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BUCKLING OF ANISOTROPIC SHELLS I

ANUKUL DE

(Received August 27, 1981)

1. INTRODUCTION

The solution of buckling of cylindrical shells in case of isotropic material is known
from the literature on shells, e.g. Fliigge [1]. Singer and Fershcher [3] solved the
buckling of the orthotropic conical shell under external pressure. Singer [2] solved
the buckling of orthotropic and stiffened conical shells.

The object of this paper is to investigate the differential equations of the buckling
problem for anisotropic cylindrical shells under the most general homogeneous
stress action. The corresponding equations for isotropic shells are obtained as a spe-
cial case.

The solution of the differential equations of the buckling problem for anisotropic
shells without shear load in case of two way compression is found.

Solution for isotropic shells is deduced as a special case, the results being identical
with known results, cf. Fliigge [1].

2. THEORY
The equations of equilibrium in case of buckling of a circular cylindrical shells,
see Fliigge [1], are given by
(1) aN} + aN,,. — pa(u” — w') — Pu" — 2Tu"" = 0,
(1b)  aN, + aN,, — M, — M, — pa(v" + w) — Pv” — 2T(v" + w') = 0,
(1c) Mg + M, + M, + aN, + pa(u’ — v + w") + M, + Pw" —
—2T(v — w") =0,
where () and () indicate a(0/éx)( ) and (8/d¢) ( ), respectively.

The shell is simultaneously subjected to three simple loads (Fig. 1):
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Fig. 1.

(i) a uniform normal pressure on its wall, p, = —p;
(ii) an axial compression applied at the edges, the force per unit circumference

being P;

(iii) a shear load applied at the edges so as to produce a torque in the cylinder;
the shearing force (shear flow) is T.
The forces N and the moments M in terms of displacements u, v, w in anisotropic
plywood shell, see Fliigge [1], are given by
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where the rigidities are given by
(i) extensional rigidities:

(3a) D, = E;t, + 2E,t,,
D, = E,t; + 2Et,,
D, = E;

(ii) shear rigidity:
(3b) D,, = Gt ;
(iii) bending rigidities:
(3¢) K, = SlE(® — ) + Eifj],
K

1 3 3y 3
¢ 112[E13(t — 1)+ Ez’n] s
K, =5E&;

(iv) twisting rigidity: .
(3d) K,, = 15G°,

in which E,, E,, E, and G are four moduli of elasticity and ¢ = t, + 2t, (Fig. 2)
is the thickness of the shell.

Fig. 2.

Substituting (2) in (1), the differential equations for the buckling problem of an
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anisotropic shell appear in the following form after proper simplification:

(4a) U+ A+ AT 4 Agw A+ k(A + W) —

—q;(u" — W) = gu" — 2q;u”" =0,

(4b) Asu'" + 0" + Ag0" + W'+ ky[3450" — Agn™] —
— Ag[q,(v"" + W) + g0 + 2g5(v" + w)] =0,

2]

)

(4¢) Ao’ + 00+ w + k[Aqu'" — Agu” — Agt” + Agw"”" +

+ 241,0"" + AW+ 2w+ w)] +

+ Ag[g (u' — v + W) + gow” — 2q3(t" — w")] =0,

where
D D. D
(5) A= =22, A, = Oyt Dxp Ay =
D, D, D,
.+ D )
A4=1_<_XQ, ASZD\+ x4P’ A()___D,\t,a
K, D, D
D K D 4
A, = 2230 g o D.(3Ky, + K,) ’
D,K, DK,
D, D, D(2K ., + K,)
A9 = —=, AIO = S All = _L_wr___
D, D, D,K,
D.K
A, == 2
DK,
and
K pa P
6 k :hx’[___*,q:_,qz_'
© e T BT "

The equations (4) describe the buckling of a cylindrical shell under the most general

homogeneous stress action in the anisotropic case.

It is easy to observe that the parameters defined by equations (6) are small quantities.
For k, it is obvious, since we are interested in thin shells where 1 < a. The three load
parameters g are approximately the elastic strains, in the limiting case, caused
by the corresponding basic loads. Since all our theory is based on the assumption
that such strains are small as compared with unity, we shall neglect the squares and

higher order terms whenever possible.
Substituting

(7) t,=0, ty=t, E, =E, =

(v = Poisson’s ratio)

__E
2(L +v) ’
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the equations (4) and the dimensionless parameters given by (6) reduce to the corres-
ponding equations (7) and (6) of Fliigge [1] for the isotropic case.

(A) SOLUTION FOR SHELLS WITHOUT SHEAR LOAD

Two way compression

When there is no shear load on the shell (T = 0, hence g5 = 0) the equations (4}
admit a solution of the form

(8) u = Acos mg cos Ax[a ,

v = Bsin mesin Jx[a,

w = Ccos mg sin ix/a,
where b
9) 2 = nnal, | = length of the shell and n is an integer .

The solution (8) describes a buckling mode with n half waves along the length
of the cylinder and 2m half waves around its circumference. Although this is far
from being the most general solution, it is the one which fulfils reasonable boundary
conditions.

It is evident that the solution (8) satisfies the boundary conditions

v=w=0 at x=0 and x=1.
Also
N, =M,=0 at x=0 and x =1,

which shows that the solution (8) represents the buckling of a shell whose edges are
supported in tangential and radial directions, but are neither restricted in the axial
direction nor clamped.

Substituting the solution (8) into the differential equation (4) [q; = 0], the tri-
gonometric function drop out entirely and we are left with the following equations:

(10a) A[2? + (Ay + kyAy) m? — q,m* — q,A*] + B[—A,Am] +
+ C[—A4; — k(2> — Ay im?) — q,2] =0,
(10b)  A[—Asim] + B[m? + (Ag + 3kyA4;) 2> — q Agm® — q,A,0%] +
+ C{m + k;Aghi*m — q,Agm] = 0,
(10c) A[ = Ayl — ky(A2® — A7Am?) — q,A01] +
+ B[m + k,Agi*m — q,Aom] +
+ C[1 + ky{Agi* + 24,,22m* + Apy(m? — 1) — Ag(qm® + q,22)] = 0.

The equations (10) are three linear equations with buckling amplitudes A4, B, C,
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as unknowns and with the brackets as coefficients. Since the equations are homoge-
neous, they admit, in general, only the solution A = B = C = 0, which shows that
the shell is not in neutral equilibrium. The non-vanishing solution A4, B, C is possible
if and only if the determinant of the nine coefficients of the equations (10) is equal
to zero. Thus the vanishing of this determinant is the buckling condition of the shell.
Whenever the buckling condition is fulfilled, any two of the three equations (10)
determine the ratios 4/C and B/C and thus the buckling mode according to equation
(8). As in all cases of neutral equilibrium, the magnitude of the possible deformation
remains arbitrary.

The buckling condition contains four unknowns: the dimensionless loads g, and
q, and the modal parameters m and A. Also we know that m must be an integer
(0,1, 2,3,4,...)and 2 must be an integer multiple of nafl (n = 1,2, 3,4, ...)..

Thus we can write the buckling condition separately for every pair m, A fulfilling
these requirements, and consider it as a relation between ¢, and g, which describes
those conditions of the two loads for which the shell is in neutral equilibrium. When
we plot these equations as a curve in the g; ¢,-plane, we obtain the diagram like
Fig. 3, which can be interpreted as follows: The origin g, = g, = 0 represents the
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unloaded shell. When the load is gradually applied the corresponding diagram
point moves along a certain path, as shown by the dotted line. As long as it does not
meet any of the curves, the shell is in stable equilibrium, but as soon as one of the
curves is reached equilibrium becomes neutral with the buckling mode defined
by the parameters m, A of this curve. The stable domain in the q,g,-plane is, there-
fore, bounded by the envelope of all the curves, which is shown by a heavy line
in Fig. 3.

The coefficients of the equations (10) are linear functions of ki, qy, ¢, The ex-
panded determinant is, therefore, a polynomial of the third degree in these para-
meters. Since they are very small quantities it is sufficient to keep only the linear
terms and to write the buckling condition in the following form:

(11) Cy + Crky = Cyqy + Cuq, - '

The equation (11) describes a straight line in the g,g,-plane and the limit of the
stable domain as shown in Fig. 3 is a polygon consisting of the sections of straight
lines for various pairs m, 1.

The coefficients C,, C,, C3 and C, of the equation (11) can be found by really
expanding the determinant and putting it equal to zero. Since C; turns out to be
proportional to A, we may drop the term within all other coefficients, thus obtaining
(see Fliigge [1])

(12a) Cy = Al — A34,0) 2%,
(12b) €, = [Aga* + 24,,°m* + A,m*] [AA* + 24,302 m* + Aym*] —
— Ag(A3Ag + A o) 2° — 22*m*[Ag + Ajo — As — A3(AsAs + AgA7)] —
= 224, Ag + 441,45 + Af(Ag + Ag — Ayg)] — 24,4,,m° +
+ [34,A4, + Agdg + 24,,A4,5] 2Pm? + A A,,m*,

(12¢) Cy = m*[Ag{Am* + AJ* + (1 + A As — AZ) 22m?}] +
+ APm?[2(As + Ayo) + A1o(245 — Ayo) + Ag — Ao] — A Agm*,
(12d) Co = P[Ag{AA* + Aym* + 24,,02m?} + A;m?]

where A, A,, A3, ..., A;, are given by (5) and
(13) Aps =1+ A Ag — AyAs .

From the formulas (11) and (12) the stability curve may easily be constructed
when [ and k, are given.

3. PARTICULAR CASE

In particular, substituting (7) in the equations (10), we get the corresponding
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equations for the isotropic case which are identical with the known results, see
Fligge [1] (equation (10)).

By the same substitution the equations (12) give the coefficients Cy, C,, C;, Cy
as follows:

(142 c= 1t -,

(14b) C, = ! ; Y [(22 + m?)* = 2(v2° + 32%*m? + (4 — v) 2m* + m®) +
+ 2(2 — \') 22m? + 1714] s

(14c) Cy = ! ; 4 [m*(2% + m?)? — m*(32% + m?)],

(14d) Co= 1 LA + w2+ )],

Except for the common factor (4(1 — v)) which can be cancelled throughout
from (11), the equations (14) are exactly the same as in Fliigge [1] (equation (12)).

4. NUMERICAL RESULT

From the formulas (12) and (11) the stability curve may easily be drawn when /
and k, are given.

Taking t; = 3cm, t, = 2cm, t = t, + 2t, = Tcm, k; = 1073, and considering
the shell to be made of the same material as that of Gaboon (Okoumme’) — 3 ply,
so that

Il

E,
E,

1.28 x 10%, E, =0.11 x 10%,
0.014 x 108y, = 0.085 x 10%,

see Timoshenko and Woinowsky-Krieger [4], the buckling diagram of an aniso-
tropic cylindrical shell subject to two way thrust is sketched (Fig. 4) and the following
conclusion may be drawn.

Although the load and the basic stress system has axial symmetry, the buckling
mode not (m # 0) but it develops nodal generators. Their number increases as ¢,
does, and is higher for thinner shells.
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sor in Mathematics, Tripura Engg. College, Tripura, India, for his kind help and
encouragement during the preparation of this paper.
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Souhrn

STABILITA ANISOTROPNICH SKOREPIN

ANUKUL DE

V cldnku jsou formulovdny diferencidlni rovnice pro stabilitu anisotropnich vél-
covych skofepin. Z téchto rovnic je nalezeno feSeni problému pro anisotropni
skofepiny bez smykového zatiZeni v pfipadé soucasného radidlniho a osového tlaku.
Odpovidajici vysledky pro isotropni problémy jsou odvozeny jako specidlni ptipad.
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