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ON CONVERGENCE OF HOMOGENEOUS MARKOV CHAINS

PETR KRATOCHVIL

(Received December 24, 1981)

In the paper we study the validity of an inequality, which may be useful in in-
vestigating the character of convergence of distributions in Markov chains.
Let P = (p;;) be a finite stochastic matrix, ) p;; = 1, and let p,, .., = p,Pand

J
Pis2 = Pi1 P berow vectors of distributions of probabilities in the corresponding
Markov chain. We denote the matrix-transposition by a prime and the norm of
a vector X = (x;, x,,...) by |[x|| = Y|x;|. The corresponding norm of the matrix P

is “P” = max Y p;; = 1, therefore
17

(1) “Pt+2 - Pr+1“ = ”(Pr+1 - Pr) P” = ”P1+1 - pt” .

With the help of simple calculations it is easy to prove that even the strict inequality
holds for two-state Markov chains in (1) in nontrivial cases. Professor Alladi Rama-
krishnan*) has conjuctured that the strict inequality holds for every irreducible
aperiodic homogeneous Markov chain**). However, the conjecture turns out not
to be true in general. We give a necessary and sufficient condition for its validity
in the following

Theorem Let X,,t = 1,2, ..., be an irreducible aperiodic homogeneous Markov
chain with a finite state space S = {s,, 55, ..., 5;}. Denote the absolute distributions

by p(i) = P(X, =s,), s;€S, and the row vector by p, = (p(1), p(2), ..., p(k))
at a time t.
Then the strict inequality

©) T peea) = 2] < 3 i) = )

*) Director of The Institute of Mathematical Sciences, Madras.
**) Private communication by F. Zitek.
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holds for each nonstationary p, if and only if the product PP" is a positive matrix,
i.e. if and only if for each pair of distinct states s;, s; €S, i # ], there is a state
S € S such that there are transitions to the state Sy, Pim > 0, Pjm > 0.

Remark. In the case of a two-state Markov chain, the assumptions of Theorem
imply positivity of the matrix P, therefore (2) is satisfied as we have mentioned.
Introduce a set of vectors

K k
Z={x;x=(x,X3 %), Yx;=0 and Y |x]|>0}.
=1 i=1

In the proof of Theorem, we shall use the following

Lemma. Under the suppositions of Theorem, the inequality~(2) holds for each
nonstationary P, if and only if

k k
(3) Z[Z ,p,,] < ]x,~| for each xeZ.

Proof of Lemma. Sufficiency of the condition (3). Put x; = p,. (i) — p,(i).
Then x e Z and (3) implies (2) immediately.
Necessity of (3). Let the relations (2) be not true, i.e. let there exist b € Z such that

Kk k
i=21 Imgxbmpmi N igllbi[ ’

(Notice that the left hand side cannot be greater than the right hand side:

k k k k
' mpmil é Z Z Ibml Pmi = Z lme.Z pmi')
” i=1m=1 m=1 i=1

Denote by © = (nl, Ty, ..., T;) & stationary distribution of the chain under consider-
ation. The irreducibility implies 0 < n; < 1 for each i = 1,2, ..., k. Since (1) is
is a simple characteristic root of P, the rank of the matrix of the system

"M"
Tl[\/]a-

k

(4) Y ZiPjm — Zm=by, m=12,..k

j=1

' k
of linear equations is equal to k — 1. Hence, Z(Z ZiPjim — Zm) =0 =) b,

m=1j=1 m=1
implies that the system (4) possesses a nonzero solution z = (zy, z,, ..., 7). The
vector z cannot be proportional to 7, for 7 is a solution of the corresponding homo-
geneous system. There is a sufficiently small positive constant ¢ such that x,, =

k
=7, + ¢z, >0 forall m=1,2,..., k Denoted = ) x,, and p(m) = x,[d. The
m=1

vector p, = (p,(1), pi(2). ..., p,(k)) is not proportional to =, therefore it is a non-
stationary distribution and it is a solution of a system analogous to (4) with the right
‘hand sides replaced by cb,[d, m = 1,2, ..., k. We get
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i§1|pf+2(i) - pt+1(l.), =

k k
lel(j) PimPmi — Z—lpl(]n) pnu’l =

d)Z | me, ZZ,PW —z,)| = d)Z I Z Pribm| =

i=1lm=1 i=lm=1

- (c/d)élb,.l = @) 13 2= 2 = £ 50— 0,

which means that (2) is not true.

Proofof Theorem. Necessity of the condition. Suppose that PP’ is not positive, i.e.
thereare sand u such that Lp”puJ =0.Putx, = 1,x, = —landx; = Of01 s *+iF u.
Then Z x;=0and the vecjt;)rx = (X X3, ..., x;) belongs to Z. However, Z ] Z xpj =
= ijl;lt - pm] Z (psi + [ p,,,l) = 2 as p,; or p,; equals zero for allll 1'I{l_le identity
il |=xlj| = 2 means thdt (3) is not trug. According to Lemma. (2) is not satisfied, either.
JSTl}ﬁciency of the condition. Denote M = {i;x; 2 0} and L = |{i; x; < 0}. Denote

k
for brevity ¢ = Y |x;|. We get
i=1

(5) N Yx;=— Y x;=cf2.

JjeM JjeL
For each i = 1,2,...,k, denote r, =) x;p;. 5; = x;p A={iir2s)
JjeM ]=L k k
B=/{i;r;<s;}, r=Yr,s=ys. The identities (3) xmp V: 2251‘:0/2,
ieA icA ki=1

and of course, Zr =c/2 -, Zs =¢[2 — 5. Weget )

JpJ«!"le —S[—

= Y (r; ——s)+2(9 —l)—(l —s)+(r—s)= (: ~€) Since both the num-

icA
bers r and s are in the square 0 < r < ¢/2,0 £ s £ ¢/2, the inequality 2(r — ¢) < ¢
is true.

Now, if (2) is not satisfied, then the equivalent condition (3) is not satisfied either,
which means 2(r — s) = ¢. Moreover, this identity holds if and only if r = ¢/2 and
s=0.de, if 0=c2—r=Yr=3 Yxpu O=s=Ys,=-3Y Yxp;

ieB ieB jeM icd icd jeL
The sum of the components of the nonzero vector x equals zero, therefore x, > 0,

x, < 0 for some suitable ve M and uelL, ie. p,;, = 0 for each ie 4 and p,; = 0
k

for each i € B. Hence ). p,;p,; = 0, which means that the product PP’ is not positive.
i=1

118



Souhrn
O KONVERGENCI HOMOGENNICH MARKOVOVYCH RETEZCU
PETR KRATOCHVIL

Necht p, znaci vektor rozlozeni absolutnich pravdépodobnosti v nerozlozitelném
aperiodickém homogennim Markovové fetézci s koneCnym prostorem stavi. Pro-
fesor Alladi Ramakrishnan navrhl nésledujici ostrou nerovnost pro normy rozdill

“P1+2 - Pt+1“ < EPH—I - lei .

V ¢ldnku je dokdzdna nutnd a postadujici podminka pro platnost této nerovnosti,
coz muze byt uZitené pfi zkoumdni charakteru konvergence rozlozeni v marko-
vovych fetézcich.

Author's address: RNDr. Petr Kratochvil, CSc., Matematicky ustav CSAV, Zitna 25, 11 567
Praha 1.
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