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INTRODUCTION 

At the beginning of our paper we consequently derive the vibration problem 
of a geometrically nonlinear plate in coupled thermoelasticity from the three-dimen­
sional equilibrium condition coupled with the three-dimensional heat condition 
equation. The equations obtained here represent a novel result in coupled thermo­
elasticity and plate theory. 

Thereby we consider boundary conditions in subdifferential form between the 
bending moments, the shearing forces and the velocity w' of the vertical displacement 
and dw'jdn, respectively, as well as between the in-plane stress resultants N and the 
velocity {u\,u'2} of the horizontal displacements1). Furthermore, we derive thermal 
subgradient conditions on the boundary and in the domain (i.e. on the upper and 

1) Condition upon w, dw/dn, u instead of w', dw'jdn, u seem to be more "natural", but non­
linear hyperbolic problems with nonclassical boundary conditions of such a type present too hard 
mathematical difficulties (certain monotopicity properties of the Yosida approximation for sub-
gradients cannot be used), so that we do not know any result of such a type. 
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lower surface of the plate) including classical (free convexion, isolation) and non-
classical conditions (heat control). Some examples illustrate our formulations. 

In Section 6 we prove an existence theorem for the problem in a weak variational 
formulation. Furthermore, we show (Section 7) that the solution is uniquely deter­
mined and depends continuously on the given data. Thereby the consequent deriva­
tion of the problem appears to be very profitable. Thus some thermoelastic coupling 
terms (strong nonlinearities and higher order time and spatial derivatives) can be 
compensated. 

Nonlinear isothermal plate problems with non-classical boundary conditions 
(statistical and dynamical) for von Karman's equations are considered in [8], [9] 
and [13]. In the formulation without introducing a stress function, existence and 
uniqueness results for the static problem with certain zero boundary conditions are 
contained in [3] and [14]. In the dynamical case we do not know any result for 
generalized boundary conditions between the horizontal stresses N and the horizontal 
displacements velocity u'. In [4] classical zero boundary conditions between N and u' 
and either for w' of for dw'/dn are assumed. 

Statements of problem of thermoelasticity are derived in vaiious publications 
(cf. for example [19], [7], [16] —[18], [1]) and are mathematically treated for the 
three-dimensional case in [5] and [2]. For thermoelastic plates we only know un­
coupled problems with classical boundary conditions. 

1. NOTATIONS 

Let Q cz R2 be a bounded domain having a Lipschitz-continuous boundary F 
(i.e. QeVl0'1, cf. [15]). We denote by LP(Q) the space of all measurable functions 
integrable to the power p with the usual norm. The norm and the scalar product 
in l3(Q) is denoted by |. | and (., .), resp. Wm,p(Q) denotes the usual Sobolev space 
of II-functions which have generalized derivatives up to the order m in Lp(Q), equipped 
with the usual norm denoted here by ||-||m>p . Ws,2(r) (s ^ 0 real) is the well-known 
Hilbert space of traces (cf. [15]), W~s>2(r) denotes its dual. Given a Banach space X 
we denote by C([0, T] ; X), Lp(0, T; X) (1 g p ^ + oo) the spaces of functions defined 
on [0, T] with values in X, continuous or strongly measurable and integrable to the 
power p on [0, T] (or bounded for p = +oo), resp., with the usual norms. 

Finally, let cp : X -> (— oo, + GO] be a proper (i.e. cp =£= +oo), convex and lower 
semi-continuous (shortly written: l.s.c.) functional. We denote by D(cp) == {ueX : 
• <p(u) < + oo} the domain of cp. The subgradient mapping dcp : X -* 2X* is defined 
by 

dq>(u) = {u* eX* : <p(v) — cp(u) ^ <w*, v - w> for all veX} 

(<*<*, u} denotes the value of the functional u* e X* at u e X). 
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2. THE DERIVATION OF THE TWO-DIMENSIONAL PROBLEM 
FROM THE SPATIAL SITUATION 

1° Basic equations. Let Q describe the middle plane of the undeformed plate 
having the thickness h. Then2) Ft = Q x { + \h} and F2 = Q x { — \h} represent 
the upper and lower surfaces and F3 = F x [—\h, +\h\ is the vertical boundary 
strip of the plate. Thus F = T\ u F2 u F3 is the boundary of the plate clQ = Q x 
x [—\h, ~V\h\ considered as a three-dimensional body. 

To derive the dynamical problem we assume that all functions occuring in our 
considerations are continuous and have continuous derivatives of any order we need 
(for x e Q, z e [—\h, +\h\, t = 0). When formulating the generalized solutions 
we will drop this assumption. 

The three-dimensional equations of motion in Lagrangian coordinates (cf. [19]) 
take the form3) setting the density O == 1) 

(2.1) u'i + Sijj = J on Q for t = 0 , 

where u(x, z; t) = {i/lv%, z; t), u2(x, z; t), u3(x, z; t)} denotes the displacement 
vector, / is the density of the body-force vector acting on the undeformed plate and 
Sij is the Lagrandian stress tensor. The latter is related to Kirchhoff's tensor dtj by 

(2-2) Sjt = #jk(dki + 0i,k) • 

The strain tensor is defined by 

(2-3) 6y = i(ai,j + aj,i + ak,fihj) • 

Denoting the temperature difference (related to an initial temperature T0) by 9(x, z; t) 
we consider the linear theimoelastic constitutive law 

(2-4) ffv = aijklekl(u) - bf/,
4) 

where the coefficients aijkl satisfy the usual symmetry and ellipticity conditions; 
btj is a symmetrical tensor which describes the coupling of the thermal and elastical 
properties. 

2) In all what follows we will equip objects (domains, functions, . . .) depending on three 
variables with a tilde. 

3) In all what follows, Latin subscripts have the range of integers 1, 2, 3 and Greek indices 
take the integers 1 and 2. Furthermore, we will use the notation p >a(x) = dp(x)jdxa, p >3(x, z) = 
= dp(x, z)jdz and p'(x, z; t) = dp(x, z; t)\dt for x = (xx, x2) eQ, z E \—\h, -\-\h\, t ^ 0. 
Summation over repeated subscripts is applied. 

4) This law has been obtained by considerations of the free energy assuming that the body 
satisfies Hooke's law under isothermal cooditions (cf. [16]). Here we suppose that also aijki 
and btj are independent of z, i.e. that the plate is homogeneous along the perpendiculars to the 
middle surface, which seems to be right in virtue of the linearizations we make in the following. 
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From the general conservation theorems of thermodynamics we obtain the "three-
dimensional" heat conduction equation (cf. for example [19], [16]) 

(2.5) - - ^ A u + c$' + Tobi/u ~ & in Q for t = 0, 

provided we restrict our considerations to small temperature differences 6 (i.e. 
\9\ <̂  T0). Here k^ denotes the symmetrical heat conduction tensor, cE is the specific 
heat for constant strains and co represents the heat sources density. 

Let T < 0 be arbitrarily chosen and let v = {{v1? v2, v3} be a virtual displacement 
with v(x, z; 0) = v(x, z; T) = 0. Multiplying (2A) by v we get (after integration 
over Q x (0, T)) the Hamilton principle (cf. [19]) 

(2.6) i [9,č,/a, v) 
O U f i 

Ifii - üЩ á(x, z) - ••„ňfrdndt = o, 

which will be the starting point for the derivation of the two-dimensional problem. 
Here we have used the notation 

Sy(ff, V) = i(v f j + VJJ + UkJVkti + UktiVkJ) • 

Analogously, from (2.5) we get the equation 

(2.7) J [cўfj + Лij jfjj + Tobf/í/м) fj ~ ãfß á(x, z) -
o Uõ 

ÁijB^jfjárXát = o 

for any fj(x, z; t) satisfying the continuity properties stated above. 

2° Certain linearizations. First we make the usual hypothesis introduced by von 
Karman (using Kirchhoff's Hypothesis and neglecting "certain" higher order terms 
of strains): 

(2.8) ua(x, z; t) — ua(x, t) — z wa(x, t) for oc = 1, 2 ; 

u3(x, z; t) = w(x, t) , 

(2.9) ea/? = i(uatfi + w^a + vv>awj/?) - z w>a/? = e^ - z ewt9fi (a = 1, 2) , 

s3i = 0 for i = 1, 2, 3 ; 

(here c b̂ is the strain tensor in the middle surface of the plate). 

For the temperature difference 8 we make the following "plate hypothesis" (cf. 

VI [19]) 
(2.10) S(x, z; t) = 9,(x, t) + z02(x, t)5). 

5) Notice that, since h is small, (2.11) is a good approximation. In fact, set 6i = \{9U + 0t), 
02 — i"rt(<9M ~ @i)\ where 0U, 0f are the temperature differences on the upper and lower surfaces 
of the plate (i.e. on rt or f2)-
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Using (2.4) and (2.10) we obtain 

V2'11) °*fi = K/» - M l ) ~ ZWl}y3W,yS + Kp02) > 

where aap = aaPyd£yY is the "elastic part" of the in-plane stress tensor. 

3° The two-dimensional equations. We suppose6) that on the upper surface Fx 

a perpendicular load p = {0, 0, - p 3 } acts while on the lower surface F2 we have 
free boundary conditions. Thus we obtain (using (2.8)-(2.11), similar assumptions 
for the testfunction v in (2.6) and integration over z) the two-dimensional equilibrium 
conditions: 

(2.12) w" - Aw" + A> - -J-] [ (» , . ) , , - bje^Jj] + Ab62 = E3 . 
h 

(2.13) < - C,/5 + M i , í = F* on Q x (0, T) 

Here we have introduced the following definitions: 
A is the Laplacian, A > = (aaPydwy5)^ Ab62 = baP62taP , Fa = /i_1fa , F2 = f3 - p3 

In all what follows we assume that 

(2.14) w = 0 on F! and — = 0 on F2 for t^O, 
dn 

where F1? F2 cz F are open subsets with mes (Fx u F2) = mes F (we use these 
conditions to drop boundary terms generated by integration of Aw"). Multiplying 
(2.12), (2.13) by testfunctions, integrating by parts over Q x (0, T) and comparing 
the equation obtained with (2.6) we finally have the following variational principle, 
which leads us to the generalized variational formulation of the problem: 

(2.15) v"ч + Уł'[aqtЛ + a*ßyðw,yð(ł,«ß + Ьaß 2qtaß + 

12 
+ —2(G°*ßW,A,ß ~ Kß iWгaqtß) dx + 

and 

B(M) — + Q(M, N) q] dTj dt = j j F3 . q dx dt 

(2.16) f j f (u'X + a°apvaJ - bj.v^dx + f N^ dA dt = f | F.v. dx dt 
Jo-Uft J r J J o J n 

6) We assume classical conditions on the upper and lower surfaces of the plate only to simplify 
our considerations. It is possible to formulate non-classical conditions (for example obstacle 
conditions, elastic clamping or supporting in the domain of the two-dimensional plate) in the 
same manner as for the linear static case in [20], Part I. 
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for all testfunctions q and va, where q satisfies (2.14). Here B(M) = -MaP\r nanp 

represents the bending moments on the boundary related to the moments in the 
middle plane Mafi = aapydw^ The term Q(M,N) = B2(M) + Nap\rnawp denotes 
the shearing forces on the boundary (cf. [19], [ l]), where 

B 2 ( M ) - f * 
дn 

nлnß - -~ 
дs 

nln2(Mll - M22)\r + {n\ - n\)Mí2\r-

8MÍ2 
n i „ (M l t - M22)\r - (n\ - ni) 

ds os гЛ 

represents the part of the shearing force which is generated by vertical stress difference 
on F3. Whashizu (cf. [19], Chap. 8.5) pointed out that, in general, in geometrically 
nonlinear plate theory also the in-plane stress resultants 

f + h/2 

NaP = oap áz = h(v% - baJ}6 
J -h/2 

0 

contribute to the equation of equilibrium (also on the boundary) in the direction 
of the z-axis due to the inclination wa of the middle surface; Na = Nap\r np is the 
in-plane stress resultants vector. 

In the following we will consider generalized boundary conditions of the form 

(2.17) B(M)e8gJ8-f 
\дп 

Q(M,N)edg2(wr) 
N edh(ur) 

on F, for t = 0 

(gi> g2> h are proper, convex, l.s.c. functional on R1 or R2, respectively) which leads 
us to variational inequalities. We remark (cf. [3], [20]) that (2.17) includes the 
classical as well as non-classical boundary conditions (e.g. friction). 

4° Projection of the heat conduction equation. Setting in (2.7) fj(x, z; t) = 
= n^x, t) + z rj2(x, t) and integrating over z e [ — \h, -\-\ti\ we obtain the equation 

(2.18) f j ~ [(ce0[ + T0bap&%)m + ^e2rjl>a + V i ^ l i J + 

+ 
12 

Һ2 
^2 ~ T0bapWiap + — Я 3 в 0 1 в в J f|2 +Лар02,аП2,р áx 

- h í AijS^jiídr = f (Kltll + K2t]2)áx 

with 

Kt(x) = h 
Г + h/2 

-h/2 

Ç + h/2 
(x, z) dz , K2(x) = h æ(x, z) . z dz . 

J -h/2 
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If the flux vector is given on the upper and lower surfaces of the plate, i.e. without 
loss of generality cbb(S) = ^ij9fiUj = 0 on Fx u F2, we get from (2.18) (taking 
nxe<3(Q + (0, T))) the two-dimensional heat conduction equations: 

(2.19) ce0't - A A - A3A,a + T0baPe% = h~K, 

(2.20) ce9'2 - A A + Xa30Ua - T0 Abw
f = \ K2 

h 

on Q x (0, T) (under more general conditions on Tx u F2 it is not possible to obtain 
these equations). 

In (2.18) we let the boundary integral in a three-dimensional form. We will consider 
boundary conditions of the kind 

(2.21) ~wb(6)ed\j)(6\r) on F, 

where \j/ - R3 -» (— oo, +oo] is a proper, convex, l.s.c. function. In general, it seems 
to be not possible to transform this condition into two separate conditions upon 
6\ and 62. However, with the help of the linear (and in a certain space continuous) 
mapping {0l5 62} M• 8 = 0t + z62, condition (2.21) represents indeed two-dimension-
nal boundary conditions. We will give an exact explanation in Section 4. 

3. VARIATIONAL FORMULATION OF THE GENERALIZED SOLUTION 

We define V = [ W 1 ' 2 ^ ) ] 2 and H = [L2(Q)]2 with the scalar products (w, v)v = 
= ("i» ri)i,2 + (u2>v2)U2 and (u, v)H = (uu vx) + (u2,v2) for w, v e V or H, 
respectively. Let rl9T2 a F be open subsets with mes (r1 u F2) = mes F. In connec­
tion with (2.14) we define the subspaces 

X = $we W2>2(Q) : w\r = 0 a.e. on F- , — = 0 a.e. on F21 

and 

Y = {w e W1,2(Q) : w\r = 0 almost everywhere on F2} 

equipped with the scalar products of W2,2(Q) and W1 2(Q)9 respectively. 
Furthermore, let proper, convex and l.s.c. functionals ^t : L2(0, T; X) -> 

-> (— oo, + oo] and <P29 &3 : L2(0, T; V) -> (— oo, + oo] be given, shaped by 

T) [ f cpj(v) dt if <P/V)EL\0, 
>J(V) = UO 

[ + oo otherwise 
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for j = 1, 2, 3, where <px : X -*> ( — oo, +oo] and cpt : V-> (— oo, + GO] (i = 2, 3) 

are proper, convex and lower semi-continuous functionals. 

In accordance with (2.15), (2A6), (2.18) we introduce the following notation of 
bilinear and trilinear forms: 

a(w,q) 
J i 

<lapy3^,yd<l,apdx.. 

ai( , n) 

biiђu 

12c, 
(9i> rii) + ce(e2, rf2) , 

(rjx, w,q)= bai 

J Q 
ßПl™,*<l,ß &X 9 

ъ2(ni, q) = ЬaßП2<l,aßdX 

<li(ni,v) = baprjxvaj&x, 
J Q 

di(n^) = -r kpni,$i,p&x + Kpnijijdx, 
h 2]Q JQ 

di(02,rjx) = A3a#2" l jCtdx 
J Q 

for rj,6,v e V, w, q, e X. For the sake of simplicity, we suppose that all coefficients are 
constants. Taking into account the boundary conditions (2A7), (2.14), (2.21) we give 

Definition. The triple {w, u, 0} e L2(0, T; X x V x V) with {w',u',0'} e L2 . 
. (0, T; X x V x H) and {w", u"} e L2(0, T; Y x H) is called a generalized solution 
of the thermoelastic dynamical problem of the nonlinear plate theory if 

(i) the inequality 

(3.1) 
12 f 

(w", q - w')1>2 + a(w, q - w') + — (J^w^q - w')>p áx 
n J Q 

12 1 
- — bx(0X9 w,q- W) + b2(02, q - w')l dt + 

+ <Px(q) - 0x(w') = í (F3, q - w') át 

is valid for all q є L2(0, T; X), 
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(ii) the inequality 

(3.2) I Hu", v - u% + J afyv. - u'.)j dx + ^ ( 0 , , o - u')l dt + 

+ Ф2(v) - Ф2(u') = 
(Fя, va - u'a) át 

is satisfied for all v e L2(0, T; V), 

(iii) the inequality 

(3.3) í íai(e', t,-e) + d2(e, r,-e)-T0 b2{ni - e2, *>') 

+ -ff [d3(e2, i,. - e,) + d3(»?2 - e2, o j ] + 
h 

+ | ? T0 f Kps°a;(u, w) fa. - Qjdxl át + 

+ $M - *3(0) =1 («:,i - 0)* dt 

is true for all n e L2(0, T; V) and 

(iv) the initial conditions w(0) = w0, w'(0) = wl5 w(0) = w0, w'(0) = v0, 0(0) = 
= {T0, 0} are fulfilled, where 

e%(u9 w) = i(ua>fi + ufitQl + wsaW)P) and a°ap = aaPyde°d(u9 w) . 

Remark . Let {w, w, 0} be a classical solution of our problem, i.e. (2.12), (2.13) 
and (2.5) hold for 0 = 0X + z02 and the boundary conditions (2.14), (2.17) and 
(2.21) are satisfied, where w, w, 0 are sufficiently smooth. Setting 

I +oo otherwise, 

[ f g2(w')dF if ^ ( w O e L ^ F N F O 
^ 1 2 (w' |0 = {Jr\r2 

I +oo otherwise 

for / = 0 and 

(3.4) <Pi(v) = <Pu(Иг) + Ф12Í for v є X 
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and 

,r)dF if h^ul^eL^F) «4J>H 

i + oo 

(3.5) <Pi(u) = 

otherwise, 

we obtain from (2.14)—(2.17) the inequalities (3.1) and (3.2) (for the derivation 
of (3.3) we refer to Section 4). 

Conversely, if {u, w, 9} is a generalized solution we obtain the equilibrium equa­
tions (2A2), (2A3) in the sense of distributions and, under some slight smoothness 
assumptions on the in-plane stress resultants, the boundary conditions (2.17) in the 
sense of traces. For the interpretation of (3.3) we refer to Section 4. It is well known 
that w e C([0, T] ; X), u e C([0, T ] ; V), w' e C([0, T] ; Y) and u', Q e C([0, T] ; H) 
so that the condition (iv) of our definition makes sense. 

4. EXAMPLES OF THERMAL CONDITIONS ON THE BOUNDARY AND 
ON THE SURFACE OF THE PLATE 

Let {u, w, 0} be a classical solution of our problem (cf. Remark, Sect. 3). The 
mapping P : 7-> WU2(Q) defined by 

(4.1) [p(el9 e2)] (x, z) = ex(x) + z o2(x) = e(x, z) 

for a.a. x e Q, z e [_ — jh, + i h ] is obviously continuous and linear. By the continuity 
of the trace operator defined on W1,2(Q) it follows that the functional defined by 

(4.2) cp3(0) = $(P(0)\r) for all 6 e V 

is convex and lower semi-continuous if $ : W1/2'2(F) -» (— oo5 +co] in (2.21) is, 
We assume that cp3 is proper if $ is (i.e. xji is compatible with the linearization P; 
there exists 90 e Im P with $(0o |r) + + °°)* Thus we obtain (3.3) with cp3 defined by 
(4.2). _ 

Let \jj be decomposable into 

(4.3) # = $x + %2 + x}3 , 

where ^t is concentrated on rt for i = 1, 2, 3, (i.e. if v, u e W1/2'2(F) with v == u 
a.e. on F^ then i^(v) = $i(u) (for example J r . v dF). Then for the functional <p3 

defined by (4.2) we have the decomposition cp3 = (p31 + (p32 + q>33 with (P3i(0) = 
= $i{P(0)\r) for 6eV. But P(0) (x, z)\Tl2 = 0t(x) ± \h 6(x) for a.a. xeQ, ze 
e [ — ih, +ihj. Thus only cp33 represents a (two-dimensional) boundary functional 
(depends only on 0\r), while cp3u cp32 characterize the thermal state in the domain 
Q (exactly on the upper and lower surfaces of the plate). 
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If {u, w, 9} is a generalized solution defined in Selection 3 we obtain the two-
dimensional heat conduction equation (2.18)— (2.19) in the sense of distributions 
under the assumption that \j/l9 \j)2 are linear continuous on L2(F) (with additional 
parts in Kl9 K2). Furthermore, we then have cob(6\r) = wb(P(9))\r3 e L2(F) and 
<:od(^iJr)

 e ^*A( |̂r)- where i/> is the boundary functional related cp33. In the general 
case of \j/l9 $2 we have multivalued heat conduction "equations" in the subgradient 
form. 

We now give a typical example of thermal boundary conditions: 

Example 1 (heat control with limited heat and cool capacity): The temperature 
difference 9 on the boundary of the three-dimensional plate should be held between 
two limit temperatures TV T2 e L2(F) with T1 S 0 = T2 a.e. on f. If TX < S < T2, 
a free heat exchange with the surroundings (with a proportionality coefficient k0 e 
e L°°(F)) occurs. If 9 exceeds the limit TX(T2) the plate will be heated (cooled), the 
additional outward heat flux — cob - k09\r being proportional (with positive coeffi­
cients fc-, k2 e L°°(F), resp.) to the value of excess. The heat and control capacity let 
be limited, i.e. the additional heat flux can only reach certain quantities gl9 g2e L2(F) 
with gl S 0, g2 ^ 0 a.e. on F. This situation corresponds to the functional 

which is defined for v e L2(F), where 

rk0s
2 + g! . s if s = T1 + gljkl 

(k0 + ki) s2 — kiTjS if TX + gx\kx = s ^T1 

g0(x, z; s) = < k0s
2 if r1 = s = t2 

(k0 + k2) s2 - k2T2s if T2 S s ^ T2 + g2jk2 

{ k0s
2 + g2s if s = T2 + g2jk2 

for s e R. 

Remark 4.1. The case k0 = 0 (no heat exchange with the surroundings occurs 
if 9 does not exceed the two temperature limits) is considered in [5] for a three-
dimensional body. In some cases we can drop the summability properties of fcl3 k2, 
T1? T2. For example, it makes sense to set either rl = - GO or T2 = +oo, i.e. the 
temperature must stay either below or above a fixed limit. Also the classical boundary 
conditions can be considered as a specialization of g0, for example we obtain 

g0(x, z; s) = k0(x, z) s2 for seR, a.a. (x, z) e F , 

(free heat flux, and for fc0 = 0 Neumann's problem) and 

g0(x, z; s) — {0 if s = 0 or +oo otherwise} 

(Dirichlet's conditions). 
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Remark 4.2. For extensive discussions of mechanical boundary conditions we 
refer to [20]. In a similar way we are able to deal with mixed thermal conditions, i.e. 
various conditions on certain parts of the three-dimensional boundary of the plate. 

5, RESULTS 

Theorem 5.1. Suppose that there exist minima of the functionals (pt (i = 1, 2, 3) 
realized by the initial values, i.e. 

(5.i) <P1VH;I) £<PI(I) v q e X 

<Pi(vo) ^ <Pi(v) vv e V 

(p3({T0,0})S<P3(rj) Vr/GV, T0 = const. > 0 . 

Furthermore, let 

(5.2) Fi9 F\, Ka, K; e L2(0, T; L2(Q)) for i = 1, 2, 3 and a = 1, 2 ; 

W0EW3
0>

2(Q), W,EX, u0e[W2
0'

2(Q)f, v0GV. 

Then there exists a generalized solution {w, u, 0} of the dynamical thermoelastic 
plate problem in the sense of the definition given in Section 3 with 

(5.3) w, w' e L°°(0, T; X), w" e L°°(0, T; 7) 

u, u' G L°°(0, T; V) , u" e K°(0, T; H) 

0, 0' G L2(0, T; V) n L°°(0, T; H) . 

Theorem 5.2. Under the assumptions of Theorem 5.1 t/?e solution depends conti­

nuously on the given data {w0,wi,u0,v0,F,K} and is uniquely determined by 

a fixed set of data. More precisely:If {w0, wx, ti0, v0, F, K} and{w0, w*, u0, v0, F*, 

K*} are two sets of data possessing the properties given in Theorem 5.1 and {w, u, 

0}, {w*, u*, 0*} are the corresponding solutions, then we have 

(5.4) ||tf(0 - w*(O|||>2 + \\w'(t) - W*'(0II?,2 + |«(0 - «*(0I* + 

+ |fi'(0 - M*'(0|H + |9(0 - **(0|H + IIs - 0*i|y(O,TiK) = 

^ C0{||^0 - Wo||i.2 + 1^0 - w *| t ,4 + 1^1 - W*||i>2 + 
I II " * l | 2 I |A * | 2 , || j7 I7* | |2 i || f> P^*l |2 

+ | | u 0 - UQ\\V + | v 0 ~ VQ\H + | | L - £ | | (L-(0,T ;L2(S1))3 + ||1V - A | | L 2 ( 0 , r ; f f ) -

R e m a r k 5.1. Duvaut and Lions ([4]) have shown an existence and uniqueness 
theorem for the isothermal case (set formally 0 = 0, # 3 = 0, K = 0 in our considera­
tions) with <P2 == 0 and w = 0 on F. Even for isothermal problems we do not know 
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any results with boundary conditions for horizontal displacements (or in-plane 
stresses) in the middle surface or between the perpendicular displacements velocity w' 
and the shearing forces Q(M, N) in such a general form as we have just introduced. 

Remark 5.2. The existence of minima of the functionals cp{ can be shown for all 
examples of functionals known to the author (in the field of thermoelasticity). If 
this is not directly satisfied then (in the known cases) the functionals (or the parts 
of it which do not possess a minimum) are linear and continuous. In this case the 
functionals (or their parts mentioned) can be handled without difficulties and without 
any regularization by a smoother functional. 

R e m a r k 5.3. The conditions (5.1), (5.2) can be slightly generalized (as in [6]). 

6. PROOF OF THEOREM 5.1 

1° We prove the result stated in Section 5 with the help of two approximations. 
First we "smooth" the functionals cpt by the Yosida approximation of dcpt dependent 
on a parameter e > 0. Using Galerkin's method for this regularized problem we 
obtain by certain a-priori-estimates and by passing to the limit for s -» 0 the result 
desired. 

Thus we define for e > 0 the approximating functional cpE of a proper, convex 
and l.s.c functional <p : U -* (— oo, + GO] (U is a Hilbert space) by 

(6.1) cpE(p) = — ||p - JEp\l + cp(JEp) for p e U , 

2s 

where 

J£ = (I + & dcp)"1 (I is the identical mapping) . 

It is well-know that 

(6.2) lim cpE(p) = cp(p) for all p eU , 
£-*0 

(6.3) cpE is Frechet-differentiable and the derivative is monotone and 

Lipschitz-continuous (with the Lipschitz constant l/e) in U . 

(6.4) If cp possesses a minimum in p0 e U then J£p0 = p0
 a n d 

(p(Po) = <Pe(Po) ^ <Pe(<l) ^ <Kq) VD e U , £ > 0 . 

2° Approximate solutions 

Let {qj} 6 X be a basis in X and let {vj} e V be a basis in Vin the following sense: 

(i) {qj} ({VJ}) is a linearly independent system and (ii) the set of all linear combinations 

of {qj} ({VJ}) is dense in X (in V, respectively). 
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We now define the approximating solution {wm, umf 9m) by 

m m m 

wm(t) = I gim(t) q„ ujt) = I M O »„ 0M(O = X fcta(0 o,, 

so that 

(65) (wЦř), c2,)1>2 + a(wm(t), qr) + 
12 

"aй wm,Ar,ß^x 

12 
~ ~ &l(0ml, Wm> qr) + b2(0w2> qr) + (<p'llWm)> Qr)l,2 = ( - % qr) , 

( 6 . 6 ) ( u w , vr)H + ^pm\ot,p d x - d i ( 0 m i , l?r) + (<P2e(Wm)> ^r)V = (Fa> Vro) 

Jn 

ai(&m> vr) + d 2 ( 0 m , vr) - F0 b2(vr2, wm) + 

and 

(6.7) 

12 
+ / ^ 

ďз(Øм2, ^r l) + d3(vr2, ml) + T 0 KßS°ß(um, Wm) vrl d x 

Jß 

+ (<Pзe( m)> Vr)v = (K> Vr)H 

+ 

are valid for r = 1, 2,.. ., 77? and for all t e [0, T] and the following initial conditions 

are satisfied: wJO) = w0, wJO) = w l 5 wm(0) = w0, uw(0) = v0, 0ml(O) = T0, 

0.2(0) = 0. 
By the theory of ordinary differential equations a solution of this problem with 

absolutely continuous time derivative of the highest order is obtained (at least for 

[0, tm] cz [0, T], 3° and 4° yield tm = T); 

3° A-priori-estimates, A 

First we multiply (6.5)-(6.7) by gjt) - <7rm(0), hjt) - hJO), kjt) - kJO), 

respectively and sum over r = 1, 2,.. ., m. Adding now the three equations obtained 

we have (here we drop the fixed index m) 

(6.8) 
\dtU2 "W'^""'2 + a ( W ^' W ( ^ + 1"'^'* 

«i(0(t). 0(0) + Í **A£t d> x\ + 

+ £= d*W)> 0W +U1 = U2+
lf (F3(t), w'(t) - w.) + 

+ (Ea(0, K(t) - v0x) + - í l (x(t), 0(0 - (T0, o})„, 
I z I n 
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where 

II1 = (Уiг(W), w' - w,)2 i 2 + (ę'2t(W), u' - V0)y + 

+ (ę'3s( ) , - {T0, 0})v - ЬҖ, w, w') + 

+ !L Ь2( 2, W') - d.(0„ и') - ^ b2( 2 , w') + 

+ 
1~d3( 2, 1)+ f ьaß£°;(м, w) et dx 
Ч) J ß 

(here w, w', u, u', 0l9 02 depend on t while the initial values wl9 v0, T0 of course do not) 
and 

U 2 = \ i % {w'{t)'Wi) + (u'(0' "O)H + i?(0i(0'To)}+ fl(w(°! Wi) + 

+ ff5>(0(w,«(0wi,/i + °o«,/»)d5c -

- ^(^(O, w(0, wx) + J- ft2(e2(0, w.) - d^e^t), »0) -

12 
h(02(t), Wx) + T 0 7 ba^(u, w) dx 

d t j ß 

(here we used the identities T0 = const, and d3(0, const.) = d2(02, const.) = 0). 
Furthermore, we have 

(6.9) at(e9 0) = ct\e\l for all 0 e H 

and 

(6.10) d2(0, 0) + \0\l = c2||0||£ for all 0 e V 

(c1? c2 = const. > 0). Moreover, <p'ie (i = 1, 2, 3) are monotone mappings and by 
(5.1) these parts of U are greater than zero; the b2-terms in U cancel each other and 
the J3-term can be estimated as follows: 

(6.П) |dз( 2, ,)| = W l , a d x й Õ.ШÍ+ c3 

with d > 0 arbitrary. The sum of the remaining parts of U vanishs (since ba/5 is sym­
metrical). Thus we have, integrating (6.8) over t e [0, T] and using (6.9) —(6.11) 

(6.12) H O ! ? . - + ||w(0||2,2 + K 0 | * + f e%e%dx + \9(tfH + ['\\e(r)\\v dx g 

ś -1<(|K||Î,2 + ||Wo|І2,2 + Ы я + [ 4ß(0)є°aß(0)dx 
Jß + 

407 



[U2(T) + ( F 3 ( T ) , W'(T) - w.) + (F . (T) , «;(T) - <;„„) + 

+ (X(T) , 0(r) - {T0, 0})H + \\w'(x)\\l2 + \e(tfH + 5 | 0 ( T ) | | ? ] dT 

Since W2,2(Q) is continuously imbedded into Wll4(Q) we have 

aaßyð8yôЄ<xß dx 
J Q 

2 \2 ú c(\\u\\v + | w | | > 2 > (6.13) 

and analogously 

(6.14) Í'\U2(T)\ dT ^ <5 (|w'(0||í,2 + |«'(0|H + KOIH + í « W <*x 

+ ci||w0|2,2 + ||Wj ||1>2 +||l>0||ř + ||«0|ř + 1 + V(т)!|2,2 + |ö(t)|adт 

for S > 0 arbitrary. Using (6A3), (6A4) and choosing d = lj2c1 we compensate 
these terms with the left hand side of (6.12) and obtain by Gronwall's lemma: 

x + (6.i5) K(.)| |?,2 + | M t ) | 2 , 2 + \u'm(i)\H + f e°a<rxt) $»>(0 d. 

+ | 0 » ( O | H + [ H^WHVdT^ const. 

for all m = 1, 2, ...; t e [0, T] and all a > 0. Adding |W W (0|H o n b o t h s i d e s o f ( 6 - 1 5 ) 
we conclude by Korn's inequality (cf. [10]) that 

(б.iб) '|wm(f)||v ^ const 

4° A-priori-estimates, B 
Setting t = 0 in (6.5)-(6.7) and multiplying g,m(0), h"m(0), k,m(0) we obtain 

using (5.1), (5.2), (6.4) 

(6.16) | |wm(°)|i,2 ^ const., 

|"m(0)|fl ^ const ., 

|0 W (O) |H g const. 

for all £ > 0, m = 1, 2 , . . . 

We now differentiate (6.5)-(6.7) (with respect to t), multiply it by gmr(t), Km(t), 

k'rm(t), respectively and sum over r = 1, 2, ..., m. Adding the three equations ob­
tained we have (here we drop again the index m) 

, H 

2d t 
(6.17) i І í | | w " | Ь + a(w', W) + H |м"|â + ^ fl.(fl', ') + 

2 dt ( /i Io 
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where 

+ f (<?«>«)' W'j dx + f <->»_, dx} + ~ d2(0', 0') + U3 = 
JiQ J i l J TO 

- Ci, «") + (K. -".) + (*', «')„ , 

,,.(^'„(w'),»-)2j + ( i , ; . M , ^ + ( l ^ ) , « ' ) / 

12 12 - [ b ^ i , w, w") + 6,(0,, w', w")] + b2(02, w") - ~ d,(6'u u") 
hr )r 

24 12 f 
- b2(e'2, w") + — d3(02,0'i) + 7= V S ? ( « . w ) 0 i d * • 

" -FO " Jf? 

An easy calculation shows that 

(6.18) ľ (*«>,)' </. d* + ľ <г>:t/! 
J.Q J ß 

2 ď l a*ßyö^yö áx + *«•**>'•*dx 

dx = 

_ 3 
2 *£>>.'/.. dx. 

The first term on the right hand side can be handled as in (6.15) — (6.16), while the 
remaining are estimated with the help of the following interpolation inequality: 

(6.19) Uч,«У(ч,ßУ 
J Q 

áx 
1/2 

-_ CЫ|2.2 Ыll,2 f 0 Г ^ Є X . 

By the monotonicity of Yosida's approximation, the ^i£-terms in U3 are greater 
than zero and the b2-terms cancel each other. Furthermore, we have 

(6.20) Иэ(ö2, øi)| = í; ^ iW\v + CM ^20\,adx 

for all 1 > 0. It suffices to consider the remaining terms of U3: 

- b^i, W, W") - b!(01? w', W") - dt(0[9 U") + f bapS%0[ dx = 
J Q 

M w > , / ^ i ) dx - i hpO^w'^Wj)' dx = 
J Q 

M w > , д 0 i ) á x - ~ т b*ß íw',У,ßáx • 
i 2 d t J ß 
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Thus we obtain from (6.17) with the help of (6.9), (6.10), (6.15), (6.16), (6.18)-(6.20) 
after integration over (0, t) the inequality 

(6.21) ИОНЬ + ИОНЬ + КОИ + |в'(0|н + 

+ ľдаao dx + ||0'(т)|£dт й 

йiľ\\ '(г - dт + c. + c 2 í ^.(Ow^OötWdx 
J.Q 

+ 

+ C Í'{|0'W|H + IKWIIí.2 + K*)|£ + í ^<«W^)ei(t)dx dт . 

Estimating the ba/rterms with the help of (6A9), (6A5) and using the same argument 
for the £0,-terms as in Section 2° we obtain from (6.21) by Gronwall's lemma 

(6.22) IK(0lli,2 + IK(t)lk2 + K(0k + 
+ \\u'm(t)\\r + \0m(t)\H + pm\\mo,T;V) š const. 

for all m = 1, 2 , . . . ; a > 0 and a.a. *e(0, T). Since the Yosida approximation is 
Lipschitzian, it follows from (6.22) that 

(6 .23) \\(Pn(wm(t))\\2,2 + \\(p2e«(t))\\v + \\<P3t(0m)\\mO,T;V) -S c/e 

(c = const. > 0) for all m = 1, 2 , . . . ; t e (0, T). 

5° Passing to the limit for m -> oo 
From the estimates (6.15), (6.16), (6.22) it follows that a subsequence {wn, un, 0n} c 

c {wm, um9 9m} (as well as {wn, un, 0n}) converges weakly* in L°°(0, T; X) x L00 . 
. (0, T; V) x [L°°(0, T; H) n L2(0, T; V)] to {w£, iie, 0£} (resp. {w£, ue, 0£}) and 
{ < , < } in L°°(0, T; Y) x LGO(0, T; H). Then (6.23) yields that there exist Xi« e L00 . 
. (0, T; X), x2E e L°°(0, T; V), x3£ e L2(0, T; V) which are weak* limits of {<p'u(w'„)}, 

{<PU<)}> (vUfl-)}. 
Let <2 G L2(0, T; X) be arbitrary. Since the space Z = {w e L2(0, T; X) with w' e 

6 L2(0, T;X)} is compactly imbedded into L2(0, T; W1'4^)) it follows that 

(6.24) fT f a^w^qj dx dt - - — fT f ^ w ^ g , , dx dt 
JoJiQ JoJiQ 

and in a simiand in a similar way 

(6.25) 
0 J 

«#"V,dxd. „ 
Jo Jß 

dx dt 
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for every veL2(0, T;V). Since for fixed qeX, v e V, bx(»9 •, q) is a continuous 

bilinear form on 1}(Q) X X, b2(% q) and dA(*, v) are linear, continuous functional 

on J}(Q) and H, respectively, we obtain from (6.5), (6.6) (noting that wn ——*wE strongly 

L2(0, T; X) 6n -------> 6E strongly in L2 in (0, T; H)) by (6.24), (6.25) the identity 

(6-26) J Mw'E', q)U2 + a(wE, q) + ^ f G^ w £ , a ^ d x -

12 1 
- —2 b1(6El, w£, q) + b2(6E2, q) + (Zle, q)2,2-(F3, q)\ dt = 0 

for all q e L2(0, T; K) and 

(6.27) f | « , v)H + f <$«V„ dx - dx(0El, v) + (llE, v)Y - (Fa, va)| dt = 0 

for v e L2(0, T; V). 
In (6.7) all terms, except the (p^-term, are linear and continuous in Vwith respect 

to 0n and ax(», n) is linear and continuous in H for fixed n eV. Thus we can easily 
pass to the limit in these terms. For fixed n e V, b2(r\, •) is linear and continuous 
on X, and the expression 

bapz
01(un, wn)n dx 

J Q 

is linear and continuous in Vwith respect to un and bilinear and continuous in X x Y 
with respect to {wn, wn}. Thus we obtain from (6.7): 

(6.28) f L ( e £ , n) + d2(eE, n) - T0 b2(n2, wf) + 

12 
dъ( ,ъ Пi) + dъ(ц2, в e l ) + T0 Ъ^°ß(Ue^e)Пl^ 

+ (Xъ„n)v ~(K,ц)Àdt= 0 

for all n e L2(0, T; V). By the usual monotonicity argument (cf. [6], Chap. V 5.6A) 
we finally have 

(6.29) Xle = (Pu«) > Xlz = <p2e«) , Xze = ^ 3 s ( ^ ) • 

6° Passing to the limit for e —> 0 
As in 5° we obtain (turning, if necessary, to subsequences denoted also by {w£}, 

{u£}, {0E}) for e -> 0 the weak* limits w, u, 6 in the same spaces as w£, w£, 9E (with 
the same convergence properties of their time derivatives). 
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Replacing now in (6.26) q by q - w'e (q e L2(0, T; X)), in (6.27) v by v - u'e (v e 
e L2(0, T; V)) and rj by r\ - 0. in (6.28) (// e L2(0, T; V)) we have 

(6.30) j T j « , q)U2 + a(w„ «) + i? f <r«°<8> *.,««,„ d x -

- ^ *i(A.i, we, «) + f>2(0e2, q) + Pi.fa) - (r3, q ~ w')] d< ^ 

£ [T |(w;',w;)1)2 + a(we,w'e) + ~ f <r«°<£>we,X dx -
Jo ( " J ft 

12 1 
- — &i(0.i> *., w.) + &a(e.a, < ) + <Pi.K)> d* • 

(6.31) T |(«;, P)H + f <-«•>-,,, dx - ^(fl,., p) + <p2e(p) - (F«, »« - tC)J df ^ 

L> T |(«:, «;)H + [ C K k / r d x - d!(0el, «0 + <p2e(«e)j dt 

and 

(6.32) f j a i (0 £ , IJ) + d2(0e, jj) - To fe2{>/2, w.) + 

+ H p3(08 2 , , . ) + d3(ijj, 0el) + To J *>«„£«>,, w.)»h dxl + 

+ <PU*I) -(Kn- 0.)H]dr ^ P " L ( 0 ; , e e ) + d2(0e,0e) - T0o2(0e2,we) + 

+ p |"2d3(0e2, 0el) + T0 f V > „ w.) 0el dxl + <p3e(0e)] df . 

On the left hand sides of (6.30)-(6.32) we to the limit for e -*• 0 as in Section 4° 
(using (6.2)). In a similar way as in Section 5° we get the limit for e -> 0 for all terms 
on the right hand side, except the <p1£-terms (noting that {we, ue, 9e} converges strongly 
in L2(0, T; X) x L2(0, T; V) x L2(0, T; H) and wein L2(0, T; W1A(0))). If the follow­
ing inequalities are satisfied we obtain from (6.30)-(6.32) the inequalities (3A)-(3.3) 
of the definition of the generalized solution of the thermoelastic dynamical problem 
(considering the liminf on both sides of (6.30) —(6.32)): 

(6.33) lim inf 
£-*0 

<pJLzJLt))dtz*fa) 

for i = 1, 2, 3; where zu = w'e, z2e = u'e, z3e = 0e, z. = w', z2 = «', z3 = 0. 
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It remains to prove (6.33). We only show the validity of the first inequality of 
(6.33). From (6.30) it follows that 

f <Pn«(t))dt g f \cpu(q) - (F3, q - w£) + f a°^wjq - w'e) dx + 
Jo J 0 ( J Q 

12 ) 
+ a(we, q - w£) + (we, q - w£)lf2 + b2(c?£2, q - w£) - — bi(c9£l, w£, 4 - w£U dt 

for all 3 e L2(0, T; X). We have 

|&i(0«i> £̂> g - < ) | + M ^ , g - O l ^ 

^ c(\e£\H |w.||2f2 (1 + |K | | 2 j 2 ) + |c?£|
2 + ||w;||2

j2). 
Thus we find from (6A5), (6.16), (6.22) using again (6A9) that 

1 T 

<P\E(w'e(t)) dt ^ const, for all s > 0 . 
0 

With the help of (5.1) we obtain 

cple(we(t))dt — T.(px(w^) S const, for all e > 0 
1 

І8 
H(t)-Jn«(t))\\Í2<ltž 

0 0 

and, finally, the inequality (6.22) yields 

Jn(K) ~> w weakly in L2(0, T; X) 

and by the definition of <ple, 

Urn inf <Pn(w'(t)) dt = lim inf #i(Ji£(w£)) ^ (^(w') , 
s-o j o £-*° 

The other inequalities of (6.33) follow similarly, q.e.d. 

7. PROOF OF THEOREM 5.2 

We define w = vv — w*, u = u — u*, 6 = 9 — 6* and analogously w0 — vv0 — 
— w0, F = F — F*,.... Substituting now,{vv, u, 0} or {w*, u*, 6*} for {w, u, 6} or 
(g, v, w}, respectively, in the inequalities (3A) —(3.3) of the definition of the solution, 
we obtain by adding then the three inequalities (using the form not integrated over t, 
which is equivalent to (3A) —(3.3) 

{1A) i í {ví (WIU + °{W' W) + W + ¥0
 aÁe' 6)} + 

+ — d2( , ) + R + R, g 0 , 
Гo 
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where R is defined rw 

K K O . . - c7>*) *;, + (ð% - (7°;) < д ] dx 

and R! by 

R. = bt(e\f w*, w') _ bi@i3 W ; w<) + d i ( 0 i > „<) + A j 3 ( e 2 , 0 1 ) _ 

- f K0(% - Q < 6i dx + ( F 3 , w<) + ( F a > H<) + ( K ) g)H . 
J Q 

Denoting a(e) = $Q aap^yd% dx for s e [L2(Q)]4 we have 

R ** 2 dt\ &^W'aW^ &X ~ 2 I &*PW>aW'p d% + 

+ K - v°;ß)w,xw:ßdx + í-±ã(ŕ - s°*) 
n 2 dt 

and by (6.19), (5.3) 

ăaßW,*W,ßdx 
J n 

(1.7) 

(7.3) 

(7.4) 

^ ! | ||w'(т)|j 2

) 2 dт + - | w ( ř ) | | 2 , 2 , 

õ%w,«*,ßàx = C 2 ( | " ' | ғ + И | l > 4 | w ' | | l , 4 ) | | w | | 2

j 4 й C з | | w | | 2 , 2 > 

(â% ~ ^ ) w,*w[ß dx ѓ ã(ê° - 8°*) + (w>a)
2 (w[ßУ dx ѓ J 

á õ(ê° - 8°*) + c. 4ІГIІ2.2 

Now we transform the strongly nonlinear terms of K!. We have 

bx(e*19 w*, wf) ~ bx(ex, w, wf) + dx(ex, w) - f &a/$°, - 8°;)' ex dx 
J Q 

= bap(6xwtJv[fi - OxwAw'^)dx S 
JQ 

-S c5 • {\6(r)\2

H + | |W(T) | | 2

) 2 } - - - bafiBxwtaWtP dx . 
2 d r J f i 

Using this and (7.2)--(7.4) we obtain by integrating (7.1) over (0, t) 

(7-5) K O I I 2 + a(w(t), w(t)) + \u'(tfH + a,(0(O, 0(0) + 
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+ I d2(6(T), 9(T)) dr + a(é°(t) - e°*(t)) ̂  

Š C6 UW.WI, + |w0 | |2
j 2 + |Po|2 + | |„0 |2 + | |Wo | |4)4 + 

+ £^é1(ř)w iOt(0>v,/)(0dx + f'[ |w '(T)| | 2r 2 + | (T)| |I ,; 2 + 5(í°(t) - e0*(t)) + 

+ \U'(T)\2
H + | 0 ( T ) | 2 ] dr + | |E l (

2
i 2 ( 0 , r ; L 2 ( f i ) ) ) 3 + \\K\\lHOiT;H) + i |w(ř ) | | 2

> 2 | . 

The remaining pa/3-term are estimated in the usual way with the help of (6.19). Thus it 

follows from (7.5) by GronwalPs lemma that 

IKOI1.2 + KOII2.2 + K0I« + KOIH + 

+ fV(T)||2dT + a(éo(0-E°*(0)á 

Jo 

^ C7{||w0||i>2 + H||í,4 + IHIÍ.2 + K||V + \v0\i + 

+ ||i7||(2L2(o,r;L2(fi)))3 + ||-K||Ží(0fT;H)} • 

Using again Korn's inequality (cf. (6.15), (6.16)) we obtain the inequality (5.4) q.e.d. 
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Souhrn 

O SDRUŽENÝCH TERMOELASTICKÝCH VIBRACÍCH 
GEOMETRICKY NELINEÁRNÍCH TENKÝCH DESEK, 

SPLŇUJÍCÍCH ZOBECNĚNÉ MECHANICKÉ A TEPELNÉ PODMÍNKY 
NA HRANICI A NA POVRCHU 

HANS-ULLRICH WENK 

Práce se zabývá termoelastickou úlohou pro vibrace tenké desky a tím navazuje 
na sérii článků o von Kármánových rovnicích. Práce obsahuje odvození variační 
formulace úlohy, důkaz existence a závislosti řešení na počátečních a okrajových 
podmínkách a několik příkladů různých „netradičních" okrajových podmínek. 

Authoťs address: Dr. Hans-Ullrich Wenk, Akademie der Wissenschaften der DDR, Zentrum 
fiir Rechentechnik, Rudower Chaussee 5, 1199 Berlin, DDR. 
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