
Aplikace matematiky

Karel Prokop; Štefan Chochol
Algorithms. 48. TRANSPORT. Systems of material flow

Aplikace matematiky, Vol. 28 (1983), No. 2, 156–160

Persistent URL: http://dml.cz/dmlcz/104019

Terms of use:
© Institute of Mathematics AS CR, 1983

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/104019
http://dml.cz

SVAZEK 28 (1983) A P L I K A C E M A T E M A T I K Y ČÍSLO 2

48. TRANSPORT

SYSTEMS OF MATERIÁL FLOW

Dr. KAREL PROKOP, CSc, Dr. ŠTEFAN CHOCHOL

Výzkumný ústav zemědělské techniky, 163 07 Praha 6 - Řepy

The system considered has steady elements, points, and moving elements, machines.
There are two sorts of points and machines in the system. A source is a point where
(continuous) material is produced and a sink is a point where material is absorbed.
A vehicle is a machine used for transporting material from point to point and a loader
is a machine used for loading or unloading vehicles with material at a given point.
At every point there is a queue vehicles and a queue loaders. The machines enter
the queues according to regimes seizel and seizev, respectively. The points are
connected by branches which represent ways; every branch leading from a certain
point belongs to its set contacts and has two attributes: its endpoint and a distance
between this endpoint and the point from which the branch leads.

Every vehicle moves along branches and stops at points. It is released from a point
if the condition reddy is satisfied which means that the vehicle is either full or empty
according to whether the point is a source or a sink. If a vehicle stops at a point
it is gradually served by some loaders, the service being loading in case the point
is a source or unloading if the point is a sink. The vehicle must wait in the queue
vehicles if all loaders are busy. Every vehicle has its total of material, its capacity
(maximum possible total), its route through the system and its procedure move
which determines travelling along various branches. The route contains stops repre­
senting points to be met. The latest stop of a vehicle is referenced by its attribute
pointer. Vehicles can be e.g. trucks, ships, trains etc.

A loader is either a simple loader (siloader) having some rate of transport (e.g.
moving chain transporting material from or to a vehicle) or a loader with regenera­
tion (regloader) which has a reservoir of certain volume that must be either refilled
or reemptied, respectively, during some time called regeneration. As an example
of a regloader we can give a combine harvester or a sowing machine. There is an
interaction (lasting duration time units) between a loader and a vehicle during
which the former will change the latter by adding a portion of material to the vehicle's
total. Regloader's duration and portion are equal to its loadduration and ± volume,

156

respectively. When there are no vehicles at disposal, the loaders wait in the queue
loaders.

The machines waiting in queues record the total waiting time; the vehicles must
distinguish between the waiting time for loading and that for unloading, the latter
being called unldwaiting. The distinguishing is performed at points. Every machine
has its place referring to the point where this machine is actually placed. If one forms
a system then every machine X must be placed at some point P by a statement
P. seize (X); the activity of the system is started by the activation of all loaders
at some source P by a statement P. start;

SIMULATION class TRANSPORT;

begin
class point; virtual: procedure seizel, seizev, start, record;

boolean procedure ready;
begin ref (head) loaders, vehicles, contacts;

procedure seize (X); ref (machine) X;
begin X. place :— this point; X. enter (this point) end;

loaders : — new head; vehicles :— new head; contacts :— new head
end ** of point **;
point class source;
begin procedure start;

L: inspect loaders, first when loader do
begin activate this loader; go to Lend;
procedure record (V); ref (vehicle) V; V. record;
boolean procedure ready; ready := current qua vehicle, full;

end ** of source **;
point class sink;
begin boolean procedure ready; ready := current qua vehicle, empty;

procedure record (V); ref (vehicle) V;
inspect Vdo unldwaiting := unldwaiting + time — waitstart;

end ** Of sink **;
process class machine; virtual: procedure enter;
begin real waiting, waitstart; ref (point) place;

procedure record; waiting := waiting + time — waitstart;
procedure wait;
begin waitstart := time; enter (place); passivate end;

end ** machine **;
link class branch (endpoint, distance);

ref (point) endpoint; real distance;
link class stop (object); ref (point) object;
machine class loader;

157

virtual: real procedure portion, duration, regeneration;
begin procedure enter (P); ref (point) P; P. seizel (this loader);

procedure change (V); ret (vehicle) V;

inspect Vdo total := total + portion (V);
out; inner; while true do
begin hold (regeneration);
inspect place, vehicles.first when vehicle do
begin out; place, record (this vehicle); hold (duration (this vehicle));

change (this vehicle); activate this vehicle
end otherwise wait end ** Of loader **;
loader class regloader (volume, loadduration);
real volume, loadduration;
begin real procedure duration(V); ref (vehicle) V;
duration := loadduration;
end ** Of regloader **;
regloader class rgldso;
begin real procedure portion(V); ref (vehicle)V;

portion := volume,
if p/tfee in sink then ERROR;

end ** Of rgldso **;
regloader class rgldsi;
begin real procedure portion(V); ref (vehicle)V;

portion := —volume;
if p/Oce in source then ERROR;

end ** Of rgldsi **;
loader class siloader (rate); real rate;
begin real procedure regeneration; regeneration := 0;

real procedure duration(V); ref (vehicle)V;
duration := rOtc x ahs (portion(V));

rate : = \\rate
end ** of siloader **;
siloader class sildso;
begin real procedure portion(V); ref (vehicle)V;

inspect Vdo portion := capacity — tOtO/;
if p/Oce in s/nfc then ERROR;

end ** s//<isO **;
siloader class sildsi;
begin real procedure portion(V); ref (vehicle)V; portion := —V. total;

if p/<2ce in source then ERROR;
end ** Of 5//J5/ **;
machine class vehicle (capacity); real capacity;

virtual: boolean procedure empty, full; procedure mOve;

158

begin real unldwaiting, total; ref (head) route; ref (stop) pointer;
procedure enter(P); ref (point)P; P. seizev (this vehicle);
pointer :— route, first; if pointer = = none then ERROR;
while true do
begin while "1 place, ready do

inspect place, loaders, first when loader do
begin out; record; hold (duration (this vehicle));

change (this vehicle); activate this loader
end otherwise wait;

begin ref (point) pi; ref (stop) pt; pt :— pointer, sue;
if pt = = none then pt :— route, first;
pi :— pt. object; move (pi); place : — pi; pointer :— pt

end end end ** Of vehicle **; end ** Of TRANSPORT**;

Let us introduce an example which is often met in agriculture [1]: the system
has one pair of points, the first one being a source psource, where all R loaders are
regloaders, and the second one is a sink psink, where all S loaders are siloaders.
There are V vehicles moving through the system. The regeneration time of loaders
and the traveling time of vehicles are random numbers normally distributed, other
values being constant; all parameters are read from the computer input. The regime
of every queue is FIFO except that of the vehicles at the psource where the ordering
is according to the vehicle's total. A vehicle is full if its total differs from its capacity
by less than the maximum volume of the regloaders. This quantity is called safetyvol.
A vehicle is empty when its total is less than minvol, the minimum volume of reglo­
aders. Let us mention that the procedure move need not use contacts which can be
let empty.

TRANSPORT class TR(R, S, V, U, Ul, U2, simperiod);
integer R, S, V, U, Ul, U2; real simperiod;

begin integer I, J; real safetyvol, minvol; ref (head) pair;
ref (point) psink, psource; ief(vh)Y;

rgldso class rgld (pi, p2); real pi, p2;
begin real procedure regeneration;
regeneration := normal (pi, p2, U); end;
vehicle class vh (/pi, lp2, gpl, gp2); real /pi, lp2, gpl, gp2;
begin procedure move(P); ref (point)P;

hold (if place m source then normal (/pi, lp2, Ul)
else normal (gpl, gp2, U2j);

boolean procedure full; full := total > capacity — safetyvol;
boolean procedure empty; empty := total < minvol;

end ** Of vh **;
source class solp;
begin procedure seizel(L); ref (loader)L; L. into (loaders);

159

procedure seizev(V); ref (vehicle)V;
begin ref (vehicle)X, XX; V into (vehicles); X : - XX : - V;

for X :— X. pred whileX = / = none do
if X. total < V. total then XX :— X else go to exit;
exit : if XX = / = Vthen V precede (XX)

end;
end ** Of sO/p **;
sink class silp;
begin procedure seizel(L); ref (loader)L; L. into (loaders);

procedure seizev(V); ref (vehicle)V; V. into (vehicles);
end ** Of si/T **;
pOir :— new head; psource :— new solp; new stOp (psource). into (pair);
psink :— new si/p; new stop (psink). into (pair); minvol : = 1000000.
for 1 : = 1 step 1 until S do
psink. seize (new sildsi (inreal));
for I : = 1 step 1 until V do
inspect new vh (inreal, inreal, inreal, inreal, inreal) do

begin psource. seize (this vh); route :— pair end;
for I : = 1 step 1 until R do
inspect new rgld (inreal, inreal, inreal, inreal,) do
begin psource. seize (this rgld);

if volume > safetyvol then safetyvol : = volume;
If volume < minvol then minvol : = volume

end;
for Y:— psource. vehicles, first, Y. sue while Y=/ = none do
if capacity < safetyvol then ERROR;
psource. start; hold (simperiod)
end *** Of TK ***;

The classes presented were tested at IBM 370/138, ICL 4 - 7 2 and CDC 3300
computers and used for optimization of the plant production in the Czechoslovak
agricultural farms and cooperatives. Simulation of one shift of grain harvest with
two combine harvesters, two trucks and one belt transporter took approximately 2
seconds of CPU-time.

Acknowledgement. The authors thank Dr. Evžen Kindler, Dr. Marek Malík
and Ing. Antonín Mojka for their effective help and stimuli during the development
of the presented classes.

References

[ll Š. Chochol, K Prokop, M. Malík, E. Kindler: Užití jazyka Simula 67 při řešení některých
problémů mechanizované zemědělské výroby (Use of Language SIMULA 67 for solution
of some problems of mechanized agricultural production — in Czech). In: Simulace systémů
'78, Dům techniky ČSVTS, Ostrava 1978, pp. 212-217.

160

		webmaster@dml.cz
	2020-07-02T04:48:54+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

