Aplikace matematiky

Krystof Eben
Classification into two von Mises distributions with unknown mean directions

Aplikace matematiky, Vol. 28 (1983), No. 3, 230-237

Persistent URL: http://dml.cz/dmlcz/104029

Terms of use:

© Institute of Mathematics AS CR, 1983

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/104029
http://dml.cz

SVAZEK 28 (1983) APLIKACE MATEMATIKY Cisio 3

CLASSIFICATION INTO TWO VON MISES DISTRIBUTIONS
WITH UNKNOWN MEAN DIRECTIONS

KRYSTOF EBEN

(Received November 26, 1982)

Classification procedures for directional data have been studied by Morris and
Laycock [3] for the case of two von Mises distributions on the circle and two Fisher
distributions on the sphere, both with known parameters. The present paper deals
with two von Mises distributions with unknown mean directions and a common
concentration parameter that is known. The likelihood rule and the plug-in rule are
examined. For the statistic of the plug-in rule, the moment generating function is
given. The moments are obtained as well but the higher ones are too complicated
for practical use.

1. FORMULATION OF THE PROBLEM AND RELATED CLASSIFICATION
RULES

In the text we use the modified Bessel functions of the first kind

27 © 2vtp
I(z) = L eos pO exp {z cos 0} dO =} i/z)—-——
2n ), v=ovII(v+p+1)

We need it only for whole orders p € Z and z real, although itis defined more gene-
rally. Further, in our notation we shall not distinguish random variables from the
arguments of the corresponding densities.

Let I = (cos 0, sin0)', 0 < 0 < 27 be a random unit vector in the plane taking
values on the unit circle. The density of I means the density with respect to the Lebes-
gue measure on the circle. Transforming the density of I to polar coordinates we
obtain the density (with respect to the ordinary Lebesgue measure) of the random
angle 6.

I has a von Mises distribution M(m, x) with mean direction m = (cos p, sin )’
and concentration parameter x > 0, if the density of I is given by

(1.1) fl;m, %) = c(x)exp {xm’l}, x>0, mm=1Il=1,
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Using the polar coordinates, we obtain this expression in the form of

(1.2) g(0; 1, %) = c(x) exp {x cos (0 — p)}, 0, pel0,2n),
¢(x) = 1/2m I() being the norming constant.
Consider the problem of classification into two von Mises distributions M(m,, %)
M(m,. x), where » is known, m, = (cos puy,sin ), m, = (cos uy, sin p,). 1
m;, m, were known, the Bayes discriminant function would be as derived in [3]:

(1.3) U* = cos (0 — py) — cos (0 — ).

Assume that m; and m, are unknown. Let I,,...,I, and I, 4, ..., ], be independent
random samples from M(my, x) and M(m,, x). If we adopt the likelihood approach
to classification, the problem may be viewed as that of testing the hypothesis
(I denotes the classified vector)

Hy:ly, .., L1~ M(ml,x)
l,+,, v by~ M(my, %)
against the alternative
A iy~ M(my, )

Ll gy oo by ~ M(my, ) .

The usual likelihood statistic for this kind of testing equals in our case

max [c(x)]" ! exp {%(Z’ im; + ( Z I} +1')m,)}

A = mum: :
max [l exp ((SHi+ 1) my + 3 fima)

In both the upper and the lower term of this ratio the maximum over all unit vectors
m,, m, is achieved for m;, m, maximizing the corresponding scalar products; i.e.,
in the numerator for

m"; = (_Z,lli /Rl s R, = ” Z’i

i=

%)

fy= (Y 1+ Ry, Rzo—H

i=r+1

and in the denominator for

B (Ll+ DRio Rio= |21

= (5 R, R =] 3

*) We use to exclude the event Y I, = 0 which is of measure zero.
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Thus we obtain
A=-exp{x(R, + R, o — R, o — R},

which is equivalent to the statistic R, + R, ; — Ry o — R,.

Remark. The vectors mi and mj are the sample mean directions, They are
maximum likelihood estimates of m; and m, based on the samples I, ... I and
I I

rils v Ine

Let us denote I; = (cos 0;, sin 0;), i = 1,..., n,0,€ <0, 21), m = (cos y,, sin ¢, ),
mj = (cos 5, sin Y1,)', Y1, Y2 € €0, 27). Then

(14) Ry —Ryo=R{— ((Rycos yry + cos 0)* + (Ry sin§, + sin 0))'12 =
— (R%)"2 — (R + 2R, cos (¥, — 0) + 1)2 =
~ —2R, cos (; — 0) — 1 =
(R} + (R + 2R, cos (I, — 0) + 1)'7
~ —2cos (Y, — 0) — 1R,
1+ (1 + (2 CcOS ('/’1 - 0))/R1 + I/R%)l/z .

The distribution of R; does not depend on m (see [2], §4.5) and it is the same as
if Iy, ..., 1, came from M((1, 0), x). In that case

2n
Ecos0; = ! f cos 0 e dg = L(x) >0
2n1o(%) J o Io()

and according to the strong law of large numbers

r

lim Y cosf; = o as.

roow i=1

As Ry = Y cos 0, we have lim R, = oo a.s. Returning back to (1.4), we obtain
i=1

lim (R; — Ry o) = — cos (Y, — 0).
Similarly we state

lim (R, — R;,0) = — cos (¥, — 0).
Thus the likelihood statistic is asymptotically equivalent to the statistic —U =
= cos (0 — ;) — cos (0 — ¥,). The statistic U = cos (0 — ¥,) — cos (0 — ;) is
immediately seen to be the statistic of the plug-in rule derived from (1.3) by sub-
stituting the estimates /4, ¥/, instead of the true parameters iy, fi,-
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2. THE MOMENT GENERATING FUNCTION AND MOMENTS
OF THE STATISTIC U

Our starting point will be the following theorem (for the proof see [2], § 4.5):

l. =

i

M’:

Theorem. Letl,,..., I, be a random sample from M(m, »), m = (cos y, sin p),
= R(cos y, sin )’ = Rm*'. Then i
(i) thedistribution of R does not depend on i (i.e. R is an ancillary statistic for 1)
(i) the conditional distribution of m* given R is M(m, xR).

Motivated by this theorem and the Fisher ancillary principle we shall assume

1

m{ ~ M(m,, xR,), m} ~ M(m,, xR,).

We compute the moment generating function of U for I ~ M(my, x), the other
case is symmetric. Taking (1.2) for the densities,

(2.1) Ee" = c(%) c(%R,) «(xR;) fonfonf;n exp {1(cos (0 — ¢r,) — cos (0 — y,))} x

x exp {%(Ry cos (Yy — py) + Ry cos (Y5 — py) + cos (0 — py))} dpy dp, dO =

2n

— ofx) (xR, c(%Rz)ﬁ"Uo exp {108 (6 — ) + xR, cos (s — 1)} dl/,l] X

2n

x l:'[ exp {—1cos (0 — y,) + xRy cos (Y, — p,)} d%] X

0
x exp {xcos (0 — p,)} do .

The first bracket in (2.1) equals to

2n
(2.2) J exp {acosy; + bsiny,} dy, ,
(0]
where
a=tcosB + xR,cosp,, b=1tsinf + xR, sinpy, .
Setting

o=(a®>+ b)), a=gcosp, b=psing,
(2.2) becomes

f “exp {0 cos (1, — ¢} dury = 22 14(0) =

0

= 2n1,((* + %*R} + 2txR, cos (0 — 11))"/?).
By the same argument, the second bracket in (2.1) equals to
21 14(8) = 2n Io((¢* + %*R3 + 2txR, cos (0 — u, — m))'?)
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and (2.1) simplifies to

(2.3)  Ee = [2m14(x) Io(xR;) Io(#R,)] ™ fznlo(g) 14(8) exp {x cos (0 — 11)} do .

Lemma. (a) The von Neumann summation formula. For xy, X, 0 real,

(2.4) Io((x7 + x3 + 2x;x, cos 0)'/?) =
= Io(xy) Io(x;) + Zlep(xl)I‘,(xz) cos p .
=

(b) The sum on the right-hand side of (2.4) is absolutely convergent.
(c) ForeverypeZ,x > 0,

2n
J sin pf exp {» cos 0} df = 0.
0
(d) Forp,qeZ, py, p, real, » > 0,
2n (_1)q
cos p(0 — ;) cos g(0 — p, — m) exp {x cos (6 — py)} dO = —2— x

x j [ (0 + 0)(0 = 1) + alii— 1)) + cos ((p = ) (6 — 13) — alos — wa))] x

(=1

x exp {x cos (0 — 1)} d0 = - cos q(pty — o) 2n(Ip 4 o(2¢) + I,- (%)) -

For the derivation of (2,4) see e.g. [1] § 7-6. The absolute convergence may be
obtained for example from the rough inequality
N
I(x)] = IX/ exp (x/2)*.
ol =3 s B e o)

I\

{c) is self-evident and (d) may be easily checked with the help of (c).
The above lemma enables us to expand the term Io(¢) I4(¢) in the integrand of

(2.3):
1o(0) 1o(9) = I3(1) Io(%Ry) Io(xR;) +
+ 21,(1) Io(le)quq(t) I,(xR;) cos q(0 — p, — m) +

+ 2140 1xR;) L1, 1,6eR,) 005 20 = ) +
+ 42”1 211,,(:) 1() 1 (<R, 1,(%Ry) cos p(0 — ;) cos q(0 — p — 1) .
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Since the series involved are absolutely convergent, we can integrate termwise. The
calculation needs only (c) and (d) of the lemma and is omitted here. As a result
we obtained the following expression for the moment generating function of the
statistic U:

Ee = % Y. g 1(1) Iq(') ’
p=04=0

where the coefficients a,, are defined in subsequent manner: let us denote a,(%) =
= ]p(%)/lo(%) , 0= l/'ll - #2‘? then

doo = 1 s

agy = (—1)" 2 () o, (xR;) cos g ,
po = 2 O‘p(%) “p(%Rl) g
pa = (- ])q 2 ap(%Rl) aq(%RZ) (ap+q(%) + ap—q(%)) €os 40 ,

p,g=1.

a

a

3. THE MOMENTS OF THE STATISTIC U

For the functions 1,(r) we have (see [1] 7.2.5, resp. §7.11)

(3.1) 1,0)=0 for p=+0,
=1 for p=0,
() S1,0 = 40y (0) + 1)

Let us consider derivatives of the term I,(f)I,(f). According to (3.1) and (3.2),
S D)o =
dt" )4 q t=0 prq

where ¢ is the coefficient standing by I,(f) Io(f) in the expression for (d*/d*) I (£)[,(1)-
Obviously ¢4 = 0 for p + g > k and the k-th moment of U equals

dk
k tU . (k)
EU ""—,;Ee _Z chqam'
dt (=0 p.a20
ptask

It remains to find the coefficent c(). From (3.2) it follows
Ld
(3.3) alp(t) L(t) = (I, () I,(1) + Lo () I,(1) + L (0) I— (1) + () L (1)) -
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Thus the term I () I(f) “produces” the four terms on the right-hand side. Proceeding
in this way we see that differentiation is analogous (in the sense of (3.3)) to producing
all the paths of the symmetric random walk on Z X Z starting at the point (p, q).
The probability of reaching the point (0, 0) after k steps from (p, g) is of course the
same as that of reaching (p, ¢) when starting from (0, 0). Let us denote this probability
by Pi(p, q) and assume for a while that the starting point is (0,0)‘ Then

275 = Pi(p, q).
For P,(p, q) we have
(34) Po(0,0) =1,

Py(p, ‘1) =3}P_s(p— 1, Q) + Pk—l(p + 1, ‘I) + Pi_y(p. g — 1) +
+ Po_y(p, g + 1)].

(3.4) defines P,(p, q) uniquely and one easily checks that it is fulfilled if Py(p, q) is
given by

k k
alk—p— k+p~—
63) Pp.a) = 4+ | Em 2 g (k2

for both p, k — q odd or both p, k — g even, P,(p, g) = 0 otherwise.
Let us write the first two moments:

EU = a(%) (ay(xR,) — 2;(%R;) cos 6},
EU? = 1 — (o4(%R,) oy (%R;) (05(%) + 1) cos 6) +
+ oy(%) (az(%Ry) + a5(%R,) cos 26) .

|

Il

For practical purposes, the approximate formulas for o(.) and a,(.) may be used
as given in [2] 3.4.9d.
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Souhrn

KLASIFIKACE DO DVOU TRID S VON MISESOVYM ROZLOZENIM
A NEZNAMYMI STREDNIMI SMERY VE TRIDACH

KRrySTOF EBEN

Cldnek se zabyvd klasifikaénim pravidlem zaloZzenym na vérohodnostnim pomé&ru
a pravidlem zaloZenym na vybérovych stfednich sm&rech (plug-in rule). Pro diskri-
mina¢ni funkci tohoto pravidla je nalezena momentovad vytvofujici funkce a jsou
zjistény momenty.

Parametr koncentrace se povaZuje za zndmy a totozny v obou tfiddch.

Author’s address: RNDr. Krystof Eben, Matematicky ustav CSAV, Zitna 25, 115 67 Praha .
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