = {f(F),v) VYveV.

Consequently, u = u(F) follows from the uniqueness of the solution of (6).
By virtue of (7) and (9) we have

inf #(F) = lim inf #(F,) = lim inf j(F,, u,) = j(F, u(F)) = #(F)
k=

FeUgqa

and therefore F is a solution of the problem (8).

2. SHAPE OPTIMIZATION OF AN AXISYMMETRIC SHELL

We shall apply the abstract theorem to the optimal design of a shape in the case of
axisymmetric problems for thin elastic shells.

Let z and r denote the axial and radial coordinates, respectively. We describe the
meridian curve by means of two functions F and G as follows:

r=F(), z=G(s), 0=s=1,
where s denotes the arc parameter and the length [ is given. Denoting the derivatives
by primes, we set
G'(s) = [1 = (F(s)]" .
Let us choose U = CY(I), I = (0, ),

Uy ={FeC'(I):rg S F(s) S ry, [F(s)| £ C <1,
]
|F"(s)[ <cC, ,J F*(s) G'(s)ds = Cs,
0

where 1y, 1y, C;, C,, C; are given positive constants.

The integral condition means that the volume of the shell is prescribed. C-*(I)
is the space of continuously differentiable functions in I, the derivatives of which
are Lipschitzian.
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Moreover, we define an auxiliary set
U® = {FeC(I), 4ro < F(s) £ 2r, |[F| 31 + C)) < 1}.

We shall use the linear theory of shells (see e.g. Zienkiewicz [1]-Chapt. 12) and
formulate the equilibrium in terms of the displacement vector u = (u, w), where u
is the meridional and w the normal displacement (see Fig. 1). Let us define the fol-
lowing system of strains

(10) Ny(u)= ', Nyu)= (Fu+ Gw)F,
Niy(u) = —w", Ny(u) = —F'w[F,
\z

|
|
!
!
|
l

Fig. 1.
and the matrix
1v O 0
(11) Ee |v1 O 0

K=T""7loo 12 ve?/12

00 ve’/12 ¢*[12

where E is the Young modulus, e the (constant) thickness of the shell and v Poisson’s
ratio (0 < v < 1)2).
We define

(12) a(F; u, v) =,[1-i K;iN{u)N,(v)F ds,

i,j=1

(13) S(F), uy = L[kow(G(l) — G(s)) + ky(F'w — G'u) + kyw] Fds,

where k, and k, are positive constants denoting the specific weight of a liquid and
of the shell, respectively. The first part of the loading corresponds to the volume of
the shell full of the liquid. The constant k5 denotes an internal or external pressure.

Henceforth H¥(I), k = 1, 2, denote the usual Sobolev spaces with square-integrable
derivatives and |+ their norms. The norm in I*(I) will be denoted by |- |, and the
norm in Ly, (I) by || ... Let us consider the space

W= H'\(I) x H*(I)

and write for brevity |[u]| = |ully = (Jul} + [w]3)*/*.
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We introduce the subspaces
(14) V = {u=(u,w)e W:u(0) = w(0) = w(0) = 0},
P ={ueV:Nu)=0,i=1,2734}.
The boundary conditions in V correspond to the clamped edge s = 0. The subspace 2

represents the virtual displacements of a rigid shell.
It is easy to see that 2 = {0}. In fact,

(15) Ny(u) = 0=u = u, = const.,
Niy(u) = 0=w = wy + w5, Wy, w; = const.
Inserting the boundary conditions, we arrive at u, = wy = w; = 0.
If we define a(F; u, v) and {f(F), v) by the formulas (10), (11), (12), (13) and V
by (14), the state problem (6) corresponds to the equilibrium of a shell, the lower

edge of which is clamped and the upper edge free, under the combined effect of its
own weight, of the weight of a liquid and of a pressure.

Lemma 1. The form a and the functional f satisfy the conditions (1), (2), (3),
(4. (9)-
Proof. By virtue of the definition of U°, the condition (1) is easy to see.

To prove the inequality (2), we first realize that K is positive definite, i.e. x"Kx =
> %xx"x Vx e R* x > 0, and we may write

(16) a(F; u, u) = dxr, f ) [N3(u) + N3(u)]ds VFeU,, ueV.
By virtue of (15) and the boundary conditions, we have
(1) [0 + o182 o vaev
with C > 0 independent of u (see e.g. [2] — Chapt. 11, Lemma 3.2). Combining (16)

and (17), we obtain (2).
Let us prove the condition (3). We may write

(18) |a(F,; u,,v) — a(F; u,v)| <
= la(F,,, u,v) — a(F;u, v)| + Ia(F, u, v)
(19) Ia(F,,, V) — a(F, u, v)l =

1
= J‘ [N"(u,, F,) KN(v, F,) F, = N'(u,, F,) KN(v, F,) F| ds +
0
(]
+ f |N"(u,, F,) KN(v, F,) F — N"(u,, F) KN(v, F) F| ds .
0
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For the first integral we have

ﬂlNT(u,,, F,)KN(v,F,)| . |F, — F|ds £

4 1/2 1 4 5 1/2
< C|F, = Flca) UO Zle(u", F,) ds] UO ZIN v, F,) ds] -0,
ji= j=

(20) éﬂm@mmm2§cwmz§é Vn, VF,eU°

can be written on the basis of the weak convergence of u,.

For the second integral we have the following upper bound:
(21) ﬂ{[NT(un, F,)KN(v, F,) — N'(u,, F,) KN(v, F)| +
+ [NT(u,, F,) KN(v, F) — N(u,, F)KN(v, F)|} ds =
= [LawT ) K30 ) = N )+
+ |(N"(u,, F,) — N"(u,, F)) KN(v, F)|} ds <

1/2

=C U; élNﬁ(u,,, F,) ds]”z[ ;ji(N Av, F,) = N(v, F))Z] +
¥ c[ (N ) = N F))Z]l/zl: YN F)]”Z ,

From (10) we deduce that

1
(22) J [N (. F) — Na(u,, F)J* ds <
0
1 ’ ’ ’ ’ 2
<[ il f =]l [ =5[] @0
R F, F F, F
since
lualls + [wall§ =< Ju]* < €
and
im[F - Fl Zo, % -9 o
n—aw Fn c n=r o Fn F oI
holds if F, » F in C*(I).
In a parallel way, we obtain
1 1 Fr F/ 2
(23) J [Ny(u,, F,) — Ny(u,, F)]* ds gf wal? F ——| ds—>0
0 0 n
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Inserting (22), (23) and analogous relations with u, replaced by v into (21) and using
also (20), we are led to the assertion that the second integral in (19) tends to zero.
For any fixed v e Vand F € U°, the functional

u— a(F;u,v)

is linear and continuous on V, as follows from (1) Consequently,
(24) |a(F: u,,v) — a(F; u,v)| - 0.

Inserting (24) into (18) and using the above results for (19), we can verify the con-
dition (3).

To prove the condition (4), we first realize that
(25) 162 = G'llca) = C|F, = F'llcay > 0
holds if F, e U, F, - F in CV(I).

Then we have also

(26)

G(I) = Gi(s) = (6() = G())|
< J.'lG,’, - G|dt £1|G, = G'|¢aqy— 0.

IIA

For any v = (u, w) we may write
[<S(F) vy = <S(F), W] =
- [}tk - 660 7.~ (@0 - 6) P +
+ kyw(F,F, — F'F) — k,u(G,F, — G'F) + ksw(F, — F)} ds|.

Using (25), (26) and the convergence of F, in C'), the condition (4) follows.
The condition (5) is an immediate consequence of the definition of U° and (13).

Lemma 2. The set U, is compact in CV(I).

Proof. Since the functions from U,, are uniformly bounded and uniformly ccn-
tinuous, we apply Arzeld’s theorem. In every sequence there is a subseuqnece {F,} <
< U,,such that F, — F uniformly on [0, []. It is easy to see that F fulfils the condition
|F| < c..

Since the derivatives F, are uniformly bounded and uniformly continuous, there
exist a function H and a subsequence {F,,} such that F, — H uniformly on [0, [].
Using a classical theorem, we obtain H = F’, so that F,, » F in C")(I). Moreover,
|F"| £ C, and

m—wJO0 0

follows. : Q.E.D.

1 1
C; = lim‘[ F2G, ds = J‘ F2G' ds
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Next we define the cost functional. As in [3], let it be related to the second in-
variant of the stress tensor deviator (intensity of the shear stress or the von Mises
equivalent stress)

(27) I,(c) = 3(? + 0§ — 0,04),

where o, and o4 denote the meridional and the circumferential normal stress, respec-
tively. Thus we define

(28) J(F, u) = J;aT(u) Co(u) Fds,

where
o(u) =[ol| = HKN(u), H=[lle 0 —6fe’ o |,
oe lle 0 6/e* 0
ol 0 1fe 0 —6fe?
of 0 1fe 0 6/e

the superscripts i and e denote that the stress is considered on the internal and
external surface of the shell, respectively;

C=| Bfs) O —3B{s) O ,
0 Bs) 0 —1Bs)
—1p i(S) 0 B i(s) 0
0 - _ZLB e(s) 0 ﬂ e(s)

where B(s), B.(s) are (positive, bounded) weight functions.
Note that

(29) J(F,u) = %J:(ﬂ,-]z(a‘(u)) + Bl (o%(u)) r ds.

Lemma 3. The cost functional (28) satisfies the condition (7).

Proof. We write
(30)  J(Fn u,) = j(F, u) = (j(F, u,) — j(F, u,)) + (i(F, u,) — j(F, u)).

For any fixed F e U®° the functional j(F, ) is weakly lower semicontinuous in V.
Indeed, it is differentiable and convex, since

1
D%j(F; u, v, v) = 2J a'(v) C a(v) Fds = 2j(F,v).
0

Combining (29) with positive definiteness of the form (27), we conclude that j(F, v)
is non-negative. Consequently,
(31) lim inf (j(F, u,) — j(F, u)) 2 0

n— o0

provided u, — u.

Denoting M = KHTCHK
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we may write

(32) |i(Fo u,) — j(F, u,)| = ) f ;[NT(un, F,) MN(u,, F,) F, —

N™(u,, F) MN(u,, F) Fds

< J;{]NT(F,,) MN(F,) F,— N'(F,) MN(F,) F| +
+ |NT(F,) MN(F,,) F — NT(F) MN(F) F|} ds <
< j ;{[NT(F,,) MN(F,)| |F, — F| + |NT(F,) MN(F,) — NT(F) MN(F)| |F|} ds .
Since the entries of M are bounded functions, we have

1 4
JO|NT(F,,) MN(F,,)I lF" - FI ds = ”F" - F”f(l) CZ “le'(un’ Fn)”g -0,
j=1

where also (20) has been used.

The second part of the integral on the right-hand side of (32) has the following
upeer bound:

IIA

(2) 2rs [ UNTEE) MON(E) = N+ [(V(E) = NTGE) N s
= i CIY IV [ INE) - NAPIT +

+ rlC[Zj: INAF,) — N(F)|2]"/ [i:: IN(F)|2]"2 ~ 0,

by virtue of (20) and (22), (23).

Altogether, the right-hand side of (32) tends to zero. Combining this and (31)
with (30), we obtain

lim inf (j(F,, u,) — j(F, u)) = lim inf (j(F, u,) — j(F,u)) = 0. Q.E.D.
From Theorem 1 and Lemmas 1, 2, 3 one concludes the following assertion:
The optimal design problem (8), where the data are defined as above, has at least

one solution.

3. APPROXIMATION BY FINITE ELEMENTS

The optimal design problem has to be solved approximately. To this end, we intro-
duce the following approximate problem. Let N be a positive integer and , a pacti-
tion of the interval [0, [] into N subintervals A, = [s,_4, s;] of the length h = I|N,
k=1,2,..,N;s0 =0, sy = L. Let P,(A,;) be the set of polynomials the order of
which is at most m.
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We define the following external approximations of the set U,,:
Uk = {F,e CVY(I): Fyls e Py(A), k=1,2,...,N,
ry = Fh(sk) =1, IF;n(Sk)| =Gy, |F;;(sk+)| =Gy, IF;'I(Sk—)l =G,
k=01,..,N,

N
|kZlh[F:GIIr]s=§k - C3l =< 8} .

Here ¢ denotes a (small) positive constant; Fj(s,+) denotes lim Fj(s) and lim Fj(s),
respectively; & = 3(si—y + 5;)- st STk
Moreover, let us introduce
Vi = {u = (u, w)e V:uly € P(A), w|s, € Psy(A,) Vk} .

We shall employ some simple formulas of numerical integration and instead of
a(Fy; u,, v,) we introduce

4 N
(33) ay(Fy; uy vy) = iz lj{ij;;q’;f(lfh; u, v,
= =
where
(34) A% = h[N{(F, u,) Nj(F}, v;) F} )=z,

forl1 £i,j £2and
"

A = . wi(s) 8 wi(s) Fi(&) ds,
k

A%, = X wh(s) & wi(s) Fi(&e) ds ,
ke

r

At = | i) 3 wi(9) i) ds.
k

~

Ay = AkW;’.(S) 8 wis) (Fi(&)* (Fi(&y)) ™" ds

with u, = (uln Wh), vV, = (6“;,, 5Wh).
Instead of the functional {f(F,), u,> — see (13) — we introduce
N

(36) SiF)s > = Y h[kowiGy + ki(Fawy, — Giuy) + kywy]o=g Fi(&)
k=1
where

N
(37) Gy(&) = _}% 1h Gi(&n) -
We also introduce the approximate functional (assuming f; = const., B, =

= const.)
4

. N
(38) in(Fu ) = % M iijlA’i',l;(F W Ups Up)

L=
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where M = KHTCHK (cf. the proof of Lemma 3) and

A’ika(Fhi u, ”h) = J' —upwy Fh('fk) ds = Agk1 s

A

A’;’;(Fh’ uln uh) = J‘ _u’ll‘v;l Fllx(gk) dS = A"‘tkl >
A

k

A’z'k:s(Fm Uy, uh) = _h[(F;'“h + G;.Wh) W;:]s=§k = Agkz >
A (F; uy, uy) = —L [(Fruy + Gywy) FiFy Mooe, whds = AZ .
ke

The approximate optimal design problem will be defined as follows:
to find Fy e U such that
(39) fh(F;O.)éfh(Fh) VFhGUZfi’

where

FuFr) = in(F un(Fy))
and u,(F,) € V,, solves the following approximate state problem:
(40) ah(Fh; u, Vh) = <fh(Fh); Vi) YV, eV,

Theorem 2. The approximate optimal design problem has at least one solution
Jor any sufficiently small h.

Proof is based on several auxiliary lemmas.

Lemma 4. Let F, € U™, Then

(41) [Fill« < Ca,\
(42) |Fil. < Ci + 3Ch,
(43) ro — 3Cih — 3C,h* < Fy(s) < ry + 1Cih + 1C,h* Vsel

and there exist positive constants hy and C independent of h, F, and such that

<&+ Ch Yh<h,.

(44)

Proof. The estimate (41) follows from the linearity of F; in A,. In any subinterval
A, we may write

Fis)| =

taking for s; the node closest to s.

1
jﬁqm—q
0

Fi(s;) +J’ Fy(1) dt/ SCi+|s—s]C €+ 3hC,,
Sj

In a parallel way, we have
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S
Fi(s) = Fy(s;) +J Fyydr <ry + Is - sJ| (Cy + 1Coh) < vy + 3Cih + 1C,R*

and an analogous lower bound.
Using (41) and (42), the following estimates can be derived:
G,z (1—-(CY)* >0, |G| =|FF;Gl|scC

for sufficiently small h < h,. Consequently, for h < h, we may write

=3[ 1RO 6 - (B 6t < e
Ak

J F;G,ds — Y h(F})? Gy
0 k

by virtue of the estimates

II/\

Ch,
|Fi(s) — F:| < %h”F,,Hw < Ch.

Here the superscript k denotes the value at the point s = . Then we arrive at the
estimate

i1
< U F;G,ds — Y h(F})? G +
Y k |

+ |kz h(F})* G — C5| < Ch + & Yh < hy.

1
jF,fG,’,ds — Cs
0

Lemma 5. Positive constants c, h, exist, independent of h, u,, v,, F,, such that
ay(Fy; up, uy) = c”uh"2
holds for all F,e U™, u,eV,, h < h,.

Proof. For sufficiently small h we may write F, = 4r, by virtue of Lemma 4 and

(45) (Fha uh9 uh) _kzl[ ZIKUA':j(Fh’ Up, uh) + Z Ku jl(F'H Uy, uh)]
i,j= i,j=3
2
(46) _ ZIK,,Aff = hF} Z KUN"(u,,) N¥(u,) 2
i,j= ij=1

2
= dhr, § (V)P = droes | @) s,

where 3, is the minimal eigenvalue of the submatrix [K”], =1

In a similar way, we obtain

F/k F/k 2
(47) Z K,,Aff = J F} I:K33(w;;)2 + 2K 34w (—’;{ w,',) + K,y <—';( w;> ] ds =
A I Fy,

i,j=3

> %”zroj (wh)* ds,
Ak
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N\

where %, denotes the minimal eigenvalue of the submatrix [K ;] ;5. Inserting (46),
(47) in (45), we derive the estimate

1
a,(Fy; uy, uy) = cj [(un)? + (wp)*] ds.
0
Since ¥}, = V, we may employ (17) to complete the proof.

Lemma 6. There exist positive constants C, h, independent of h, e, F), u,, such
that

[<Iu(Fn); u] < Clluy
holds for any F,e U™, u, e V,, h £ h,.
Proof. For sufficiently small & we have F, < 2r; and

l<fh(Fh)’ "’h>l b

N
-3 j kol 1GY] + k(3] [wh] + G5 u]) + [ka] wh]) s <
k

=1

N
<3 [ ]+ ) as = cllml. + )| os =
=1J Ak Ax

< C(walls + Jluals) = Cllu]

where the Sobolev imbedding theorem and the following estimate has been used:

N N N

6= 3 el s 3 [ lGielas= 3 | as=1.
m=k+1 m=1/JAmn m=14 Amn
Lemma 7. There exist positive constants C, h, independent of h, u,, v, and such

that
(48) ’ah(Fﬁ uy, Vh) - ah(F3§ uy, Vh)[ - C”F1 - Fz”cl(l) “”h” ”Vh” >
(49) |<fh(F1’ u,y — <fh(F2)’ uh>l = C”Fl - FZHC'(I) H”h”
holds for any u,, v,eV,, F;,F,eU° h < h,.

Proof. We have
|ah(F1§ u,, v,) — ay(Fa; uy, Vh)' =
4 N ‘
b Z lej ZI|A';§'(F1§ uy,, Vh) - A?;(Fﬁ uy, Vh)| .
ij=1 k=

Let us show the estimate for i = 1, j = 2 in detail.

N
Z IA’;kz(FJQ uy, Vh) - A}ikz(Fﬁ uy, Vh)| =
k=1

N
< ZJ. lu,
K=1J A

(|5u2| |FP — F'zl‘l + I5w’,j| |G — G'Z"l) ds £
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s clF - oY j g ([out] + [owk]) ds <

IIA

< clF, = Flls (oul, + omly [ il o

< C|Fy = Falc [Ju vl -

Derivation of the estimates for the other terms is similar.
To verify (49), we write

|<fh(F1)’ uy — {fu(F), uh>| =
N
= ;1 A [koWh(Flcx - FZGZ) + klwh(F'lF1 - F,2F2) +

+ kyuy(GyF, — GiFy) + kawy(Fy = Fp)]i=g ds <
N
< C|F, - Fyer S f (wh] + [uk]) ds <
k=1 Ax

< C|Fy = Faflcr (Jwall o + [lunlls) = C[Fy = Faflcr [ul

where also the following estimates have been used:
6% ~ G| < CIFy ~ Fafer,

N
G — G| = X | |6 — G| ds < CIFy = Flcr.

m=2¢ Am

Proof of Theorem 2.

1° The problem (40) has a unique solution for h < ho. In fact, the inequality (1)
holds also for the bilinear form a,(F,; *, *) as follows from Lemma 4.

By virtue of Lemmas 5 and 6, we may apply the Lax-Milgram Theorem in the
space V.

2° The set UL 1s compact in C*(I). Infact, U% is a finite-dimensional, bounded
set. Its closedness follows from the definition.

3° We show that the mapping F,, — u,(F,) is continuous from U%; into V}. Let h,

T V, be fixed. Consider a sequence of Fj € U, n — oo, such that

Fi—F, in C\I).

Consequently, F, € U". Denote for brevity F = F", F, = F, u,(F") = u", u,(F) = u.
From Lemmas 5 and 6 we obtain

c|w]? £ a,(F; ", w) = <f(F7), wmy £ Cllu7]

so that the sequence {u"} is uniformly bounded.
By deﬁnitio_n, we have

ay(F"; u", v) = {f(E), v> 5 a(Fs u,v) = (fi(F), v>
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for any v e V. For sufficiently small h, U" < U° holds. Inserting v = u — u" and
using Lemma 7, we may write

cju" — u|? £ a(F;u— v, u—u")=qF uu—u")~
— a(F", u" u — u") + {a,(F"; u", u — u’i) —qF;u", u —u")} =
= (fi(F)u — umy — f(F™) u — umy + a(F"; u', u — ) —
= aF; v u = u") 2 C|F = e, [u = o] (1 + [lu]).
Since |u"|| are bounded and F" — F in C'(I), u" — u in V follows.

4° Let us show that #,(F,) is continuous in U < C*(I). To this end, we use the
abbreviations of the point 3° and write

|2u(F™) = #(F)| = [i(E", u) = ju(F. u)| =

4 N
= |Z 1Mijkzx(A,$(F”; u", u") — AY(F; u, u))l <
5 =

N
M| Y (|45 (Fs u", u") — AT(F" v, u)| +
k=1
o A ) — A(E: ) <
< C((lu + Jlul)

where an argument similar to that of Lemma 7 (48) has been used. Using also the
results of the point 3°, we arrive at the continuity of #,.

5° The existence of a minimum follows from the continuity of _#, and the com-
pactness of U2 in C'(I). Q.E.D.

4
=)

i,j=1

u" — uH + ”F" - FHC‘(I) “"HZ) »

4. CONVERGENCE OF THE APPROXIMATE SOLUTIONS
We can show that some subsequence of the approximate solutions converges to
a function for which the cost functional is lower than for any F € U,,. To this end

we introduce a new definition and establish several auxiliary lemmas.
Let us define

Us = {FeC‘“'1 (N:=6+rg<F(s)<r, +6, lF(j’(5)| <Cj+ 4,

j=1,2 Vsel,

! l
J.FZG’ds— c31 <e+ 5},
)

where & and 6 are (small) positive constants.

Lemma 8. There exists a positive constant C independent of h, F, u,, v, and such
that

(50) |au(F; up, vi) — a(F; uy, v,)| £ Chllu,| [vi] »
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(51)  [KE) w = <S(F)s up| £ Chljuy|
holds for any F € U%, u,, v, € V, provided § is sufficiently small.

Proof. Let us consider 6 < min (ro, 1- Cl). We have

) 4 N(h)
[ah(FS Uy, Vh) - a(F; uy, Vh)‘ é. Z1Kijkzl
ij= =

Al — f . N{(u,) N(v,) F ds

and it suffices to estimate the particular terms individually. Inserting u, = (uy, v,),
v, = (0uy, 6w,) and realizing that the first components are piecewise linear, we may
write for i = 1 and j = 1, 2:

(52 ¥

<

A, —f uy N(v,) F ds
A

= ;U‘Aku,’,(zv’;(v,,) F* — Nj(v,) F)ds
=3[ pallote) - o0l os = X

1/2
IO,Ak (J‘ |g(fk) - g(s)|2 ds) ,
Ak
where g(s) = Nj(v,) F. Using the estimate

(53) l9(s) — 9(&)| < (s — &) (Lsklg’(t)l2 dt>1/2 < h'?|g’

we obtain the upper bound

(54) 2 lwillo.a hllg'llo.a = b

0,4k

’
Uy

o[-
Since g’ = F'éu,, for j =1,

g’ = F'ou, + F'ou, + G'ow;, + G"6w, for j =2
and
126 =[1-(F)y]"2zc>0

holds for sufficiently small 6, we have
|G| < |F'| . IF"||G" £ (Cy + 8)(C, + 8) ™!
and consequently

(55) 9| < C(|ouy| + |6u] + |owi] + |ows

)
[ 017 as = cmli + fomli) = e

Inserting (55) into (54), we obtain the upper bound Ch|u,|l |v,|.
Next we may write

N |
Y A% —J' N,(u,) Ny(v,) F ds
k=1 | Ax

-3

k

[ w6t - a0+

+0 uh('s) [gz(ék) - 92(5)} + g3(ék) - 93(5)} ds

s
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where gy = (F'du, + G'ow,) FT'F', g, = F'G'F 'w,,

g3 = (G')* F~'w,0w, .
Here we have again utilized the piecewise linearity of u,, du,. It is not difficult to
derive the estimates

o = Clvil, ozl

Combining these results in a way similar to (52), (54), we obtain the desired
bound. :
We also have

0 = C““h

g4 95l = Clluy] va] -

>

|

N
y .AZ’; —J Ny(u,) Ny(v,) F ds
k=1 Ax

=

-3 || it ey - R e
< x| il lowiloe) - a9 0s =

§;C|

= C““’h“l Héwhl!z h”“//no )

w'l
h

lowills B2 g o, =

and !g’l =< C holds for sufficiently small 6. Consequently, the upper bound can be
again Ch|u,|| |v,|. Similar arguments apply to the remaining terms and therefore
(50) is true.

Furthermore,

|<f(F)’ u,> — {fi(F), uh>l =
| {Tkom(G0) = G() + ka(Fw = G') + Kowi] F -

— [kowi(G(I) — G*) + ky(F™*w} — G™u}) + kswj] F*} ds +

N
+3 j kow![G(l) — G* — G¥] F¥ dsil.
k=1g Ax

Denoting
g = [kowi(G(l) — G) + k{(F'w, — G'up) + ksw,] F,

we can estimate the first sum from above as follows (cf. (53), (54)):

N
3 [l - atel as = .
k=1 Ax

Using the boundedness of G” and the estimates

|91 = Clun] + L] + [l + i) [g'llo < Clen]

we arrive at the desired upper bound for the first sum.
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Using (53), we may write

|G(I) = G* - G = Uﬁ G'(r)dt — i hG'™ =
37

m=k+1

'Sk N
J Gdt+ Y f (G'(t) — G™)dr £
m=k+1/J)An

&k

Sk N
gj |G| dt + Y, f h|G"| ds < %h + Chl < Ch .
Ex m=2JAm
Therefore the second sum can be estimated as follows:

N
kzl J‘A |l<0w’;[G(l) - G* - G¥] F"| ds <

< ChY f W]l ds < Chllwill» I < Clhfu] . QE.D.
k J Ak

Lemma 9. Let F € US§ and a sequence {F,}, F, € U% be given such that lim F, = F

h=0
in C'(I). Let u,(F,) be the corresponding solutions of the problem (40) and u(F)
the solution of (6).

Then [uFa) = u(F)] >0 for k0.

Proof. Denote for brevity u,(F,) = u,, u(F) = u. By virtue of Lemmas 5, 6 we
have for h < h,
cllusl* = ay(Fy; wy wy) = <filFy), u> < Clluy|
Consequently,
(56) Jus] £ Cle Vh < by
and there exists a subsequence, denoted again by {u,}, such that
(57) u, — u* (weakly) in V.
We shall show that u* satisfies the condition (6). Let v € V be arbitrary, v = (y, z),
y e H'(I), ze H*(I). There exists a sequence of v, = (y,, z,) such that v,e ¥ n
n[C*(I)]* and '
(58) [v.—v| -0 for x—>0.
Let us construct the function
q)h = thx = (R;ym Ri?zx) >
where R}y, denotes the linear Lagrange and R}z, the cubic Hermite interpolate on
the mesh &, respectively. Then ¢, € ¥, and

(59) ) ”‘/’h -v.| = (”R;yx = vi + |R}z, — ang)l/z <
< Ch(lyelz + 12|22
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Consequently, combining (58) and (59), we obtain
(60) e —v| >0 for h—0.
Inserting v, = ¢, into (40),
a(Fy; o @4) = <Si(Fa)> o

follows. This equation can be rewritten in the form
(61) a(Fy, uy, @) + {a)(Fy; 4y, 0,) — a(Fy; 4y, 0,)} =

= S(Fa) o> + {KSu(Fn)s 0> = S (Fa) o)} -
It is easy to deduce that
(62) lim a(F,; @) = a(F; u*,v).
In fact, since U < U° for sh;f;)icient]y small h,

|a(Fy; w, @1) — a(Fys uy, ¥)| < oy [wy]| @5 = v[ - 0
according to (1), (56) and (60);
’a(F,,; u,, v) — a(F; u*,v)| > 0
by virtue of (3) and (57). Combining these two results, we arrive at (62).
Moreover,

(63) :LIE S(Ex), @y = <f(F), v
holds. It is a consequence of (5), (60) and (4), since
[<f(Fs)s o — vD| < ¥]l@s — ¥] - 0,
[KS(Fu), v> = <f(F),v)| > 0.
By virtue of Lemma 8 and (60), (56), we have

(64) [a,,(F,,; uy, @) — a(Fy; uy, ‘Ph)l S Ch”"h” ”‘Ph“ -0,
(65) |<f,,(F,,), or> — {f(Fy), (0;.>| S Ch”q),,” - 0.

« Passing to the limit with h — 0 and using (62), (63), (64), (65), we arrive at
(66) a(F; u*,v) = (f(F), v>.

Since UZ) < U, (66) is uniquely solvable, u* = u(F) and the whole sequence

converges: u, — u.
To prove the strong convergence u, — u in ¥, it sufficies to show that |[u,| - ||u].

First we realize that

(67) ah(Fh; uy, "h) = <fh(Fh)a u,>
and
(68) :LI:)] Su(Fy), wyy = {f(F), uy = a(F; u, u).
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In fact,
(69) [<S(F), w> = f(F) wp)| £ C||Fy = Flen |uy]

can be proved by an argument similar to that of (4) in Lemma 1.
Moreover,

(70) [<KF(F), wp> = <S(F), wy| =0

follows from the weak convergence of {u,}. Combining (70) and (69) with (56), we
arrive at (68).

Since UZ < UZ, for any § > 0, we may use (50) for F. Since U <« UZ < U°
follows from Lemma 4 for sufficiently small h and 6, (48) can also be emploeyd with
u, = v,. Thus we obtain, using also (56), (67), (68), the following result:

(71) |a(F; uy, u,) — a(F; u, u)[ < Ia(F; u,, u,) — a,(F; u,, u,,)| +
+ Iah(F3 u,, u,) — a,(Fy; uy, uh)‘ + lah(Fh; uy, u,) — a(F; u, u)| -0.

By virtue of (1), (2), the bilinear form a(F; -, -) can be introduced for the scalar
product in V. Then (71) implies that the associated norms |u,| ; tend to [ul|,. Since

the norms || and || 4 are equivalent (see (1), (2)), combining the convergence of
norms with the weak convergence, we deduce the strong convergence u, — u in V.
QE.D.

Lemma 10. Let the assumptions of Lemma 9 be satisfied. Then
lim #,(F,) = #(F).
h—0

Proof. We may write

|/h(Fh) - /(F)! = ljh(Fh’ u,(F,)) — j(F, "(F))| =

Bj=

4 N 4
=| Y M; Y A%F,; u,u,) —f NT(u, F) MN(u, F) F ds| <
1 k=1 0
< [y My };A?jf(F,,; u,, u,) — %L N7(u, F,) MN(u;, F,) F, ds| +
t,J k
+J‘ [NT(u,, F,) MN(u;, F,) F, — N™(u,, F) MN(u,, F) F ds +
I

+ J |N"(u,, F) MN(u,, F) F — N'(u, F) MN(u, F) F| ds .

Since U%, o U% for sufficiently small h, the argument of Lemma 8 (50) can be applied
to the first term on the right-hand side, to obtain the upper bound Ch|u,|* < Ch
(by virtue of (56)).

Since Uk <= U° for h small enough, we can use the estimates parallel to (20), (22),
(23), (32), (32') to show that the second term tends to zero.
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Finally,
[N, F) = Ny, F)[o - 0
easily follows from Lemma 9. Hence the third term tends to zero as well and the proof

is completed.

Lemma 11. For any F e U,, there exist a sequence {F,,1 and a positive constant
ho(e, F) such that F,e Uk ¥h < ho(e, F) and F, — F in C'(I) for h - 0.
Proof.

= s — /2 and denote
F(x + 1J2) = F(x),

Fy(x) = F((1 = 2)x), 2e€(0,1).
Then F, is defined on the interval

1° Introduce a new coordinate x

L=[(1=2""12 (1-2""12],
F,eCNL) and ro S F,(x)<ry, |[FP (1 =2y,
j=12, Vxel,,
[FP — FO|,, £ Ci, (I=[-12,12]).
2° Applying the regularization

1 0
Ruf = -EJ o(x — y,H)f(y)dy, where H = const. >0,
% -

(2, H) = exp (

2
J_ZJ_, if |2l <H, o, =0 if |z/=H,
¢ — n?

»H = J‘ wy(z, H) dz,
|z|<H
we obtain

RyF;,eCc>(I),
ro S Ry Fy(x) = ry Vxe[—12,12],

D (x)] = (x 5_1_ ”
(Er)? 9] = Rar209) = 1

- 00

w(x =y, H)IFE{'){ dy £

. I 2
s(1-4¢C;,, VH< ———,
( Y 21 -2
Moreover, since F, € C}(I) =« W**(I) Vp > 1 and

j=192.

flleay £ Clflweray
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we obtain for j = 0, 1

IR&F? = FPlcay < C|RuFiz = Fillwara) -
The right-hand side tends to zero with H — 0 and therefore

RyF,—>F, in C'(I) for H-0.

3% Let us define an auxiliary mapping %, as follows
ro +r ro + F
2,009 ="+ (- (569 - ),
where ;¢ = const. > 0. Then it is easy to see that
(/)9 =1 - p)so

ry —
r0+u'2r0

s J=12

, Fy — T
SZ S —n v

for r = f=ry,

"‘g’uf f”ucI:”

ro + 1y

5 -f
I(Zu) = Iles = Bl ot

4° Let us introduce the cubic spline interpolation Spf of f on the mesh 77, (see [4],
[5]) with (Spf)” = f” at the endpoints.
We define

o,J

F, = Sp(fZ”MRHFl) R
where

h< S

H <301 - %),

2

n = Sw(h, (RyF,)")|C,,
o(h, ) denoting the modulus of continuity of f on I
We shall utilize the error estimates

ISpr) = 1"l s = Seo(h, f7)

1!(Spf)(j) _ f(j)”oc,l < 12'2j_2h2_ij”l

(see [5], Theorems 9, 10 in Chapter II)
Then we may write

0,1 j:()’l

|Fh = (2. RuF2) ||t

< Sw(h, (RHF,I)”) = uC,,
since

w(h, (Z,RyF;)") = (1 = p) o(h, (RuF,)") ;

|Fil £ (1 = (R

”

Cy + pC =Gy,
290



[Fi = (ZuRuF2)
|Fil £ (1 = p) |(RyF,)| + 6Ch < (1 = w)(1 — 2)C, + CLASCy .

w1 S 6C,h,

At the nodal points we have

rl;ro§Fh=guRHF1§’1_llﬂ—;‘ﬂ)§rl-

r0§r0+u

Let us estimate the error
|Fy — F| < [Sp(Z,RyF,) — Z,RyF;| + |Z,RyF, — R,F,| +

+ [RyF, — Fy| + |Fy — F| < 30%(1 = p) (1 = 22 C, +
+ u|3(ro + 71) = RyFs||lw.s + |RuF; — F;

wa + CA.

Passing to the limit with A -0, H -0, h - 0 and u — 0, we conclude that
F, — Fin C(I) for h — 0. A parallel estimate is valid for |F; — F|.

5° Using the convergence of F, in C!, we may write

(72)

JF,%G;, dx — G,
I

f(F,%G,; - F*G) dx{ <

I

< J (|F2 = |Gy + F?|G, — G'])dx <
I

< J @2ri|Fy — F| + ricy(1 = C}) 2 |F, — F|)dx <
I

< C|Fy — Flaigy—0 if h—>0.

Furthermore, we have

(73)

N

Y h(Fy)* G — J‘IFﬁG;, dx <

k=1

= ] IFi Gito) - (A 6 ax =

k Ax

by virtue of the estimates
G,z (1—C)?*>0, |G| =|FiF;|G)
Gix) G| = 34} < Ch,
|F,,(x) - F:[ < 3h|Fy|or £ Ch.

Combining (72) and (73) we obtain

IIA
a

IIA

N
| Y h(FE2 G — €| < C(h + |Fy = Fle) S e
K=1
for sufficiently small h < h(e, F). Q.E.D.
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Theorem 3. Let {F,}, h — 0, be a sequence of solutions of the approximate optimal
design problems (39).
Then there exists subsequence {F;} such that

(74) F;—> F in C'(I),
(75) U;;(Fﬁ) d U(F) in V
nolds for i » 0 and F e UZS,

(76) F(F) £ #(9) VPeU,.

Proof. Since UL < UL, Vh < ho(3) by virtue of Lemma 4, and UZ; is compact
in C'(I) (see the proof of Lemma 2), there exists a subsequence {Fj}, Fj € Uk such
that (74) holds, where F € UZ. On the other hand, using Lemma 4 and passing to
the limit with i — 0, we deduce F € U%.

Let us apply Lemma 11 to an arbitrary function @ e U,,. Consequently, there
exists a sequence @, € U such that

&, > ® in C(I) for h—0.

By definition, we have

(77) Ii(Fr) £ I(®5) Vh.
Since U,y = UZj, Lemma 9 and 10 hold for both the sequences {F;} and {&}.
Passing to the limit in (77), we obtain (76). Q.E.D.

Remark. A question arises whether ¢ = ¢(h) in Theorem 3 can be chosen so that
g(h) > 0 for h — 0, F; > Fe U,, and (76) hold. Unfortunately, I was not able to
solve this problem.

5. SOME REMARKS ON THE NUMERICAL SOLUTION

Let us consider the approximate optimal design problem (39) and discuss some pos-
sible algorithms of solving this problem. The functional #, is differentiable, non-
convex and we can choose some of the methods of nonlinear programming for con-
strained minimization of a differentiable functional, e.g. the Frank-Wolfe algorithm
[6]. In any case, one will need an efficient method for evaluating the gradient V #,(F,).
To this end, we employ an adjoint state problem, which is classical in Optimal
Control.

Lemma 12. The state equation (40) is equivalent to the linear system
(78) ' th(‘/’h) Xp = 37";;((0/.) 5
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where .sz/,,(q),,) is a symmetric, positive definite matrix n x n, n = 3N and F,(¢,)
is an n x 1 matrix. Denote the solution of (78) by x,(¢,)-
Let us introduce another linear system (the adjoint problen)

(19) Son) b= 2 (Fyi o)

Xp

and denote its solution by p,(¢,).
Then the gradient of the cost functional is given by the formula

(80) V/h((/’h) = ;ﬂ (‘Phs Xh((ph)) + [% ((/’h)] Ph((Ph) -
), de

h

- [ 00 5600 o

Proof. The equivalence of (40) and (78) follows from the expansion of F, and u,
in terms of Hermite basic functions. The vectors of nodal values of F,, u, and of their
derivatives are denoted by ¢, and x,, respectively. The positive definiteness of .27,
is a consequence of Lemma 4.

We may write (omitting the subscripts /i everywhere)

(s1) 4.5(0) - (j—; (0. x(0)) 5¢>Rm ¥ (j—’ (0. ((0)) a)

where m = 2N + 2 (note that the nodal values of F, € UL belong to a subset of R..).
Differentiating the equation (78), we obtain

(52) #(9)6 x(0) + ("’) x(0)s9 = L@ 5,
do
Using (79) and (82), we may write

(53 (Zoxo00x0)) = (o) .0 sto)hc =

— (#(¢) 8 x(9), Do = (“ﬂ@ 59 — %«o) () 5. p) -

d(p R®

(-] ),

Substituting from (83) into (81), we arrive at (80).

Remark. The systems (78) and (79) differ only in the right-hand sides, which sim-
plifies the algorithm.
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Souhrn

OPTIMALIZACE TVARU ROTACNE SYMETRICKYCH SKOREPIN
IVAN HLAVACEK

UvaZzuji se pruzné rotacné symetrické skofepiny konstantni tloustky a jejich meri-
didnova ktivka se bere za ndvrhovou proménnou. Je pfedepsdna jeji délka a objem,
ktery ji odpovidd, derivace do 2. fddu jsou v danych mezich. ZatiZeni se sklddd
z hydrostatického tlaku, vlastni vdhy a pfetlaku. Cenovy funkciondl je integral
druhého invariantu napéti pfi obou povrsich skofepiny.

Dokazuje se existence feSeni optimalizacniho problému, a to nejprve na abstraktni
urovni. Jsou navrZeny aproximacéni ulohy a dokdzdna konvergence jejich feSeni
k funkci, kterd je v jistém smyslu blizkd feSeni spojitého problému.

Author’s address: Ing. Ivan Hlavacek, CSc., Matematicky ustav CSAV, Zitna 25, 115 67
Praha 1.
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