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1. INTRODUCTION

Let

(1.1) (X 1o oo Xigy)s oo (Ko o oos X))

be N (= ny + ... + n,) random observations with a continuous joint distribution.
We have the model X;; = U; + V;;; i=1,...,k; j=1,...,n; where U;, V;; are
independent random variables, V;; with a distribution function G. We shall test the
null hypothesis H, that U, = U, = ... = U, = 4 where 4 is a constant, the hypo-

thesis of independence, against some of the following two alternatives:
(H)U;=4;, i=1,...k, where 4;,4,,....4,

are constants, not all being equal. (The hypothesis of difference in location [3],
p. 67).

(Hy)U,, i = 1,...,k, are random variables with a nondegenerate distribution
function M. (The hypothesis of dependence or heterogeneity.) (Cf. [3], p. 75.)

H, may be interpreted as the hypothesis of no difference in location or that of ho-
mogeneity, respectively, according to if one tests H, against H, or H,.

Hy, v H, and H, U H, are perhaps two probabilistic approaches to the one-way
classification scheme. Both are very common, the former being known as the fixed
effects model, the latter as the random effects model. To test H, against H, the
Kruskal-Wallis test is widely used, along with the Wilcoxon two-sample test.

From the viewpoint of applications the fixed effects model is appropriate for small
k([1], [2]), n; large, and the random effects model useful for large k, n; small.

If U;, V;; are normal variables, the corresponding submodel of Hy U H; or of
H, v H,, respectively, is called a normal model.

The model Hy, U H,; will not be treated in the sequel.
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In the case of the model H, U H, we will apply the following measure of intraclass
correlation, introduced by Rothery [4]:

(1.2) 0. = P(Xy < min (X,;, X,;) or X; > max(X,;,X,;)),

where o # B(o, f = 1,...k), i +£j (i,j =1,...,n,), (I = 1,..., ng). This applica-
tion is correct by virtue of the exchangeability of the X,;’s with i fixed in (1.1), i.e.
the symmetry of their joint distribution. So each triple (X,;, X,;, X4,) has the same
density function.

Let

(1.3) (Ryzs o Rin)s ooos (Rags -y Ren)

denote the corresponding overall ranks of the pooled set of observations. Rothery
[4] proposed the following estimate

J?

(1.4 o= .CJSs

where o

(15) €= dnln, = DOV = n) +dn(n2 = 1) =13 3[Ry - R,
(1.6) Ss =1 3 nifn, = (N — n,)

and denoted

Ny

k N
(1.7) T=% Y Y |Ri—R,l.
) a=1i=1j=1

He showed that r, is an unbiased estimate of ¢.. He studied properties of the
measure and its estimator for a normal model. He showed that the method provides
a relatively powerful test of the null hypothesis in a normal population.

He considered an application when the observations are made on individuals
chosen from k distinct families. Likewise, an application concerning twins coming
from k distinct births (and families) had led me, simultaneously, to the derivation
of a recurrent formula for calculation of the distribution of the rank statistic

M=

d =

a

IRal - Ra2| >

1
which equals 47T for n, = 2(0 = 1, ..., k).
2. THE RANK STATISTIC

We shall now treat the case when n;, = n, = ... = n, = 2. Let us have k pairs
of observations
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(2.1) (115 X12)s +oos (K> Xi2) -

Pooling these pairs into one set of data
(2.2) X114 X125 o> Xt> Xp2 »

we consider their ranks and regard them as a permutation

(23) Rip, Ry ooy Rigs Riz s
where Ry, i = 1,...,k;j = 1,2, are the numbers 1, ..., 2k.
We compute ‘
k

(2'4) d =.leRil - Rizl >
or, which is the same,

k
(2.5) d =‘Zl|R,-(1) = Riz) »

=

or

k
(2.6) d =~~zl [Rity = Reiz)| »
where
(2.7) Ri1ys Ri2y -+ Riqry Riqz)

stands for the permutation (2.3) ordered by necessary intra-pair transpositions so that

(28) Ri(l) < Ri(2) forall i= 1, cooy k
and
(2.9) R11ys Ra2ys -5 Ry Ry

stands for the permutation (2.7) ordered by an extra-pair permutation so that,
in addition to

(2.10) R(il) < R(i2) forall i= 1, ey k »
we have also

(2.11) Ry < Ragy < -oo < Ry -

3. DISTRIBUTION OF THE STATISTIC UNDER THE NULL HYPOTHESIS .
As can be seen from (2.6), it will suffice to study only the random permutations
(2.9) in what follows, i.e. the random permutations (2.9) of the numbers 1, ..., 2k,
satisfying (2.10) and (2.11).

93



It can be seen easily that there are

2k)! :
3.1 (—=13..2k—-1
G k! 2* ( ._)
possible permutations (2. 9), each of them being equally probable under H,. .
The k-tuple of random variables R(11), - --» Rgipy Will be called a lower (ordered)
set, the k-tuple R y,), -.., Ry2) an upper set.
We derive easily that

k

k k
(3'2) d ‘. 'R(m - Ruz)] ZI(R(iZ) - R(il)) :-;R”Z) “-ZIR(“) =

k

=23 [(2i = 1) = Ryy] + k.

i.e. that the lower set determines d. The formula (3.2) implies moreover that d takes
on only the integral values of the same parity as k.

Let R(i1y, Ri21)s ---» Rypy be a lower set. Then Ry, belongs to the set {R(“, +
+ 1,..., 2k}, i.e. it can be chosen in 2k — R, ways.

The rank R.- 1. belongs to the set

{Ru—1,0) + Lo 2k} = {Rery Ry} »

ie. it can be chosen in 2k — Ry—y 4y — 2 = 2(k — 1) — Ry— {1, ways.
The rank R _, ,, belongs to the set

k

{Ru-2,1) + 1. 2k} — tkj l{Rm)’ R(j2)} -
=k
i.e. it can be chosen in 2k — Ry, ) — 4 = 2(k — 2) — R-,,1) ways. Etc.
At last, R, belongs to the set

k
{Runy + Loy 2k} — {Rm)s Ry} »
j=

i.e. it can be chosen in 2k — R(y;) — 2(k — 1) = 2 — Ry;, ways. Now it is obv10us
that the number of variants for the upper set is given by the product

(3.3) C= H (2i = Ry »

aslongas R(;;) < 2iforalli =1,..., k, and it equals 0 otherwise.
The number of the permutations (2.9) leading to a given d is given evidently by the
formula

(34) 0,(d) = Z,ﬁ (2i = Rgy)
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where the summation in Z extends over all
1 <Ry <Rayy < ... < Ryyy S 2k

Ripy <2, i=1,..k
k
k+2Y (2 —1 - Ryp)=d.
i=1

More generally, denote

k
(35) 0u(d | ¢) = Z.Hl(z" — Ray)
where the summation in Z extends over all
1 <Ry < Riopy <o <Ry <€

Ry <2, i=1,...k
k
k+2YQi—1—Ru)=d,
i=1

for &, k + 1 < ¢ <2k + 1, the number of the permutations (2.9) leading to the
given d under the condition that R, < ¢&,so that particularly Qk(d) = Qud |2k + 1).
It can be easily seen that

(3.6)  0ld]| &) = Y (2k — Reu)) Qus(d + 1 — 4k + 2Ry | Rary) -

Raery=k

According to this definition

0,(d|2)=1 for d=1, Qd]|2)=0 for d=+1, integer.
0,(d|3)=1 for d=1, Qd|3)=0 for d=+1, integer.

The formula (3.6) summarizes the following relations, which may be helpful
for numerical computation.

0,(d|3)=20,(d —3|2) for d integer
(3.7) 0,(d|4)= 0Q,(d|3)+1.0,(d —1]3) for d integer
0,(d|5) = Q,(d|4) for d integer

Q4(d|4) =30Q5(d — 5|3) for d integer

(3.8) 0(d|5) = 04(d|4) + 20,(d —3|4) for d integer
Qs3(d |6) = Q4(d|5)+1.Q,(d — 1]5) for d integer
0s5(d|7) = Qs(d|6) for d integer

and so on.
Further details of computation follow, after some practice, from Table 1, where
certain characteristics of Q,(d [ &) are indicated typographically. Observe, for example,
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a useful detail that Q,(d | &) = 0 for d > k?, and, particularly, that Q,(d) = 0 for
d > k?, i.e. that the largest value taken on by the statistic d (e.g. for

Ruy, =1, Rysy =2k, Roy =2, Rap=2k—1,...,
R(kl) = k, R{kZ) = k + 1)

is k2, which may be interesting not only for the computation.
In terms of (3.4) the probability distribution of d can be expressed as follows:

(39) P(d [ Ho) = 1.3..?k.(6(i:)2k -1

Table 1. Computation of numbers of permutations leading to a given value of the statistic d

0d| &

d=
k= ¢= 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

w
(=]
(]

W
—
[\

4 0 0 0 6
5. 0 2 4 6
3 6 1 4 4 6
7 1 4 4 6
5 0 0 0 0 0 0 24
6 0 0 0 6 12 18 24
4 7 0 2 8 14 24 18 24
8 1 6 12 20 24 18 24
9 1 6 12 20 24 18 24

4. TESTING THE HYPOTHESIS
It can be seen that under the alternative H, the statistic d tends to take on lower

values.
The critical region

(4.1) W, ={d =_:Y [Ris = Riof 5 d = (o)}
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where c(2) is, with respect to the fact that d is a discrete statistic, to be determined

so that

(4.2)

P(d

P(d

(See Figs. 1,2.)

§c(oc)|H0)§1
Se(x) + 1| Hp) > «

Values of c(oc) are presented in Table 2 for o = 0-1, 0-05, 0-025, 0-01, 0-005 and

k=5,...,20.

Table 2. Percentage points

(@)

k @ 01 005 0025 0-01 0005
5 11 9 7 7 5
6 16 14 12 10 10
7 23 2 17 15 13
8 32 28 24 22 20
9 41 37 33 29 27

10 50 46 42 38 34
11 63 57 53 47 43
12 76 70 64 58 54
13 8 83 77 69 65
14 104 96 9 82 76
15 121 113 105 97 91
16 140 130 120 112 104
17 159 147 139 127 121
18 178 166 156 144 138
19 201 187 177 163 155
20 222 208 196 184 174

5. A MONTE CARLO POWER STUDY

The power of the test with critical region

should be compared with those of the tests with critical regions

K
Y (Riy — Riz)? < ¢y(o) (the Kruskal-Wallis test),
i=1 .

™M=

1

]

I

- Ri2| = C(fl)
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(number of pairs separated by the sample median) < c¢,(a)
(the median test)

2 G) ) e

(the van der Waerden test).

It is difficult to compare them in the interesting case of small samples because only
different discrete sets of significance levels are available for each of the tests, although
for large k one need not be excessively anxious about this fact.

A simulation study was carried out with the following aims and properties:

The power of the test with critical region d < ¢(x) was compared with that of the
Kruskal-Wallis test for k = 5 and 10. The normal model with ¢ equal to 0-1, 0-2,
0-4, 06 and 0-8 was used. Approximate percentage points &(0-05) and &,(0-05) were
calculated for the respective tests using 500 realizations of the model for each of the
two values of k.

The power functions of the respective tests were estimated using 500 realizations
of the model for different values of k and .

The results of this simulation study are presented in Table 3. For k = 5 there is no
apparent difference in the power of the two tests, but for k = 10 the Kruskal-Wallis
test seems to be more powerful.

Table 3. Estimated power functions

k=S5 k=10

14 c(0:05) =10 ¢,;(0-05) =28  ¢(0-05) =49  ¢,(0-05) = 375

0 0-034 0-044 0-044 0-050
0-1 0-034 0-038 0-076 0-090
0-2 0-052 0-062 0-130 0-144
04 0-090 0-108 0-270 0-294
06 0-208 0-202 0-544 0-596
0-8 0-442 0-438 0-898 0-918

6. CONSISTENCY OF THE r-TEST

Let us return to the general formulation as stated in the introduction. We shall
prove the consistency of Rothery’s r.-test for H, against H, under some additional
assumptions on the joint density function. The alternative is thus modified.
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Let the following assumptions hold:
(a) G is absolutely continuous, g := G’ is continuous everywhere,
(b) g is positive everywhere,
(¢) g is an even function,
(d) g is decreasing in (0, + o0).

Remark 1. g(t) assumes the maximum in (— oo, +0) for t = 0 and is increasing
for 1 < 0.

Lemma. Let G be a distribution function with the properties (a)—(d). Then the
Sfunction

1(4) = f (Gt — 4) + (1 - G(1 — 4))?)dG(1)

of a real argument A (1) has a derivative I' continuous everywhere, w(ii) equals 2/3
for A =0, (iii) I(— 4) = I(4) for every 4, and (iv) I' > 0 for 4 > 0.

Remark 2. Hence I > 2/3 for4+0,I'"=0for4=0,and I’ <0 for 4 <O.
Note that I < 1 for every 4.

Proof. (i) Since
%(Gzo C )+ (L= G(i — A)) = (2 — 4G(t — 4)) g(t — 4),
|(2 — 4G(t — 4)) g(t = A)I < 2 max g(t) = const,

j 2 max g(t). g(1)dr < +o0,

r=4 r (G2t — 4) + (1 = Gt — 4))*) (i)t =

- B
- j T (2= 4G(= 4) gt — 4) g(0) dt
is continuous everywhere.
(i) The equality I = 2/3 for 4 = 0 may be proved on substituting u = G(t),
I= Jq @+ (1 —u))du.
(iif) Now, ’

I = J (630 + (1= G(0)) gt + d)d.

-
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On substituting u = —1 it follows that I(—4) = I(4) for every 4.
(iv) We have to prove that I" as expressed in (i) is positive for 4 > 0. On substi-
tuting + — 4 = u we obtain

I = j [2 = 4G(u)] 9(u) g(4 + u) du ,

and now partition this integral into a sum of the two integrals j'(iw and [5’ In the
second integral we substitute u = —u, thereafter we use in it the equalities G(—v) =
=1 — G(v), g(—v) = g(v) following from the assumption (c) and this integral
becomes

0
- f [2 - 4G(v)] g(v) g(4 — v)dv .
Replacing here v by v again and summing with the first integral, we obtain
0
I = J [2 = 4 G(u)] o(u) [9(4 + u) — g(4 — u)] du.
-0

Due to the assumptions (c), (d), 4 > 0 and since u < 0 in the domain of integration,
it holds that g(4 + u) > g(4 — u); so all the factors in the integral are positive and
hence I' > 0. Q.E.D.

Remark 3. For every distribution function G it can be proved that

limI(4)=1.
4=+
Proof. Viz.,
|G*(t = 4) + (1 — G(t — 4)))| £ 1 = const,

J- 1.dG(1)=1< +o0,

el

lim (Gt — 4) + (1 = G(1 — 4))?) = 1.

4+t

Remark 4. The foregoing lemma may be applied to the normal, logistic, double
exponential and Cauchy systems of distributions.

Theorem. Let g be a density function with the properties (a)—(d). Then g, defined
by (1.2) is greater than 2|3 under the modified alternative H,.

Proof. By the definition,
0. = P{[X; < X)) 0 (Xp < Xop)] © [(Xp > Xoi) 0 (Xp > X))} =
= Ey,, P{[(Xp < X)) 0 (X, < X )]V [(X, > X,)) 0 (Xp > X,5)] |Xm} =
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= EX,”EU, P{[(Vm > Xy — Ua) N (Val > Xp — Ua)] U
UV < Xpi = Up) 0 (Vy < Xpo = U] | X Up} =
= Ex, Ev{G*(Xp — U,) + [1 = G(X;, — U)J*} .
Next,
0c = Ey, Ep,Eu (G*(Vpy + Uy = U,) + [1 = G(Vy, + Uy — U,))} =

00
- EUBEU“I (Gt + Uy — Uy) + [1 = Gt + Uy — U} g(t) dr =

- 00

= Ey,Ep, (U, — Uy).

It can be seen that the expected value of any function I(A) which is even, increasing
for 4 > 0 and has a derivative continuous everywhere, may equal I(O) only if P(4 =
= 0) = 1, in our case only if P(U, — Uy) = 1, or in other words only if M is a de-
generate distribution function. Otherwise EI(4) > I1(0). The ThForem follows
from the Lemma and Remark 2. Q.E.D.

Remark 5. The estimator r, is consistent. Hence the consistency of the r -test
follows.
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Souhrn

NEPARAMETRICKY TEST NULOVE PAROVE KORELACE
ANTONIN LUKS

Autor aplikuje testové kriterium P. Rotheryho na statistickou analyzu pozitivni
korelace symetrickych dvojic pozorovdni. V tomto zvldStnim pripadé dospiva
k novym vysledkiim. Prdce konci obecnym ditkazem konzistence Rotheryho testu.
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