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1. INTRODUCTION

The development of iterative methods for solving linear algebraic systems [14],
[16] has brought the question of when the employment of these methods is more
advantageous than the use of the direct ones. This question can be considered from
various points of view from which the time requirements, the storage requirements,
and the achieved accuracy of the solution undoubtedly seem to be the most important.

The final decision in the contention between the advocates of direct and iterative
methods has not yet been taken. In fact, such a decision cannot be taken if our ques-
tion is formulated quite generally. Nevertheless, solving problems from exactly de-
termined classes (in particular, boundary-value problems for partial differential
equations) and employing clearly chosen criteria, we can — at least experimentally —
compare direct and iterative methods. We have attempted such a comparison in this
paper. Our test problems are taken from geophysics, namely, from geoelectric
research, and they are concerned with the numerical modeling of the electromagnetic
field.

The numerical modeling of the electromagnetic field in two-dimensionally hori-
zontally inhomogeneous media, which forms the theoretical foundation for the
interpretation of the geophysical magneto-telluric and magneto-variational measure-
ments, has been recently paid close attention. The numerical methods most fre-
quently used are the finite difference and finite element methods [2], [4], [5], [6],
[9], which make it possible to solve the problem for considerably general models
of two-dimensionally horizontally inhomogencous structures. The numerical treat-
ment consists in a transformation of the Helmholtz partial differential equation to
a linear algebraic system. The system obtained, consisting usually of several thousands
equations, is then to be solved by a suitable numerical method. In this paper we are
concerned with some problems arising in the computation of the solution of the above
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problem, especially in solving thke obtained linear algebraic system by direct and
iterative methods.

In Section 2 we formulate the boundary-value problem the solution of which is
studied in the paper. The medium is supposed to be two-dimensionally horizontally
inhomogeneous, i.e., the electric conductivity is supposed to be independent of one
horizontal coordinate, say x. The Maxwell equations then possess two independent
solutions, E-polarization and H-polarization. Their components E, and H, satisfy
the Helmholtz equation and fulfil the corresponding boundary and interface con-
ditions.

In the conclusion of this section we construct the finite-difference approximation
for both the problems considered with the help of the Green theorem.

The results of numerical experiments and their discussion are given in Section 3.
The computations have been carried out for two models, which differ from each
other by the type of dependence of the conductivity on y and z, i.e. by the absolute
term in the Helmholtz equation.

For model 1 (Section 3.1) the values of E, and H, are computed. From these quanti-
ties we further numerically determine JE,[dy, 0E,[0z and 0H [0z, i.e. the derived
secondary quantities important for the practical application of the results obtained.
In addition, the values of é’Hx/az are computed by another independent method for
comparison.

For model 2 (Section 3.2) only the values of E, (and the secondary quantities, i.e.
0E,[¢y and OE,|0z) are computed.

Our further detailed discussion is concerned with the rate of convergence of the
quantity 0E,[dy (Section 3.3) and the dependence of the convergence of E, on the
overrelaxation factor o (Section 3.4).

In conclusion we survey the storage and time requirements of the methods used for
solving linear algebraic systems in Section 3.5.

2. FORMULATION OF THE PROBLEM

Let the domain Q be such a section through a two-dimensionally horizontally
inhomogeneous structure that the boundary I'; corresponds to the upper boundary
of the air layer above the Earth’s surface (z = 0). We assume that the parameters of
the medium (electric conductivity) do not depend on one horizontal coordinate,
say x. The x-axis then represents the axis of the geoelectric homogeneity of the model.
The electric conductivity changes in the yz-plane orthogonal to the axis of homo-
geneity (see Figures 1 and 2).

Assuming the time factor exp (iwft) and neglecting the displacement currents,
we can determine two independent solutions, H- and E-polarization, from the general
system of Maxwell equations. We have either the component H, or E, of the source
field parallel to the axis of homogeneity. For both the polarizations we solve the
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equation

(2.1 Au(y, z) — inu(y,z) =0, n= o,

in the domain Q, where the solution u(y, z) = u,(y, z) + iu,(y, z) is either H, or E,.
The quantities w,, y and o represent the angular frequency, magnetic permeability
in Hm™" and electric conductivity in Q™ 'm ™!, respectively.
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Fig. 1. The domain Q for model 1.
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Fig. 2. The domain Q for model 2.
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On the boundary of the domain Q we put

(2'2) u=g=g;+1ig,,
where g is a given function defined and continuous on the boundary.

We suppose that the conductivity ¢; is constant in the individual subdomains Q;
of the domain Q. We require that the following conditions be fulfilled on the inter-
faces between the subdomains:

(i) the continuity of the solution u (for both the polarizations);
(i) the continuity of the normal derivative du/on (for E-polarization);
(iii) the continuity of the function ¢~ du/on (for H-polarization).

We assume that a geoelectric inhomogeneity is situated inside the domain Q and
that the boundary of the domain Q is sufficiently far from this inhomogeneity so that
the influence of the inhomogeneity can be neglected on the boundaries I', and I',.
Examining the Maxwell equations, we can show that the magnetic field is constant
on and above the Earth’s surface (the air layer with ¢ = 0) in the case of H-polariza-
tion [5], [9]- We can put H, = const = 1 for z = 0 and solve (2.1) only in the
conductive domain representing the Earth conductor. In the case of E-polarization
it is necessary to consider a sufficiently thick air layer with zero conductivity above
the Earth’s surface, in which the secondary field of the conductive half-space is
damped [10].

Introducing now the coordinate system according to Figure 1 or 2, we cover the
domain Q by two mutually orthogonal systems of lines y = y; (i =0,1,...M + 1)
and z =z, (j = 0,1,...,N + 1). Their intersections for i = 0, M + 1 and j = 0,
N + 1 are boundary nodes, the other intersections are interior nodes. Put h;, =
= yi+1 — yiand k; = z;,; — z;. The grid is chosen in such a way that the interfaces
coincide with some parts of some lines of the grid.

Let A4;; be an interior node of the domain Q at which several subdomains of
various conductivity touch each other (see Fig. 3). Integrating the equation (2.1)
over the rectangle with center at A4;; and sides (h; + h;.)/2 and (k; + k;4,)/2,
using the Green theorem, and replacing the normal derivatives by differences [5],
we obtain the difference analog of the equation (2.1) at the node 4;;,

(23) _’PijUi+1,j - QijUi—l,j - Ri/Ui‘j+1 - SijUi,j—l +
+ (T,.j + iV,.j) Uj=0.
For H-polarization we put
Py = (2h) " (03 k=g + 05 'k),
05 = (2hi-y)™" (01 "k;j=1 + 03'K;) 5
Ry = (2k,) " (05 hiey + 04 '),
Sy = (k;o1) (o7 hiey + 03 h),
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ij :Pij+Qij+Rij+Sij9

Vij = %wfll(hiﬂ + h,-) (kj—l + kj)'
Ai',-1
61 62
A J Au A, L
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A/.,M

Fig. 3. An interior node A;; on the boundary of four subdomains with different conductivity.
For E-polarization we put
Py = @h) " (kjoy + k), Q= (2hiy) (kg + k),
Ry, = (2k) ' (hioy + hy), Sy = (2k; 1) (hioy + hy),
TiJ:Pij+ Qij+Ri,+Sij,
Vij = dou(oh_ ko + oyhk; ) + o3h;_yk; + o4hik;).

|

The presented approximation is well-founded for E-polarization and, moreover,
for H-polarization if ¢, = ¢, and o = g, (vertical contact) or if 6; = o5 and o, =
= 0, (horizontal contact). For a completely general choice of conductivities o, o,, 63
and oy, a derivative of the solution may have a singularity at the node 4;;. Employing
our approximation (2.3) we thus introduce a certain error. As shown in [1], however,
this error is limited only to the closest neighborhood of the critical node and cannot
influence the approximate solution in the domain in general.

3. RESULTS OF NUMERICAL EXPERIMENTS

The problem formulated in Section 2 is thus transformed into solving a linear
algebraic system, where the unknowns U;; are the values of the approximate solution
at nodes. The system is of a relatively high order (in our experimental models about
1000— 1500 equations) and its matrix is complex, sparse, and symmetric. If the nodes
are properly numbered the matrix of the system is block tridiagonal. Its diagonal
blocks are tridiagonal, its off-diagonal blocks are diagonal.
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Both the direct and iterative methods can be efficiently used for solving such
a system. In our numerical experiments we have concentrated on the Gaussian elimi-
nation (GE) and the successive (point) overrelaxation (SOR) with factor o (in the
particular case of w = 1 it is usually called the Gauss-Seidel method) [12], [14],
[16]. We are not able to quarantee the convergence of the SOR method generally
for our problem by any simple criterion. In our experiments we have employed SOR
either with various fixed values of w or with the value of w successively optimized
in the course of computation [11].

In practical considerations, the first derivatives of the sought solution u of the
equation (2.1), i.e. the functions du/dy and du/dz, have a physical meaning, rather
than the function u itself. We compute these derivatives from the finite-difference
solution by numerical differentiation, i.e., we construct an interpolation polynomial
and differentiate it. The results of the numerical differentiation employing interpola-
tion polynomials of various degrees can differ from each other. The results presented
in the paper have been obtained with the help of a polynomial of the second degree
(before differentiation) unless otherwise stated.

The most important values for the practical application of the results are E,,
OE, [0y, OE, [0z and 0H [0z, all with z = 0. In the following discussion we always
speak about these values (with y variable) unless otherwise stated. All the coordinates
are given in kilometers.

We wish to point out that all the comparisons made in the following are con-
sidered from the practical point of view. The computation of geophysical fields serves
mainly as a theoretical foundation for the interpretation of the measured data. The
quantities usually measured in the field are preportional to the quotient of the both
first partial derivatives of the function u or to the quotient of a derivative and the
function u itself. The result of measurements is an average obtained from a great
number of measured values.

The interpretation consists in estimating the agreement of the experimental and the
theoretical curve and comparing their character. In this connection we should
consider the fact that the inverse problem, i.e. the problem to find the coefficients
of the equation (2.1) for a given function u, is not well-posed. In general we can say
hat the values of u should be determined with such an accuracy that the values of
he derived secondary practical quantities have the accuracy of several per cent.

The fact that the result of our numerical modeling is — in addition to the function u
and its derivatives — also the quotient of these derivatives, influences the employment
of iterative methods. Examining the course of convergence of the iterative process
with respect to the function u sought, we can find out that its derivatives as well as
their quotient differ substantially, as far as two consecutive iteration steps are con-
cerned, even if the values of the approximated function u itself change very little.
Similarly, if the values of the approximated function u computed by a direct and
an iterative method differ from each other very little, the difference may be consider-
able for the derivatives of u and their quotient.
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A numerical process starting from a proper variational formulation and employing
the finite element method with elements of degree at least 3 would apparently be
efficient for computation of the solution of our problem and its first derivatives [ 13].
We have not tried such a process in practice since it is obviously both time and stoiage
consuming.

All the computations have been carricd out on an IBM System/370 Model 135
computer. Single precision is concerned unless otherwise stated.

To compare GE and SOR, we used two models that show a typical behavior.
Discussing the results, we do not consider the discretization error, which is the same
for GE as for SOR. We analyse only the error of the numerical solution of the linear
algebraic system, which influences the accuracy of both u and its derivatives. We put
T=10s,ie wu = 8n*10"® Hm™'s™", in the equation (2.1).

3.1. Model 1

Weputo, =107'Q 'm™! ¢, =1073°Q 'm~! and ¥, = 150 km for model 1
(Fig. 1). We computed both E, and H, from the equation (2.1) for this model.

Computing E,, we choose the rectangle [0, 450] x [—300, 200] or [0, 380] x
X [—300, 200] for the domain Q. These two cases differ from each other also by the
choice of the grid (grid 1: 30 x 35 meshes, grid 2: 36 X 35 meshes). The comparison
of the direct and the iterative method, however, presents the same picture in both

50 100 1‘50 200 Y

1 1

B B s

1

Fig. 4. Model 1, function Re ¢H (y, 0)/dz. 1 — computation according to (3.1); 2 — GE, double
precision, grid 1; 3 — SOR (w = 1, 200 steps), interpolation of degree 3, grid 1; 4 — GE, double
precision, grid 2. The function Im 0H(y, 0)/¢z has a similar behavior (cf. also Table 2). In this
as well as the following figures, a single line is plotted where two or more lines merge in each other.
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the grids. The behavior of E,(y, 0) (in dependence on y) is smooth. At both the left
and right-hand ends of Q, E, approaches the value that corresponds to the field of the
homogeneous Earth with the conductivity o, and a,, respectively.

Both the methods (GE and SOR with @ = 1 and 200 iteration steps) give results
the components of which differat most by 4°/,, (if the difference is related to |Ex (» 0)|
for the corresponding y, cf. Table 1). Similar results are obtained also for JE,[dy
and CE,[0z. GE has been tested in single as well as double arithmetic and has given
the same results.

Computing H,, we choose the rectangle [0,450] x [—260,0] or [0, 380] x
x [—255, 0] for the domain Q. We consider these two cases with different grids on
different rectangles (grid 1: 30 x 25 meshes, grid 2: 36 x 23 meshes). The behavior
of 0H (v, 0)/0z on the left as well as on the right of the interface y = Y, is almost
constant. Here, this function is equal to the value corresponding to the field of the
homogeneous Earth with the respective conductivity ¢. The function ¢H,[/0z has
a jump for y = Y, (Fig. 4). The difference between the results obtained by GE and
SOR (o = 1, 200 steps) is negligible, in components at most about 4°/,, if the dif-
ference is related to laHx(O, 0)/62, (Table 2). Also the results obtained by the same
method in two grids are different since the solution H, grows rapidly at the left-hand
end of the rectangle and a sufficiently fine grid is needed to approximate it.

For comparison we also determine the approximate values of 0H,/0z by numerical
quadrature from the formulae presented in [15]:

oH,
(3.1) e (r,z) = —viexp (—vyz /i) —

2i ([ &2 R { z
_ v%(v% _ vf)_lf S exr; (s (s - 1) Czosf dé, y<v,
TJo #1#2(#1"2 - .“1"1)

oH,

N
oz

(3, 2) = —vyexp(—vyz /i) +

* & exp (—py(y — Yy))cos &z
0 s (v + pavi)

+v3(v3 — vlz)a dé, y>Y,,
T

where v} = 4nojo,, pj = & + ivi; j = 1, 2 (Fig. 4, Table 2). The integral in (3.1)
is replaced by an integral to B for a sufficiently large B and then computed with the
help of repeated application of the Gauss quadrature formula (with 6 abscissae)
to small subintervals. Establishing the formula (3.1), we neglect some small quantities.
The total error caused by this fact is not examined in [15]. Nonetheless, we can
say that the formula (3.1) has proven useful for our model.

The results computed by SOR (@ = 1, 200 steps) and by the employment of inter-
polation polynomials of degree 2 or 3 for numerical differentiation (Table 2) differ
from each other in components by as much as 18°/,, (if related to the value
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[aHx(O, 0)/02[), which shows that the procedures used for numerical differentiation
are questionable.

3.2. Model 2

Model 2 (Fig. 2) is more interesting from the point of view of our comparison.
We put 0, =107°Q 'm™!, 6, =10"'Q 'm~!, ¥, = 240km, Y, = 280 km,
Z, = 6km and Z, = 16 km. We compute only E,, namely in two grids on the
rectangle [0, 520] x [ —226,200] (both grids with 38 x 38 meshes). The functions
E, and 0E, [0z are symmetric with respect to the point y = 260 while the function
OE, [0y is skew-symmetric. The former two functions reach their extremum at y =
= 260 whereas the function 6Ex/8y has a zero at this point and its local extrema are
skew-symmetrically located near the point y = 260. The comparison of the methods
is very similar for both the grids.

For model 2 we also employ the decomposition of the sought solution E, into the
sum of the known primary field E? of the homogeneous Earth and a secondary field ES,
(for which a homogeneous boundary condition is prescribed on I'), i.e.

(32) En ) = BN 2) + E(0. ).

Substituting (3.2) into (2.1), we obtain a differential equation of the type (2.1)
for E}. Computing the derivatives of the function E,, we can employ the known ana-
lytic expression for E} and numerically differentiate only E3.

o [ ]

Fig. 5. Model 2, grid 1, function E(»,0). 1 — GE, the decomposition (3.2) is used; 2 — GE;
" 3 — SOR (w = 1, 200 steps); 4 — SOR (w = 16, 200 steps).
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The results for E, in grid 1 (Fig. 5) show a relatively good agreement of all methods.
SOR with w = 1-6 and 200 steps apparently does not converge. The results with
this w are not symmetric and after 400 steps (not shown in the figure) the results differ
from the exact solution even more. GE shows the same behavior in single as well
as double arithmetic.

After differentiation, the results obtained in grid 1 differ from each other more than
in the case of E_ itself. A typical behavior is represented by JE(y, 0)/0z in Fig. 6.

100 150 200 250 3?0 i

-.020)
Re 015
-.0259 Im
- 020
-.030-
025

Fig. 6. Mod:l 2, grid 1, function 9E(», 0)/@z. 1 — GE, the decomposition (3.2) is used; 2 — GE;
3 — SOR (w = 1, 200 steps); 4 — SOR (w = 1-6, 200 steps). Curve 4 runs out of the scope of
the figure.

3.3. Convergence of Derivatives

Model 2 (grid 2) has been studied also from the point of view of the rate of con-
vergence of the derivatives of the solution E,. The most typical behavior is re presented
by the quantity |0E(y, 0)/dy| (see Fig. 7).

The results demonstrate a considerable dependence of JE,[dy on the method
used for solving the system. They are worst for SOR with w = 1 and 200 steps. The
results are less dependent on the method used for solving the system at those parts
of Q where the mesh size is less. Quite good results are reached already for @ = 1
and 400 steps in the neighborhood of the inhomogeneity where small mesh size is
chosen since this is an important part of the profile z = 0 from the point of view of
interpretation. The results with @ = 1:65 & w,p, scem tc be the best along the whole
profile. The results obtained by GE are very close to the best ones. With @ = 1-2
we obtain, after 400 steps of SOR, results practically equivalent to the computation
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with w = 1 and 600 steps. The results with @ = 1-4 and 400 steps are better than those
computed with w = 1 and 800 steps.

f
107 |

50 100 150 200 y

Fig. 7. Model 2, grid 2, function [0E(y, 0)/@y|. 1 — SOR (o = 1, 200 steps); 2 — SOR (v = 1,

400 steps); 3 — SOR (w =1, 600 steps); 4 — SOR (w = 1, 800 steps); 5 — SOR (0w = 1-2,

200 steps); 6 — SOR (w = 1-2, 400 steps); 7 — SOR (w = 1-4, 400 steps); 8 — SOR (v =
= 165 ~ Dop s 400 steps); 9 — GE.

3.4. Dependence of the Convergence on Factor o

The behavior of the maximum of the magnitude of the change of the solution in
one iteration step as a function of the number of steps of SOR is presented in Fig. 8
for the same model and grid as in Section 3.3. Although the difference of the cor-
responding quantities (as far as two consecutive iteration steps are concerned) is
very small for all the quantities after 400 steps (see Fig. 7), the values of the derivatives
of the solution need not be satisfactory in the whole Q.

The value @ = 1-65 has been experimentally and approximately determined as the
optimal one. The iterative process diverges already for @ = 1-73.

To determine w,,, we have also tried the algorithm proposed in [11] and origina-
ting in [3]. Several parameters have to be a priori chosen in this algorithm.

With regard to our little experience in this matter and an apparently unsuitable
choice of these parameters, our results obtained with the help of this procedure are
not satisfactory. In general we could say that if the values of the solution do not vary
too much in the domain considered, the value of w,,, reaches 1-8 to 1-9. If the solution
varies very much in the domain considered the value of w,p, is close to 1-0 to 1-1.
With @ = 1, our iterative process has always converged. The convergence gets
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better when w grows up to the value w,,. For the factor w greater than wop.. SOR
usually diverges.

1074 \

-5

104

10 4

~7

100 200 300

Fig. 8. Model 2, grid 2, the maximum of the magnitude of the difference between E(y, 2) in two
consecutive iteration steps (over all y and z). SOR, 400steps. | —wo=1;2 — o= 12;3 — o=
= 1-4; 4 — » = 1-65.

We can see in Fig. 7 that the quality of results considerably depends on the choice
of the grid. For a suitable, sufficiently fine grid, the results do not depend too much
on the choice of the method for solving the system. If the grid is inadequate there is
a great difference between the results obtained by various methods and the quality
of the results (influenced, in addition, by the discretization error) is always question-
able.

e

3.5. Storage and Time Requirements

The comparison of direct and iterative methods would not be complete without
a survey of the storage and time requirements of these methods.

The storage requirements can be easily determined. If the matrix of the system is
considered in GE to be a band matrix, the bandwidth fot our models is 2N + 1
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and the total number of equations (and unknowns) is MN. The number of words
necessary for storing the non-zero elements of the matrix is thus proportional to
MN?. Since only N + 1 rows of the matrix of the system are necessary for performing
one step of GE, the amount of the main storage words required for storing the non-
zero elements of the matrix is proportional to N2. Each row is stored on disk after
the corresponding elimination step has been finished and a new row is generated
in the main storage. The storage requirements on disk are thus of order MN? words.
A reduction of storage requirements can be achieved at the cost of detriment of the
need of time.

For the SOR method we need not store the matrix at all. The values of its elements
are computed only at the moment when they are needed. The main storage require-
ments are thus of order MN words, namely for the MN unknowns.

We wish to remark that the so-called fast direct methods for solving systems [7],
[8] would deserve a special attention. They cannot, however, be applied to the equa-
tion (2.1) directly. It is necessary to solve a sequence of simpler problems the solution
of which converges to the solution of (2.]). Our experience with the employment
of the fast direct methods is not yet sufficient for us to be able to judge its efficiency.
The principal drawback of the methods of this kind, i.e. the requirement to choose
a constant mesh size, plays, however, an important role in solving problems of our
type.

The discussion of the time requirements of the individual methods is far from being
easy. An exact time measurement is not feasible on computers with multiprogram-
ming and virtual storage. The results of the measurements of the CPU time can
differ from each other even more than by 109, even when always the same problem
is solved. Rough time measurements show that, for about 1000 to 1500 equations,
the computation employing GE takes about the same time as 200 steps of SOR.
The number of operations in GE is proportional to the quantity MN? and the com-
putation time thus grows as MN? as well.

The number of operations needed for a step of SOR is proportional to MN. The
total time for iterative methods is thus proportional to KMN, where K is the number
of steps necessary to reach the prescribed accuracy. This number certainly depends
on the number of equations and grows with it. For a rather moderate number of
equations (1000 to 1500), direct methods seem to be more advantageous than iterative
ones. For a medium number of equations (several thousand), both the methods are
comparable. It is advantageous to use w > 1 for iterative methods. If the value of w
is close to w,y,, usually only 1/3 iterations are needed to reach the required accuracy
as compared with the Gauss-Seidel method (w = 1). For a greater number of equa-
tions, iterative methods get superior to direct ones. It is primarily due to the fact
that, when employed, they can still operate in the main storage of computer while
direct (elimination) methods are bound to use the auxiliary storage substantially,
which makes the computation more time-consuming.
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Souhrn

" SROVNANI PRESNOSTI SITOVEHO RESENi OKRAJOVYCH ULOH
PRO HELMHOLTZOVU ROVNICI,

ZISKANEHO PRIMYMI A ITERACNIMI METODAMI
VicLav CErRv, KAREL SEGETH
Rozvoj iteranich metod pro feSeni soustav linedrnich algebraickych rovnic pfinesl
otazku, kdy jsou tyto metody vyhodnéjsi neZ metody pfimé. V ¢ldnku jsme se poku-

sili pomoci numerického experimentu porovnat piimé a iteraéni metody pii feSeni
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jisté tiidy okrajovych tloh pro parcidlni diferencidlni rovnice, které slouzi k nume-
rickému modelovani elektromagnetického pole v geofyzice.

V odstavci 2 je formulovédna uloha a jeji aproximace pomoci kone¢nych diferenci
(siti). Odstavec 3 je vénovdn vysledkim numerickych experimentii a porovndni
casovych a pamétovych ndrok metod a dosaZené presnosti feSeni. Srovndni jsou
ilustrovdna tabulkami a obradzky.
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