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GLOBAL ERROR ESTIMATION IN THE NUMERICAL SOLUTION
OF RETARDED DIFFERENTIAL EQUATIONS
BY EULER’S METHOD

ZDZISLAW JACKIEWICZ

(Received June 3, 1982)

1. INTRODUCTION

Consider the initial-value problem for the system of retarded ordinary differential
equations

(1) yi(t) = f(3(a(1))), te[a, b],
yit) = 9(1), telo, a],

i=1,2,...,s where s is a positive integer. Here o < a < b, g, are specified initial
functions and

F@E0) = 1o, 1(0)s - y1(01 6, (0)s s Vi1 (0))s -5 9ot (1))) -
Putting y = [yl’ RS ys]T’ yl = [ylla sty }’;]T, f = [fla '-"fs]T’ g = [gl’ s gs]T >
where T stands for transposition, we can rewrite (1) in the vector form:
(1) y(1)=1(5(a(1), tela, b],
W) = o). telnal.
For x € R? denote by |x| the maximum norm. We assume the following:

H,. The function f: R® - R, K = k; + ky + ... + k,, is of class C' and there
exists a constant M < oo such that
lf@] =M, [f@u)=f@)] = M]u -0,
[0/ <M. [DS() = DS = Mlu - o]

for u, ve RX.

H,. The functions «; ;:[a, b] = [o,b], i =1,2,...,s, j=1,2,..., k;, are Lip-
schitz-continuous with counstant Q < oo, i.e.,

|, /(1) = 21,(t2)| = @ty — 1
for t,, t, € [a, b].
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Let a fixed he (0, hy], hy > O be given. To compute an approximate solution
Vi : [, b] = R®consider Euler’s method defined by

(2) yilty + vh) = yu(t,) + rh f(5(a(1,))) .
vilt) = g,(1), 1€[a, a],
n=20,1,...N—1,re[0,1], No = b — a, t, = a + nh. Here g, is some conti-
nuous approximation to the initial function g.
To obtain an estimate of the global error e,(1) = y,(t) — y(r) we use the method
of Zadunaisky (see [8], [7]). This method consists in the following. We construct
the pseudo-problem

(3) w(t) = SEED) + do). 1€ [ab],

u(t) =g(1), tela, a],
in such a way that the exact solution u of this problem is known in advance and the
defect function d, is “small”. This construction will be described in §2. Denote
by e; the global error committed in the numerical solution of (3) by (2). Then,

under certain conditions, e; is a good estimate of e,. This result is stated in § 2 and
its proof is given in § 3. In § 4 some numerical examples are given.

2. GLOBAL ERROR ESTIMATION

Assume that N is even and consider a piecewise polynomial interpolation of degree
two to the numerical solutions {y;,(t,)}n-0, i = 1,2,...,s. In vector notation
this can be written as

P(t) = P"(t) = a§ + (t — tam) (@7 + (t = t2s1) a3) s 1€ [tom lame2] -
Here, a7}, j = 0, 1, 2, are divided differences given by
a'(;' = [t2m; yh] = yh(t2m) )
a7 = [tom toms 13 Vu] = f(fh(o_‘(tzm))) >
m 1 o o
a5 = [Lam tam+ 15 Lames 23 )’h] = E}—l [f(yh(‘x(12m+l))) - f()’h(“(tzm)))] .

Consider now the pseudo-problem defined by

(4) w(t) = f@@(1) + di(1) 1€ [tam tames2) 5
u(t) =g(1), te[o, a],

where
dit) = P'(t) = f(P@E(1)) > t€[tam toms2)-

By u'(t,,) and P'(t,,) we mean the right hand side derivatives. It is obvious that P
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is the continuous solution of this problem. The method (2) applied to (4) takes the
form

w(t, + rh) = wu,(t,) + rh[f(@,a(t,))) + di(1,)],
u,(t) = g4(t), tela a],

n=0,1,...,N—1, re[0,1]. Put e(r) = u,(t) — P(t). We have the following.

Theorem. Assume that H, and H, hold. Then et) = e;(t) + 0(h?) as h — 0.

This theorem generalizes some of the results obtained by Frank [2] and Frank/Ue-
berhuber [3] for ordinary differential equations. In [6] a similar result was obtained
for Volterra integro-differential equations. The proof of this theorem is given in the
next section and, as in [6], consists in checking if the method (2) possesses the
“property (E)” defined by Stetter [7] (see also [8]).

3. THE PROOF OF THEOREM

We assume throughout this section that the conditions H; and H, are fulfilled
and that N is even. Similarly as in [2] the proof is divided into a sequence of Lemmas.

Lemma 1. There exists a constant A < oo independent of m and h such that
|a7| £ 4 for m =0,1,..,N[2—1;j=0,1,2.

Proof. The proof for j = 0 and j = 1 is obvious. For j = 2, using H,, we obtain

la3] < % 1748 (t2m+ 1)) — Fu(@(t2m))] -

It is easy to see that the function y, is Lipschitz-continuous with constant M. This
yields

M? _ M?
"a';” = oh ||°‘(tzm+ 1) — a(’z.n)" = —2;12 |t2m+1 — lom

Here, o_c(t) = (ocl,,(t), ey 011,k,(1), R ocs,l(t), ey ocs’ks(t)).
Lemma 2. |d,(1)| = 0(h) as h — 0 for t € [a, b].

Proof. For t €[ty tyms2) We get

dy(r) = (P") (1) = f(P"(a(1))) =
= a7 + a5[(t — tm) + (t = tamsd)] = S((@(t2m) + P(@(1)) — 7i(a(t2m))) =
= d5[(t = t2) + (t = t2ms1)] = D S(n(1)) (P"(&(1)) — Fu(@(t2))) »

where 7(t) € R* lies between P(a(1)) and j(&(t,,)). In view of Lemma 1 and H,
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we obtain
ldu(®)]| = 24h + M|P"(&(1) = Fu(E(t2n))] -
We have to estimate the quantities |Py(x; (1)) — yiu(%:,(tzm)| for i =1,2,..5,
Jj=1,2,..., k.. For any i, j, a; (t) € [t5y, t2,+2] for some v = v(i, j) = m. We have
|Pi(es (1)) = yialens f(t2m))] =
ajo + (“i,j(’) - th) (a;‘,l + (“i,;(t) - t2v+1) a;,z) - yi,h(‘xi,j(th))l =<

< [viultzy) = vius (t2n))] + 20(A + Ah) < 2hM + 2h4 + O(h?) .

Finally,
[P"(&(1)) — $u(@(t2m))| = O(h) and [dy(1)]| = O(h) as h—0.

Lemma 3. Denote by e the solution of the problem

5) ) = DIGEONAE0) - 0. 1l ]

e(t) =0, tela, a],
where y is the solution of (1). Then et, + rh) = he(t, + rh) + 0(h*) as h — 0.
Proof. Define the local error u(t,, r, h) of the method (2) at the point 7, + rh by
(6) y(ta + rh) = y(ts) + rh J(3(&(2) + w(ts 7 1)

n=0,1,...N — 1, re[0,1]. After simple calculations we obtain
w(ty v, h) = y(1, ) — + 0(h*) as h—0.

Subtracting (6) from (2) we get
ety + rh) = ey(t,) + rh[f(7(a(1,)) — f(F(@(t,)] — 4r*h* y'(1,) + O(h?).

Routine manipulations yield
ety + 1h) = e,(1,) + rh[ D f(3(@(1,))) (& (1)) +
107 1(2) (@a(t). &G0 - 171 (1) + () =
= e(t,) + rhD f(5(a(t,))) eu(@(t,)) — +r?h* y"(1,) + O(H?) .
Let e, (1, + rh) = e(t, + rh)/h. Then
(7) ey (t, + rh) = e, (1) + rh[ D f(3(a(t,))) & (a(z,) — 4r y"(t,)] + O(h?).
Putting e, (f) = 0 for € [«, a] we can look at (6) as the result of applying to the
equation (5) some numerical method with additional error of order two. Similarly
asin [6] it is easy to check that this method is consistent with order one. Consequently,

it follows from Theorem 5 of [5] that [e; (¢, + rh) — e(t, + rh)| = O(h) ash—0
or e(t, + rh) = he(t, + rh) + 0(h?), which is our claim.
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Lemma 4. Denote by e* the continuous solution of the problem

(®) (ei)’(t) = D f(P(a(1))) &*(&(1)) — 3P"(t), 1€ [tams Lams2) >

() =0, telo da],

m=0,1,..,N[2 — 1, where P is the solution of (4). Then e(t, + rh) =
= he*(t, + rh) + 0(h*) ash > 0 forn = 0,1,...,N — 1, re[0, 1].

Proof. The proof of this lemma is similar to that of Lemma 3 is therefore omitted.
Compare with Lemma 7 in [6].
The next lemma is a generalization of Gronwall’s inequality.

Lemma 5. Assume that wi(t) 2 0, i = 1,2,...,s, te[«, a] and
t s ki
wi(t) < BJ Y wio (x))dx + C, tela, b],
L i1
where B and C are nonnegative constants. Then

w{t) £ Cexp (BK(t — a)), te[a,b].

Proof. It follows from the theory of integral inequalities that w(f) < W(1), te
€ [oc, b], where W; are functions satisfying the equations

Wi =8[ ¥ 3w )i+ C, refab],

qa i=1j=1

(1) = w(1), telaa].
It is easy to see that the functions W, are nondecreasing for € [a, b]. This yields
t s ki t s
W) <B| Y Y W(x)dx+ C=B| Yk W(x)dx+C, tela b].
ai=1j=1 ai=1

Now, after simple calculations, the result follows from Gronwall’s inequality.

Lemma 6. | y(t) — P(t)| = 0(h) and |y'(t) — P'(1)| = O(h) as h — 0 for t € [a, b]-
Proof. Integrating (1') and (4) we obtain

¥(1) = (@) + j 1) dx tefab],

t t
P(1) = P(a) + J f(P(a(x))) dx + f dy(x)dx, te[a, b].
Subtracting these equations and using H,; we get
t s ki
) = PO = [ M3 X o) = Pl o) fox + €
a t=1J=
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where C = (b — a)sup {|[d\(x)] : x € [a, b]}. Putting wi(t) = |y{r) — Pi(1)|, we
obtain from Lemma 5 that

wi(t) £ Cexp (MK(b — a)),

i=1,2,...,s This proves the first part of the lemma. The second part follows
from the inequality

[y'(®) = P = M[3@0) - PE@)] + |du)], te[ab].
Lemma 7. ¢*(1) = e(t) + 0(h) as h — 0 for t € [a, b].
Proof. Integrating (5) and (8) and subtracting the resulting equations we obtain
Jet) - et(0)] < f D516 ) ~ DA(PE()) )] o +
), te[a,b].

+ 3

yi(t) = Py1)] + |yi(a) — Pi(a)
Putting E = sup {[e*(a(x))| : x € [a, b]} we get
|D £i(3(a(x))) &(3(«)) — D f{P((x))) e*(a(x))| <

= [D£i(3(a(x)) e(@(x)) — D f{3(&(x))) e*(@(x))| +

+ | D f(5(a(x))) e*(@(x)) — D fi(P(a(x))) e*(5(x))| <

< Me(x(x)) — e*(a@(x))| + ME|5(a(x)) — P(&(x))] -
Hence, in view of Lemma 6, :

ledt) — €f(1)] = M j ' Z jiiei(ai,j(x)) — &} (x)| dx + O(h)

as h = 0. Now the desired conclusion follows from Lemma 5.

Proof of Theorem. The theorem follows immediately from Lemmas 3, 4, and 7.
Compare also the proof of Theorem 2 in [6].

4. NUMERICAL EXAMPLES
Example 1 (Hill [4]).
y(t)y = =L + 20)]*20% ) refo0.1].
y0) = 1.
The exact solution is y(1) = —exp (1).
Example 2 (Bellman, Buell, Kalaba [1]).
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() = — (1 — exp(—1) — 1) + [oos() + sin (¢ — exp (=) = 1]
te[0,1],
y(t) = sin (1), te[-2,0].
The solution is y(1) = sin (7).
Example 3.
y'(t)= —2tan (t/2) y*(t[2), te[0,1]
y(0) =1.
The exact solution is y(z) = cos (¢).

Example 4.
y'(t) = exp (y(a(t)/(t* + 4t + 3), 1€[0,1],
yt) =ln(2+1), te[—1/2,0],

where o(f) = ¢t — 1/(2 + t). The solution is y(¢) = In (2 + ?).
The results of computations are given in the tables below, where E: = e,,(b) -
- e,’f(b). These results confirm the Theorem given in § 2.

Table 1. Results for Example 1

h ey (1) ef() E/n?
272 0-087 289 —0-421 262 813
273 0-067 509 0-028 448 2:49
274 0-023 172 0-034392  —0-57
273 0-015 584 0014799  —0-80
276 0-007 698 0-006 959 3-03
277 0-003 827 0-003 384 725

Table 2. Results for Example 2

h ey(1) ex() E[R?
272 —0-120152 —0-042020 —1-25
273 —0-072 510 —0-048020 —1-56
274 —0-039 603 —0-032947  —1-70
2753 —0:020 665 —0-:018 941 —1-76
276 —0-010 551 —0-010114  —1-78
277 —0-005 328 —0-005218 —1-78
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Table 3. Results for Example 3

h e, (1) eX() E|h?
272 —0-269 199 —0160093  —1-74
273 —0-126 507 —0-131 445 032
274 —0-057 637 —0-063 532 1-51
275 —0:027 118 —0-028 893 1-82
276 —0013114 —0-013 578 1-90
277 —0-006 442 —0-006 561 1-93

Table 4. Results for Example 4

h e, (1) ef(1) E/h?
272 —0-055 766 —0-030374  —0-41
273 —0:030 568 —0023474  —0-45
274 —0:016 092 —0-014165  —0-49
275 —0-008 262 —0-007763  —0-52
276 —0-004 180 —0-004 056  —0-51
277 —0-002 088 —0-002 064 —0-40
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Souhrn

ODHAD GLOBALNI CHYBY NUMERICKEHO RESEN{
ZPOZDENI DIFERENCIALNI ROVNICE EULEROVOU METODOU

ZDZISLAW JACKIEWICZ

V ¢ldnku je pouzita metoda Zadunaiského k odhadu globdlni chyby vzniklé
pii numerickém feSeni soustavy zpozdénych diferencidlnich rovnic Eulerovou
metodou. Je uvedeno nékolik numerickych priklada.

Author’s address: Prof. Zdzislaw Jackiewicz, Department of Mathematics, University of Ar-
kansas SE 301, Fayetteville, AR 72701, USA.
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