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SVAZEK 28 (1983) A P LI K A C E M ATE M A T I K Y ČÍSLO 2 

ON MEASURABLE SOLUTIONS OF A FUNCTIONAL EQUATION 

AND THEIR APPLICATION TO INFORMATION THEORY 

GUR DIAL 

(Received November 24, 1981) 

1. INTRODUCTION 

Let rn = {P = (Pi, ..., pn); Pi ^ 0, i = 1,..., n; £>,- = 1} for n = 1 be a set 
of all ^-complete probability distributions. Let P be the set of all real numbers 
and let I = [0, 1]. 

Consider measurable functions f, g, h, k: I -> P satisfying the system of functional 

equations 

(i.i) I 2X*.*) = I £/(**) *(>>,) + IK*d> 
i I i * i 

where X = (x1? ..., *„) e F,„ Y = (y1? . . . , ym) e Fw. 
The continuous solutions of (1.1) were given by Taneja [4]. 
The objective of this paper is to find the measurable solutions of (1.1). As an 

application, a joint characterization of Shannon's entropy and entropy of type /? 
is given. 

2. MEASURABLE SOLUTIONS OF (IT) 

In this section we will find the measurable solutions of system (1.1). This is done 
in the following theorem. 

Theorem 1. Iff, g, h and k are measurable solutions of (IT).for X e Fn, Ye Tm 

where n, m = 2, 3, then they are given by one of the following set of solutions for 
x e [0, 1]. 1st set of solutions: 

(2.1) h(x) = Bx + Ax log x , f(x) = Cx , 

(2.2) g(x) = Dx + AJCx log x , k(x) = (B — CD) x + Ax log x ; 

2nd set of solutions: 

(2.3) h(x) = Bx + A(x0 - x), f(x) = Cxp , 

(2.4) g(x) = Dx + (A/C) (x0 - x) , k(x) = (B - A) x + (A - CD) xp , 

where A, B, C and D are arbitrary constants and fi > 0 (1 =f= /? > 0) is a parameter, 
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In addition to the above two sets of solutions, we also get the trivial solution: 

h(x) = Bx , f(x) = arbitrary , g(x) = Dx and 

k(x) = Bx - Df(x). 

Proof. Substituting Y = (y, u, I - y - u) e F3 and Y = (y + u, I - y - u) e T2 

in (1.1), we get respectively 

(2.5) KKxiv) + h(xtu) + h(xt(l -y-U)) = 
i 

= lf(xd(g(y) + g(u) + o(i - y - «)) + Ik0";) 
i i 

(2.6) Z{h(Xi(y + u) + h(x{i - y - u))) = £f(Xi) (g(y + u) + 
i i 

+ a(l _ j , _ M) + J fe(x,) . 
i 

Subtracting (2.6) from (2.5), we obtain 

(2.7) ^(h(xty) + h(xtu) - h(xt(y + u)) = Yf(xt) (g(y) + g(u) - g(y + u)). 
i i 

Let us define for X e T„, n = 2, 3, t e I = [0, 1]: 

(2.8) 4.(0 = I > M - £ / ( * . ) 0(0-
i i 

By virtue of (2.8) it is easy to see that Ax(-) is additive on I, i.e. 

(2.9) Ax(y + u) = Ax(y) + Ax(u). 

It now follows from a result of Daroczy and Losonczi [3] that 

(2.10) Ax(t) = t Ax(l), t e I 

is a measurable solution. 

In order to obtain the expression for Ax (1), we will find the expression for the 
function 

(2.i i) E * ( * < ) - ! / ( * « ) » ( - ) • 
i i 

Substituting Y = (1, 0) and Y = (1, 0, 0) in ( l . l ) we get respectively 

(2.12) £ h(xt) + n fc(0) = £ /(x,) (a(l) + 0(0)) + £ fc(x;), 
i i i 

(2.13) I fc(x,) + 2n fc(0) = £ j ( x ; ) (0(1) + 2 0(0)) + £ fc(x,.). 
1 i i 

Subtracting (2A 2) from (2.13) we obtain 

(2-14) nfc(0) = £/(*,.) 0(0). 
i 
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Using (2A4), we transform (2.12) into 

(2.15) I *(*.) = I / ( * M - ) + !*(*.) 
i i i 

From (2.15) and (2.10) we get 

(2.16) IMv)-I / (x t)g(0 = ^M^) 
i i i 

for a l l X e F „ , n = 2,3 and tel. 

Let us substitute X = (x, v, 1 — x — v) e F3 and K = (x + v, 1 — x — v) e F2 

in (2A6). We obtain respectively 

(2.17) h(xt) + h(vt) + h((\ - x - v) 1) - (f(x) + f(v) + f(\ - x - »)) g(t) = 

= t(k(x) + k(v) - k(l - x - »)), 

(2.18) h((x + v)t)+ h((l - x - v) t) - (f(x + v) + f(\ - x - »)) g(t) = 

= t(k(x + v) - k(l - x - v)). 

From (2A8) and (2.17), we get 

(2.19) h(xt) + h(vt) - h((x + v)t) = (f(x) + /(») - f(x + »)) g(t) + 

+ t(k(x) + k(v) - k(x + »)) . 

For t e I, let us define 

(2.20) Bt(w) = h(wt) - f(w) g(t) - t h(w). 

Then using (2.20), we can write (2.19) in the form 

(2.21) Bt(x + v) = Bt(x) + B,(v) , for x, v, x + v e [0 ,1] . 

Again using the result of Daroczy and Losonczi [3], we have 

(2.22) B,(x) = x B,(l) . 

By substituting X = (1, 0) and X = (1, 0, 0) in (2.16) we get the relation 

(2.23) h(t)=f(l)g(t)+tk(l). 

Using (2.23), (2.22) becomes 

(2.24) h(xt) = f(x) g(t) + t k(x), for all x, t e I. 

Dividing (2.24) by xt (x +- 0, t 4= 0), we get 

h(xt) =f(x)g(t) | k(x)_ 

XI X t X 

Let ft-(x) = h(x)jxj1(x) = / (x ) /x , gt(t) = g(t)\t and kt(x) = /<(x)/x. 



Then we have 

(2.25) h1(xt)=f1(x)g1(t) + kx(x) . 

Putting first x = 1 and then t = 1 in (2.25) we get 

(2.26) /,,(*) =/1(l)^i(/) +.fciW» 

h1(l)=f1(l)g1(l) + k1(l). 

If fx(l) = 0 then (2.26) implies 

hx(t) = 11,(1) or h(t) = 111,(1) = At where A = h,(\) = h(\). 

In this case h is a homogeneous linear function. Now suppose t h a t / ^ l ) 4= 0. Then 
from (2.25) and (2.26) we obtain 

h1(xt)=^|)h1(t) + fc1(x)-^)/c1(l). 

Define/2(x) = f^jf^i), k2(x) = k,(x) - f2(x) ki(l). Then we have from the above 
equation that 

(2.28) lh(xt)=f2(x)h1(t) + k2(x). 

Since/, g, h, k are measurable functions, hence h±,f2, h1 and k2 are also measurable. 

The general measurable solution of (2.28) with hu f29 k2 measurable is given by 
(see Aczel [1]) 

(2.29) , ht(x) = h0(x) + a ; f2(x) = 1 ; k2(x) = h0(x) 

and 

(2.30) h,(x) = y eh0(x) + a , f2(x) = eho(x), k2(x) = a(l - efto(^) 

with an additional trivial solution 

(2.31) h,(x) = a , f2(x) arbitrary , k2(x) = a(l - f2(x)) 

where 7 4= 0 and a are arbitrary constants and h0 is an arbitrary measurable solution 
of the equation 

(2.32) h0(xt) = h0(x) + h0(t) . 

However the most general measurable solution of (2.32) is 

(2.33) h0(x) = A log x 

where A is an arbitrary constant. 

Thus the solutions (2.29), (2.30) and (2.31) together with (2.33), (2.28) and (2.25) 
give the required set of solutions. 
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3. APPLICATIONS TO INFORMATION THEORY 

Shannon's measure of information is defined as 

(3-D H(P) = - ]>> log p,, Pe r„. 
i 

A well known generalization of (3.1) is covered by the entropy of type /? and is 
given as (see [2]) 

(3.2) ^ ( P ) = (21-"-l)-1(Ip?-l), 0 * 1 , 0 > O , Per,,. 
i 

In terms of measurable solution of (1.1), we can define H(P) or HP(P) as 

(3.3) H(P) = XiHP,) 
I 

under suitable boundary and normalization conditions. 
In the following theorem a joint characterization of (3A) and (3.2) is given. 

Theorem 2. The entropies of distribution P under the conditions h(i) = h(0) 
and h(lj2) = 1/2 corresponding to the measurable solutions are (3.1) and (3.2), 
respectively. 

Proof. Putting x = 0 in (2.1) and (2.3) we have h(0) = h(\) = 0. Using ft(l/2) = 
= 1/2, the constant A becomes —1 and (2l~p — 1 ) ~ \ respectively. The result 
follows from (3.3). 

References 

[1] J Aczel: Lectures on functional equations and their applications. Academic Press, New York, 
' 1966. 

[2] J. Aczel, Z. Daroczy: On measures of information and their characterizations. Academic 
Press, New York, 1975. 

[3] Z. Daroczy, Losonczi: Uber die Erweiterung der auf einer Punktmenge additive Funktion. 
Publ. Math. Debrecen, 14 (1967) 239—245. 

[4] 1. J. Taneja: A joint characterization of Shannons entropy of type through a functional 
equation. Journal of Mathematical Sciences, (10, 1975), 69—74. 

S o u h r n 

MERITELNA RESEN1 JISTE FUNKCIONALNI ROVNICE 
A JEJICH APLIKACE V TEORII INFORMACE 

GUR DIAL 

V clanku jsou nalezena meritelna feseni jiste funkcionalni rovnice se ctyfmi 
neznamymi funkcemi. Jako jejich aplikace je dana spolecna charakterizace Shanno-
novy entropie a entropie /?. 
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