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SVAZEK28 (1983) A P L I K A C E MATE M Á T I KY ČÍSL02 

A NONPARAMETRIC TEST OF ZERO INTRAPAIR CORRELATION 

ANTONIN LUKS 

(Received November 5, 1980) 

1. INTRODUCTION 

Let 

(VI) (x11,...,xUl),...,(xkl,...,xknk) 

be N ( = « ! + ... + nk) random observations with a continuous joint distribution. 
We have the model Xtj = Ut + Vtj; i = 1, ..., k; j = 1, ..., nt, where Uh Vxj are 
independent random variables, Vu with a distribution function G. We shall test the 
null hypothesis H0 that Ux = U2 = ... = Uk = A where A is a constant, the hypo­
thesis of independence, against some of the following two alternatives: 

(H1)Ui = Ai, / = ! , . . . , k, where Ai,A2,...,Ak 

are constants, not all being equal. (The hypothesis of difference in location [3], 
p. 67). 

(H2)Uh i = 1, ..., k, are random variables with a nondegenerate distribution 
function M. (The hypothesis of dependence or heterogeneity.) (Cf. [3], p. 75.) 

H0 may be interpreted as the hypothesis of no difference in location or that of ho­
mogeneity, respectively, according to if one tests H0 against Hx or H2. 

H0 u H! and H0 u H2 are perhaps two probabilistic approaches to the one-way 
classification scheme. Both are very common, the former being known as the fixed 
effects model, the latter as the random effects model. To test H0 against H1 the 
Kruskal-Wallis test is widely used, along with the Wilcoxon two-sample test. 

From the viewpoint of applications the fixed effects model is appropriate for small 
k([l], [2]), nt large, and the random effects model useful for large k, /?,• small. 

If Uj, Vij are normal variables, the corresponding submodel of H0 u Hx or of 
H0 u H2, respectively, is called a normal model. 

The model H0 u Hx will not be treated in the sequel 
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(2 .1) v^ll? X12J5 •••> {xkl> Xk2J ' 

Pooling these pairs into one set of data 

(2.2) x 1 1 ? x 1 2 , •.., xkl, xk2 , 

we consider their ranks and regard them as a permutation 

(2-3) Kn, K12, .-, K/cl, Rk2 , 

where Rij9 i = 1, ..., k;j = 1, 2, are the numbers 1 , . . , 2k. 
We compute 

(2.4) d = X[\R i t - Rl2\ , 

or, which is the same, 

fc 

I 
І = l 

(2-5) d = £ | R І ( 1 ) - Ä,W) | , 
І = l 

or 

(2.6) d = £ *(--) "" R(i2n ' 
i = l 

where 

(2-7) ^ l ( l ) ' ^1(2)5 • • > ^fc(l)> ^fc(2) 

stands for the permutation (2.3) ordered by necessary intra-pair transpositions so that 

(2.8) Ri(1) < Rii2) for all i = 1, . . . , k 

and 

(2-9) ^(11)> ^(12)> • • •> ^(fel)> ^(fc2) 

stands for the permutation (2.7) ordered by an extra-pair permutation so that, 
in addition to 

(2-10) Rin) < R(i2) for all i = 1 , . . . , k , 

we have also 

(2.11) K(11)<K(21)<... <Riki). 

3. DISTRIBUTION OF THE STATISTIC UNDER THE NULL HYPOTHESIS 

As can be seen from (2.6), it will suffice to study only the random permutations 
(2.9) in what follows, i.e. the random permutations (2.9) of the numbers 1, ..., 2k, 
satisfying (2.10) and (2.11). 

93 



It can be seen easily that there are 

(3.1) » = 1 . 3 . . . ( 2 f e - l ) 

possible permutations (2.9), each of them being equally probable under H0. 

The k-tuple of random variables R(11), •.., R(kl) will be called a lower (ordered) 

set, the k-tuple K(12), ..., R(k2) a n upper set. 
We derive easily that 

k k k k 

(3.2) d = E K D - R(m\ = I(*<i2> - *(«)) = E-?(<2) - Z «ai) = 
i = 1 1 = 1 i = 1 i = 1 

= 2 j ] [ ( 2 i - l ) - / ? ( , ! , ] + fc, 
1 = 1 

i.e. that the lower set determines J. The formula (3.2) implies moreover that d takes 

on only the integral values of the same parity as k. 

Let -R(n), B(2i)? .., jR(fci) be a lower set. Then R(k2) belongs to the set {R(kl) + 

+ 1, ..., 2k}, i.e. it can be chosen in 2k — R(kl) ways. 

The rank R(k^12) belongs to the set 

{R(k-i,D + 1,..., 2k} - {R(kl), R(k2)} -> 

i.e. it can be chosen in 2k — R(k-1}1) — 2 = 2(k — 1) — R(k-ltl) ways. 

The rank R(k-2,2) belongs to the set 

{*(*-2.i)+ V.-.,2k}- U {RU1),R(j2)}, 
j = f c - i 

i.e. it can be chosen in 2k — R(k-2,i) — 4 = 2(k — 2) — R(k-2,i) ways. Etc. 
At last, K(12) belongs to the set 

{K(11) + l , . . . , 2 k } - l){R(jlpRU2)}9 

1 = 2 

i.e. it can be chosen in 2k - R(11) — 2(k - 1) = 2: — R(11) ways. Now it is obvious, 

that the number of variants for the upper set is given by the product 

(3.3) C = f l ( 2 i - R u l ) ) , 
;= I 

as long as R{il) < 21 for all i = 1, ..., k, and it equals 0 otherwise. 

The number of the permutations (2.9) leading to a given d is given evidently by the 

formula 

к 

П 
ř = l 

(3-4) ßЛ«0 = I П ( - * - - W 
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where the summation in ]T extends over all 

1 < R ( 1 1 ) < R ( 2 1 ) < . . . < R ( U ) < 2 f c 

R(il) < 2i, i = 1 , . . . , k 

k + 2^(21 - 1 - R(ll)) = <l-

More generally, denote 

(3.5) &(-o = i n (-«•-*(«>) 
where the summation in £ extends over all 

i = K ( 1 1 ) < F ( 2 1 ) < . . . < - V ) < ^ 

-R(ii) < 2 / , i = 1, ..., fc 

fc + 2 £ ( 2 i - l - R ( U ) ) = d, 
i = l 

for & fc + 1 = c = 2fc + 1, the number of the permutations (2.9) leading to the 

given d under the condition that R(kl) < £, so that particularly Qk(d) = Qjd | 2fc -f l). 

It can be easily seen that 

(3.6) Qk(d | £) = £ (2fe - -?(I,i,) &-,.(«* + 1 - 4/c + 2R ( l l ) | R(U)). 
R(kl) = fc 

According to this definition 

Qt(d | 2) = 1 for d = 1 , <2t(d | 2) = 0 for d # 1 , integer. 

Qi(d | 3) = 1 for J = 1 , g ^ d | 3) = 0 for J * 1 , integer. 

The formula (3.6) summarizes the following relations, which may be helpful 

for numerical computation. 

(3.7) 

(3.8) 

Qг(d 
Qг(d 
Qг(d 

Qъ(d 
Qъ(d 
Qъ(d 
Qъ(d 

3) = 2Qt(d - 3 I 2) for d integer 

4) = ß 2 (^ I 3) + 1. ßi(d -• 1 I 3) for d integer 

5) = Qi(d\ 4) for d integer 

4) = 3ß2(d - 5 | 3) for d integer 
4) + 2ß2(d - 3 | 4) for d integer 

5) + 1 - Qi(d ~ 1 J 5) for d integer 
6) for d integer 

5) = ßз(<l 
6) = ßз(<! 
7) = ßз(<l 

and so on. 

Further details of computation follow, after some practice, from Table 1, where 

certain characteristics of Qk(d | £) are indicated typographically. Observe, for example, 
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a useful detail that Qk(d | £) = 0 for d > k2, and, particularly, that Qk(d) = 0 for 
d > k2, i.e. that the largest value taken on by the statistic d (e.g. for 

R(11) = l , R(12) = 2k , R(21) = 2 , R(22) = 2k — 1 , ..., 

R(kl) = k, R(k2) = k + 1) 

is k2, which may be interesting not only for the computation. 
In terms of (3.4) the probability distribution of d can be expressed as follows: 

Qk(d) (3.9) P(d | H0) = 
1 .3 (2к- 1) 

Table 1. Computation of numbers of permutations leading to a given value of the statistic d 
Qk(d\£) 

и
 i 

d = 
k = í = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 2 
3 

1 
1 

3 0 2 
2 4 

5 
1 
1 

2 
2 

4 0 0 0 6 

5 < 0 2 4 6 
3 6 

7 
1 
1 

4 
4 

4 
4 

6 

6 

5 0 0 0 0 0 0 24 
6 0 0 0 6 12 18 24 

4 7 0 2 8 14 24 18 24 
8 1 6 12 20 24 18 24 
9 1 6 12 20 24 18 24 

4. TESTING THE HYPOTHESIS 

It can be seen that under the alternative H2 the statistic d tends to take on lower 
values. 

The critical region 

(4-1) Wa = {d = Yj\Rn-Rn\; d^c(a)}, 
i = i 
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where c(a) is, with respect to the fact that d is a discrete statistic, to be determined 
so that 

(4.2) P(d g c(a) | H0) ^ a 

P(d ^ c(a) + 1 | H0) > a 

(See Figs. V 2.) 
Values of c(a) are presented in Table 2 for a = 0 1 , 0-05, 0-025, 0-0V 0-005 and 

k = 5 5 . . . ,20. 

Table 2. Percentage points 

a 0-1 005 0-025 001 0005 

5 11 9 7 7 5 
6 16 14 12 10 10 
7 23 21 17 15 13 
8 32 28 24 22 20 
9 41 37 33 29 27 
10 50 46 42 38 34 
11 63 57 53 47 43 
12 76 70 64 58 54 
13 89 83 77 69 65 
14 104 96 90 82 76 
15 121 113 105 97 91 
16 140 130 120 112 104 
17 159 147 139 127 121 
18 178 166 156 144 138 
19 201 187 177 163 155 
20 222 208 196 184 174 

5. A MONTE CARLO POWER STUDY 

The power of the test with critical region 

£ \Rn - Ri2\ g c(a) 
/ = i 

should be compared with those of the tests with critical regions 

k 

I 
i = l 

£ (Rn - Ri2)
2 ^ Ci(a) (the Kruskal-Wallis test) , 
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(number of pairs separated by the sample median) ^ c2(a) 

(the median test) 

J . H i ^ ) - * ^ ) ) 2 ^ 
(the van der Waerden test). 

It is difficult to compare them in the interesting case of small samples because only 

different discrete sets of significance levels are available for each of the tests, although 

for large k one need not be excessively anxious about this fact. 

A simulation study was carried out with the following aims and properties: 

The power of the test with critical region d :g C(GC) was compared with that of the 

Kruskal-Wallis test for k = 5 and 10. The normal model with Q equal to 0-1, 0-2, 

0-4, 0-6 and 0-8 was used. Approximate percentage points 6(0-05) and cx(0-05) were 

calculated for the respective tests using 500 realizations of the model for each of the 

two values of k. 

The power functions of the respective tests were estimated using 500 realizations 

of the model for different values of k and O. 

The results of this simulation study are presented in Table 3. For k = 5 there is no 

apparent difference in the power of the two tests, but for k = 10 the Kruskal-Wallis 

test seems to be more powerful. 

Table 3, Estimated power functions 

к = = 5 к = 10 

Q c(005) = 10 C\ (0-05) = 28 c(0-05) = 49 ^ť (0-05) = 375 

0 0034 0044 0044 0050 
0 1 0034 0-038 0076 0090 
0-2 0052 0062 0130 0-144 
0-4 0-090 0-108 0-270 0-294 
0-6 0-208 0-202 0-544 0-596 
0-8 0-442 0-438 0-898 0-918 

6. CONSISTENCY OF THE rC-TEST 

Let us return to the general formulation as stated in the introduction. We shall 
prove the consistency of Rothery's rc-test for H0 against H2 under some additional 
assumptions on the joint density function. The alternative is thus modified. 
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Let the following assumptions hold: 
(a) Gis absolutely continuous, g := G' is continuous everywhere, 
(b) g is positive everywhere, 
(c) g is an even function, 
(d) g is decreasing in (0, + oo). 

R e m a r k 1, g(t) assumes the maximum in (— oo, +oo) for t = 0 and is increasing 
for t < 0. 

Lemma. Let G be a distribution function with the properties (a) —(d). Then the 
function 

1(A) = (G2(t - A) + (1 - G(t - Á)f) dG(t) 

of a real argument A (i) has a derivative T continuous everywhere, (ii) equals 2/3 
for A = 0, (iii) I( — A) = 1(A) for every A, and (iv) F > Ofor A > 0. 

R e m a r k 2. Hence I > 2/3 for A =t= 0, F = 0 for A = 0, and / ' < 0 for A < 0. 
Note that I < 1 for every A. 

Proof, (i) Since 

- i (G2(f - zl) + (1 - G(t - zl))2) - (2 - 4G(f - A)) g(t - A), 
oA 

\(2 - 4G(t - A)) g(t - _ ) | = 2 max g(t) = const, 

/•oo 

2 max g(r). g(r) dt < + oo , 
J — oo 

r - A r(G2(r - j ) + ( i -G^ - ̂ ))2) «wdf= 
= f ( 2 - 4 G ( - / i ) ) g ( t - z l ) a ( t ) d ( 

J — oo 

is continuous everywhere. 

(ii) The equality I = 2/3 for A = 0 may be proved on substituting u = G(t), 

I _ C (u2 + ( 1 - u)2)du. 

(iii) Now, 
/•oo 

1 = (G2(0 + (l-G(t))2)a(t + z l )dt . 
J —oo 
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On substituting u = — t it follows that I( — A) = I(A) for every A. 
(iv) We have to prove that I' as expressed in (i) is positive for A > 0. On substi­

tuting t — A = u we obtain 

F = P [2 - 4G(u)] g(u) g(A + u) du , 

and now partition this integral into a sum of the two integrals J° ^ and \™. In the 
second integral we substitute u = — v, thereafter we use in it the equalities G( —v) = 
= 1 — G(v), g( —v) = g(v) following from the assumption (c) and this integral 
becomes 

[2-4G(v)]g(v)g(A-v)dv. Í 
Replacing here v by u again and summing with the first integral, we obtain 

V = J [ 2 - 4 G(M)] g(u) [g(A + u) - g(A - u)] du . 
J — CO 

Due to the assumptions (c), (d), A > 0 and since u < 0 in the domain of integration, 
it holds that g(A + u) > g(A — u); so all the factors in the integral are positive and 
hence F > 0. Q.E.D. 

R e m a r k 3. For every distribution function G it can be proved that 

Proof. Viz. 

limI(A) = 1 
J-+±O0 

\G2(t - A) + (1 - G(t - A)f\ ^ 1 = const , 

1 . dG(t) = 1 < + oo , I 
Mm (G2(t - A) + (1 - G(t - A))2) = 1 . 

J-> ± 00 

R e m a r k 4. The foregoing lemma may be applied to the normal, logistic, double 
exponential and Cauchy systems of distributions. 

Theorem. Let g be a density function with the properties (a) —(d). Then QC defined 
by (1.2) is greater than 2/3 under the modified alternative H2. 

Proof . By the definition, 

Oc = P{{Xpi < Xai) n (X0l < Xaj)] u [(Xpi > Xai) n (Xfil > XaJ)]} = 

= Ex„ P{[(Xfil < XJ n (Xfl < XJ] u [(Xfl > X.) n (Xfl > XaJ)] \Xpi] 
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ш 

= Ex„E0m -'{[(*'.. > Xtl - Ua) n (V.,. > Xtl - l/,)] u 

u [(Val < Xfl - U.) n (Vaj < Xtl - £/.)] \Xtl, U.} = 

= EXtlEVa{G\Xfl - U.) + [1 - G(X„; - U,)]2} . 
Next, 

ec = E ^ E ^ j G 2 ^ , + Uf- 17.) + [1 - G(VP1 + U, - UJ]2 

= £„ ,£„ . f {G2(ř + U^ - U.) + [l - G(t + U, - U.)]2} g(t) át = 
J — oo 

= EatE0aI(U, - Ut) . 

It can be seen that the expected value of any function I(A) which is even, increasing 
for A > 0 and has a derivative continuous everywhere, may equal I(0) only if P(A = 
— 0) = 1, in our case only if P(Ua — Up) = 1, or in other words only if M is a de­
generate distribution function. Otherwise FI(A) > I(0). The Theorem follows 
from the Lemma and Remark 2. Q.E.D. 

R e m a r k 5. The estimator rc is consistent. Hence the consistency of the rc-test 
follows. 
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S o u h r n 

NEPARAMETRICKÝ TEST NULOVÉ PÁROVÉ KORELACE 

ANTONÍN LUKŠ 

Autor aplikuje testové kriterium P. Rotheryho na statistickou analýzu pozitivní 
korelace symetrických dvojic pozorování. V tomto zvláštním případě dospívá 
k novým výsledkům. Práce končí obecným důkazem konzistence Rotheryho testu. 
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