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SVAZEK 28 (1983) APLIKACE MATEMATIKY CisLo3

IMPROVEMENT OF FISHER’S TEST OF PERIODICITY

TomAS CIPRA

(Received June 21, 1982)

Fisher’s test of periodicity in time series and Siegel’s version of this test for com-
pound periodicities are investigated in the paper. An improvement increasing the
power of the test is suggested and demonstrated by means of numerical simulations.

1. INTRODUCTION

Fisher’s test (see [2]) is a suitable instrument for testing periodicity in time series.
It can be applied in the following situation: Let a series {w,} arise from the model

(1.1) w,="_+a, t=1,..,n,

where {({t} represents the unobservable true values of the investigated series and
{a,} is the white noise (i.e. a,’s are iid random variables with distribution N(0, ¢?),
6> > 0). To make some statistical inference about the periodic behaviour of {{,}
let us consider the null hypothesis that there is no periodic activity

(1.2) Hy:ly=..=(=0.

In Fisher’s test this hypothesis is tested against the alternative that {{,} contains
a significant periodicity. To simplify the calculations n is assumed to be odd, i.e.

(1.3) n=2+1
the case of n even is described in [3]). Let I(1) be the periodogram of {w,} defined as
§
(1.4) I(f) = a*(f) + b*(f), —-+=f=}%,
where
(1.5) a(f):\/z Y w,cos2nft, b(f)= \/g Y., w,sin 2nft .
nit=1 ni=1

Fisher’s test uses the values of this periodogram for the frequencies

(1.6) fi=iln, j=1,..,s.
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However, these values must be normalized to the form

(1.7) ¥, = 1) $1(7)

to eliminate the effect of 6. The alternative hypothesis of Fisher’s test corresponds
to the situation that the maximum value among I(f}), ..., I(f;) is much greater than
the other ones. Therefore this test is based on the statistic

(1.8) W= max Y,

1<jss
and rejects H, when W exceeds the appropriate critical value. The critical values
of Fisher’s test are tabulated in [2], [4] or in [5]. They are calculated by means
of the following distributional formula for W:

(19) Py (W> x) =s(1 — xy~ ' — (;) (1 — 20t + (‘;)(1 D R

N

k
of (1.9) for which (1 — kx) is positive.
When there is an activity at several frequencies in the alternative hypothesis the

Siegel’s extension of Fisher’s test can be used (see [5]). It generally has a higher
power for such compound periodicity. Its test statistic has the form

where only such members ( )(1 - kx)s‘1 are considered on the right-hand side

s

(1.10) T, = $(Y, - ig0).
i=

where (1), denotes max (t,0), g is the corresponding critical value of Fisher’s test
and A is a parameter chosen between 0 and 1. Fisher’s test is the special case when
A =1 and the critical area is taken as Ty > 0. The distributional formula for T}
can be derived and the critical values calculated again (see [5]). The most recom-
mended value of 1 is 0-6.

It can be easily shown (see e.g. [5]) that when the alternative hypothesis of Fisher’s
test has the form

(1.11) ¢, = cos (2nfot),

where 0 < f, < } is a constant, then the value I(f,) of the periodogram (1.4) is
distinctly high (of order n) while the other values I(f) are relatively small. Since the
test statistic W uses only the values I(f),...,I(f;) it frequently occurs that the
maximum among I(f,), ..., I(f;) is significantly smaller than the maximum value
I(f,) of the whole periodogram (especially for smaller values of n because then the
gaps between particular frequencies f; are great). Simulation studies show that this
phenomenon decreases the power of Fisher’s test unpleasantly. It is proved in Section 2
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of the paper that the distributional formula (1.9) holds for the case when such values
of the periodogram are considered which are calculated for the frequencies in the
middles of the intervals with boundary points f; defined in (1.6). In the paper we
therefore suggest to apply the both tests (for the previous frequencies f; and for the
new ones) at the same significance levels simultaneously. The significance level
of this compound test is then equal at most to the double of the level of significance
of the both tests which form it. Numerical simulations in Section 3 demonstrate that
such procedure can increase the power of Fisher’s test substantially.

2. MODIFICATION OF FISHER’S TEST

Let us delete the first observation w, in the series {w,} and replace the formula
(1.4) by
21 I'(f)=c(f) + d(f), —-1=f=13,
where

(22) () = \/ 2 zz Wy cos 22 (1 — 1),

n—1:

d(f)=\/n 2 1 zz wsin 27 f(t — 1)

Let us consider the values of (2.1) for the frequencies

25 -1 2 —1
oAn—1)  4s

(2.3) fi= , j=1,...5.

These frequencies represent the middles of the intervals with the boundary points
f; = j|n if we accept the approximation 1/n ~ 1/(n — 1). Now let W’ be the statis-
tic calculated in the same way as W but with I'(f) and f; replacing I(f) and ;. We
shall show that the distributional formula (1.9) holds also for the statistic W'.

It will be sufficient to show that

(2.4) (fD)s o), d(fD). - d(f2)

are iid variables with distribution N(0, ¢?) under the null hypothesis H, in (1.2)
because then Fisher’s method of the proof of (1.9) can be further applied without
any changes (see also [1]).

First we shall show that

(2.5) Yocos2n(fi + f})(t — 1) =Y sin2a(fi £ f})(t —1) =0
t=2 t=2
with one exception only, namely
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(2.6) Yocos2n(fi — fi)(t—=1)=n—1.
t=2
To this end we shall use the following general formulas:

(2.7) cosu+cos2u+...+cos(n—1)u=M—1/2,
2 sin uf2
_ cosuf2 — cos (n — 1/2)u
2sin uf2

(2.8)  sinu +sin2u+ ... +sin(n — 1) u

that hold for u #+ 2kn. We can write e.g.
_ sin 2z[(n — 1)+ 12)(ff + £}

g o mi £ f) =1 2sin (7 + 1) 2
since
2n(n — 1) (fi £.1}) = (20 =1) £ (2 — 1)]
so that
sin 2nf(n — 1) + 3] (f] £ f}) = sina(f] + ;).
Because

sin xtsin yt = [cos (x — y)t — cos(x + ) {]/2,
cos xi cos yt = [cos (x — y) 1 + cos (x + ¥){]/2,
sin xt cos yt = [sin (x — y) ¢ + sin (x + ¥) 1])2,

we obtain due to (2.5) and (2.6) that for arbitrary i, j = 1, ... m

(2.9) Y cos?2nfi(t — 1) = Ysin® 22 fi(t = 1) = (n = 1)[2,
=2 t=2 :
(2.10) Y. sin 2 fi(t — 1)cos 225t — 1) = 0,
t=2
and for i % j
(2.11) Y cos 2n fi(t — 1) cos 2n fit — 1) =
t=2

= Y sin 2z fi(t — 1) cos 2n fi{t — 1)=0.
t=2
Therefore

, 2 n , N
var C(fj) = Eﬁ 22 d, Cos 27[f](t - 1)2 a, cos 2nf1’(s — 1) =
— 1= §s2

202

n—1:

¥ cos® 2n (1 < 1) = g2
=2

0
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In the same way it is possible to prove that var d(fj) = o> and that any two variables
in (2.4) are uncorrelated (their normality and zero mean value are obvious).

Let us mention that if the original length n of the series {w,} is an even number
then we need not delete any observation of the series in the modified test.

As to the practical application we shall use the classical Fisher’s test described
in Section 1 and the modified test described in this Section simultaneously. In other
words, we shall reject the null hypothesis H, if at least one of these two tests rejects
it. Moreover, if the significance levels of the both ,,simple* tests are oc/2 then the
significance level of the compound test will be at most a.

3. RESULTS OF SIMULATION STUDIES

Series of the type
(3.1) w, = A cos 2nft + a,

with various lengths were generated for various amplitudes A and frequencies f.
One hundred replications were performed for each choice of these parameters at the
computer Prime 750 at the Department of Statistics of the University of Uppsala.
The numbers of rejections of the classical Fisher’s test and of its modification descri-
bed in Section 2 were recorded during those 100 replications. Table 1 shows the
results of the simulations for the significance levels o = 0-01 and a« = 0-05. As to
the notation, e.g. the symbol w'(0-05) denotes the number of rejections of H,, in 100
replications for the modified Fisher’s test at the significance level a = 0-05. These
simulation results demonstrate that the classical Fisher’s test can really have a small
power if the true frequency f in (3.1) is close to the middles of the intervals with
boundary points f; defined in (1.6) (see e.g. n = 21, A = 1-5, f = 5-6/21 or n = 51,
A=1,f= 10~5/51). For f close to some f; the power of the classical Fisher’s test is,
of course, larger than the power of its modified version (see e.g. n = 21, 4 = 15,
f=51/21 or n = 31, A = 1-5, f = 7-1/31). The results of the simulations for the
white noise w, = a, (see n = 21, A = 0, f = 0) justifies to the correctness of the
simulation procedure.

Table 2 compares the power of the compound test at the significance level at most
0-05 with the power of the classical Fisher’s test at the same significance level. The
fourth and fifth columns of this table present the numbers of rejections of H, for
the classical and modified Fisher’s tests at the significancelevel a = 0-025 (i.e. w(0-025)
and w'(0-025)). These tests together form the compound test whose results are
reported in the sixth column (see w,(0-05)). If we compare these results with those
of the classical Fisher’s test at the significance level a = 0-05 in the last column
of Table 2 we can conclude that the compound test is in average more powerful
than the classical one. The differences in the cases when it is not so (e.g. n = 31,
A=1f= 4~1) are not too large. On the other hand, the power of the compound
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test is frequently more than twice larger than that of the classical test at the same
significance level (see eg.n=31,A=15 f=340rn=51,A=1, f=105).

Table 3 is analogous to Table 1 but the results for Siegel’s test are reported in it.
Series of the form

(3.2) w, = A; cos 2nfit + A, cos 2nf,t + a,

were generated for this purpose. E.g. the symbol 1 ¢(0-01) denotes the number
of rejections of H, in 100 replications for the modified Siegel’s test with 4 = 0-6
at the significance level o = 0-01. The modification of Siegel’s test consists in the
fact that the values I'(f]), j = 1, ..., s according to (2.1)—(2.3) are used for the
construction of T} in (1.10) instead of the values I(f;) according to (1.4)—(1.6). The
conclusions which can be drawn from Table 3 are similar to the previous ones.

The results for the compound Siegel’s test which is constructed similarly as the
compound Fisher’s test are not reported in this paper.

Table 1. The number of rejections of H, in 100 replications for the classical and modified Fisher's
tests (w(0-01) relates to the classical Fisher’s test at the significance level o = 0-01, etc.)

n A f w(0-01) w'(0-01) w(0-05) w(0-05)
I 15 2-5/11 0 9 2 28
11 15 2/11 17 6 38 18
210 0 1 0 4 4
21 1-5 2-7/21 24 60 48 83
21 IS 5-6/21 9 50 18 73
21 1-5 5-1/21 63 16 85 39
21 1 2-5/21 0 19 7 36
21 1 5-7/21 9 20 21 35
31 1-5 7-6/31 26 91 52 98
31 I-5 7-4/31 18 47 44 70
31 IS 7-1/31 91 42 98 67
31 15 8-2/31 73 22 90 47
51 1-5 5-3/51 87 91 98 98
51 1 5-3/51 41 40 65 60
51 1 10-5/51 15 66 31 88
51 075 10-7/51 16 38 35 54
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Table 2. Comparison of powers of the compound and classical Fisher’s tests

n A f w(0-025) w’(0-025) w,(0-05) w(0-05)
21 2 3/21 100 47 100 100
21 1-5 3/21 76 22 77 85
21 2 3-5/21 12 91 93 25
31 1-5 3-4/31 23 77 33 82
31 1-5 3-9/31 93 58 95 95
31 1 4-1/31 45 11 49 59
31 1-5 7-6/31 38 89 90 48
31 1 7-6/31 15 39 40 2
31 15 8-2/31 85 28 86 88
31 1-5 10-5/31 20 51 61 27
51 1 5/51 85 24 86 89
51 1-5 7-6/51 83 100 100 89
51 1 10-1/51 85 46 85 90
51 1 10-5/51 23 77 82 35
51 15 15-5/51 71 97 100 79
51 1 15-5/51 25 54 61 31
51 1 18-4/51 36 34 54 47
51 1 18-6/51 38 63 67 52

Table 3. The number of rejections of Hj in 100 replications for Siegel’s test and its modification
(16,6(001) relates to the modified Siegel’s test with A = 0-6 at the significance level « = 0-01, etc.)

n A fi A, 5 10,6(0:01) 14 5(0-01)
21 15 2521 15 65)21 0 16
21 15 221 15 6/21 23 2
21 15 2721 15 64)21 0 6
3115 5631 15 197/31 3 26
31 15 51/31 15 202/31 20 3
315 5/31 15 19-6/31 27 6
511 55/51 1 15-5/51 9 54
511 56/51 1 18-7/51 20 83
511 56/51 1 19-2/51 41 70
101 075 10-5/101 075 22:6/101 44 98
101 075 10-1/101 075 22-2/101 91 35
101 05  10-1/101 075 22-6/101 40 73

16,6(0-05)

2
77

5
24
53
74
27
56
73
70
98
65

1),6(0:05)

52
23
28
65
30
19
87
95
88
100
55
88
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Souhrn
ZLEPSENI FISHEROVA TESTU PERIODICITY
TomAS CIpRA
V Clanku je vysetfovan Fishertuv test periodicity v ¢asovych faddch a Siegelova
verze tohoto testu pro slozené periodicity. Je navrZzeno zlepSeni tohoto testu, které

zvétsuje jeho silu, a je demonstrovdno pomeoci numerickych simulaci.
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