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INTRODUCTION

The present paper deals with solving the general biharmonic problem by the finite
element method using curved triangular finite C' — elements introduced in [15].
Till now curved triangular C' — elements have been analysed only for such second
and fourth order elliptic boundary value problem where boundary conditions
do not imply a boundary bilinear form in the variational formulation of the problem.
The effect of numerical integration in the case of the fourth order problems has been
studied only in the case of the Dirichlet problem (see [3], [6], [8], [12]-[17]).
In this paper the general form of the bilinear form is considered and the effect of
numerical integration is analysed in the case of mixed boundary conditions (1.2)—(1.4).

In Section 1 the general nonhomogeneous biharmonic problem is described and
a weak solution is defined. In Section 2 the finite element spaces are defined using
curved triangular finite C' — elements from [15] and Bell’s elements [2]. The
discrete and completely discrete problems are formulated together with an abstract
error theorem which is a modification of similar theorems (see [3], [8], [16], [17]).
In the last section the effect of numerical integration and sufficient conditions for the
uniform V,, — ellipticity are studied. The results presented are generalizations
of the similar results introduced in [3], [15]—[17].

The notation in this paper is the following. Let Q be a bounded domain in the
x, y-plane with sufficiently smooth boundary I'. Let k = 0 be an integer. The symbol
W (Q) denotes the Sobolev space .

W(Q) = {ve L(Q): D've L,(Q) [ocl <k},

where D*v is the multiindex notation for derivatives, i.e., « = (o, o) € N?, |oc| =

~

= o, + uy, D = 0"*lvfox™ oy™.
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The norm and seminorm are defined in W*(Q) by

k
(o0 = 3 ol2nas [Pma= ¥ j j |
j=0 la]=j Q

for 1 < p < o, with the standard modification for p = +c0. We denote HYQ) =
= Wzm(Q), ke = ”'”k,z,.rz and I'Ik,fz = |']k,2,!)‘

For the sake of brevity we also use the symbol v, for dv[dx, v,, for 0°v[0x dy etc.
The normal derivative v, and the tangential derivative v, are defined by

Pdx dy

-
I

v, = v + vy, g =v(—n) + o,

where n,, n, are the direction cosines of the cutward normal n to I.
C will denote a generic constant, i.e. C will not denote necessarily the same con-
stant in any two places.

1. SETTING OF THE BOUNDARY VALUE PROBLEM

Let Q be a bounded, simply connected domain in the x, y-plane representing the
shape of a thin plate, I' its boundary. Let I" consists of three mutually disjoint parts

r=ry,vrlr,vurlsy,

where each I'; (i = 1,2, 3) is either empty or possesses a positive measure and does
not contain isolated points.
Let us consider the following problem of bending of a thin elastic plate:

(1.1) A*uw =f in Q,
(1.2) =gy, u,=g¢g, on TI,,
(1.3) u=g,, Mu+ku,=m, on I,, :
(1.4) Nu + kou = my, Mu + kyu,=m; on I;,

‘where f, g;, k; 20, m;, (i =0, 1), g, are sufficiently smooth prescribed functions
(their smoothness will be specified later). Further,

(1.5) Mu = pdu + (1 — p) (ugens + 2ugnen, + uynl),
(1.6)  Nu

I

(=4u), + (1 = p) [ueenen, — ng(nk = ny) — uynen],,

where i = const (0 < u < 1/2) is the Poisson ratio of the plate material.

In this paper we consider (1.2)—(1.4) under the assumption that at least one of the
following six conditions holds:
1° mes (I'y) > 0;
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2% mes (I',) > 0, I', is not part of a straight line;

3% mes (I',) > 0, I, is part of a straight line and there exists I'; = I', such that
mes (I',) > 0 and k; = k;. > 0 on I'j (k;, = const) ;

4° mes (I',) > 0, I', is part of a straight line, k, = 0 on I',, and there exists I'y < I';
such that mes (I'y) > 0, ko = ko, > 0 on I'j (ko = const) and I'} is not part
of the straight line containing I',;

59 there exists a subset I'; = I'y such that mes (I';) > 0, I'} is not part of a straight
line and ko = ko, > 0 on I'y (ko = const);

6° there exist subsets Iy = I'y, I's* < I's such that mes (I';) > 0, mes (I'}*) > 0,
I'y is a part of a straight line, I';* is not a union of segments which are perpendi-
cular to the straight line containing I' and ko = ko. > O on I'y, k; = k. >0
on I'y* (ko = const, k. = const).
Let us define the space

1.7
( )VO ={veH*Q):v=0o0n I'yuTl, v, =0 on I'; inthe sense of traces}
and the set
(1)
V,={veH Q):v =g¢. v, =g, on I';,v = g, on I, in the sense of traces} .

The variational formulation of the problem (l.l)—(l.4) can be written as follows:
Find u € V, such that

(1.9) a(u,v) = I(v) YoeV,.
with
(1.10) a(u, v) = a®(u, v) + a"(u, v),

(1.11) a®(u,v) = Y J’f aaﬁD“uD”v dxdy,
lal,181=2 ) J o

where a, are constant coefficients (for their definition see [ 10, p. 365])

’

(1.12) a"(u, v) =J k u,v, ds +f (kouv + kyu,v,)ds
and Iz fs

(1.13) I(v) = 1) + 1'(v),,
(1.14) I"(v)—_-ﬂfvdxdy,

(1.15) "(v) =j myv, ds +J (mov + myv,)ds.
I rs

It follows from [4, Lemma 3.1] that problem (1,9) has a unique solution.
We shall solve problem (1.9) by the finite element method.
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2. SETTING OF THE DISCRETE PROBLEMS

Let Q, be a finite element approximation of the domain Q generated by a triangula-
tion 1, (for details see [15], [17]). The symbols I', and I'; (i = 1,2, 3) will denote
the boundary of Q, and the parts of I', approximating I';, respectively.

With every triangulation 1, we associate three parameters h, h and 9 defined by

(2.1) h=maxhy, h=minh;, 9= mind;,,

Tetn Tetp Tetn
where hy and 95 are the length of the greatest side and the smallest angle, respectively,
of the triangle with straight sides which has the same vertices as the triangle 7. We
restrict ourselves to triangulations 7, satisfying

(2.2) 3=389,, 9, =const >0,
(2.3) h=Cyh, C,=const>0.

Let W} denote the finite element subspacc of tke space C'(€,) consisting of func-
tions which we obtain by piecing togethcr curved triangular finite C*-elements [15]
with Bell’s elements [2].

Let V,, be a subspace of W, defincd by

(2.4) Vo ={veWi:v=0 on I, Ul.v,=0onTl,},

where n,, is the outward normal to I',.

Let ¥, be the subset of W, consisting of those functions which at the nodal points
lying on I', satisfy the boundary conditions (1.2) and the stable boundary condition
(1.3) and all consequences of those conditions containing at most second derivatives
(for details see [5], [16], [17]).

Let n; (i = 1, 2, 3) be the degrees of curved sides ¢, (of the curved triangles) which
I';, consists of. If we set .

(2.5) ng=3, n,=5, ny=23.
then (see [16], [17])
_(26) vweVy,=0v—wel,,.

Now we can formulate the discrete problem corresponding to problem (1.9):
Find u;, € V,, such that

(2.7) 5:.(";” U) = 7!:(”) YoeV,,
where the bilinear form ,(v, w) is defined by
(2.8) ayv, w) = a(v,w) + af(v, w),

(2.9) C’i,?(l), W) = Z J\J‘ aaBDaUDﬂW dx dy ,
lat.181=2 ) J o,



(2.10) ﬂmw=j

Tn2

klhvn;,wnh ds + J‘ (kOhvw + klhvnzwnz)ds
Tn3

and the linear form I,(w) is defined by
(2.11) Lw) = T2(w) + T5(w),

(2.12) 7&@=£Lﬁwa,

h

(2.13) mm=j WMM®+J (mogw -+ myyw,,) ds.
I'n2 I'ns

The symbol f in (2.12) denotes a continuous extension of the function f onto
a domain @ o G, (h < h) and will be specified in (2.21); ky, m,, (i = 0, 1) are func-
tions obtained by “transferring” the functions k;, m; from I' onto I', (the definition
of transferring functions from I' onto I', is the same as in [16], thus we refer to
[16, p. 130]).

Using quadrature formulae with integrating points lying in @ we replace the forms
ay(v, w) and I(w) by the forms a;’(v, w) and I;(w), respectively (for their definition
see Section 3). Further, computing numerically the integrals on the right-hand sides
of (2.10) and (2.13) for each ¢, = I',, U I',3 we obtain the forms aj(v, w) and [;(v),
respectively (see Section 3).

Now we solve the following problem instead of problem (2.7): Find u,e V,,
such that

(2.14) ay(uy, v) = 1,(v) VveVy,,
where the forms a,(v, w) and I,(w) are defined by

(2.15) a(v, w) = a; (v, w) + aj (v, w)
and

(2.16) L(w) = 2(w) + [H(w).

Theorem 2.1. Let a family of discrete problems (2.14) be given. Let us assume
that there exists a constant y > 0 independent of h, satisfying for h < h the in-
quality
(2.17) e300 S afv,v) VoeVy,.

Then for h < h problem (2.14) has a unique solution u,. If it € H*(Q) is a continuous

extension of the solution u of (1.1)—(1.4) onto a domain Q > Q, then for h < h
we have

(218) [ — ty|s0, < C { inf [||a — o0, + sup @MW] +

veVgn weVon [0,

+ sap [0 = O] | [I7C) - Tf(w)l}’

wevon  ||W]2.0, wevon W] 2.0,
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where C is a constant independent of both @i and h, and 7r(wv) is defined by (2.23).

Proof. Assumption (2.17) implies that for h < h every problem (2.14) has a unique
solution u;. Using (2.6) and (2.17) we obtain similarly as in the proof of [16, The-
orem 1]

(219) " = w0, = C { inf [Hﬁ il sup 1B W) e w)|] N

veVgn weVon ”W“Zf?h

+ sup

weVon

EMMJ} :

’WHZth

C being a constant independent of & and h.

Using the identity [10, (23, 22)] we obtain the following identity for i € H*(Q)
and we Vy,:

(2.20) ag(d, w) = H waA%i dxdy + J
2n

T'n2

w,,M,ii ds +J (thﬁ + wm‘th) ds,

I'n3

where the operators M, and N, are defined by relations similar to (1.5), (1.6). The
only difference consists in replacing n, n,, n, and s by n,, n,, n,, and s, respectively.
Setting

-(2.21) f=4%,

adding dj(u, w) to both sides of (2.20) and using (2.12) (2.13) we can easily obtain
for i e H*(Q) the identity

(2.22) afd, w) = I(w) + I"(w) — Ti(w) Vwe Vo,
where ‘
(2.23) I"(w) =f W, ds + J‘ (Fiouw + igw,,)ds,
I'h I'ns _
(2.24) How = Nyil + koy @, 1y, = Myil + ki, - ’

Inserting (2.22) into (2.19) we get (2.18). Theorem 2.1 is proved.
There are three sources of errors in solving (1.1)—(1.4) by the finite element
method:

i) the error of interpolation (the first term on the right-hand side of (2.18)). In
estimating the interpolation error we shall use [15, Theorem 5] and a similar theorem
for Bell’s elements [2, p. 819]. In accordance with the assumptions of these theorems
we shall assume that @ € H(Q). Let v, be the function from W, which interpolates
@i (i.e. the parameters uniquely determining v; are the function values and derivatives
of it at the corresponding nodal points). Then v; € V,;, and we have

(2.25) inf @ = vl.0, < [# = vrl2.0, = Ch] 0,5

veV g
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ii) the error of approximation of the boundary (the last term on the right-hand
side of (2.18)). In estimating the boundary approximation error it suffices to modify
slightly the proofs of inequalities [17, (109) and (110)]. We obtain

(2.26) [I'(w) — Tiw)| < Ch*|w|,.0, Ywe Voys

iii) the error of numerical integration (the second and third terms on the right-
hand side of (2.18)). It will be analysed in Section 3.

3. THE EFFECT OF NUMERICAL INTEGRATION
Before studying the effect of numerical integration we introduce some lemmas.

Lemma 3.1. (see [3, (4.1.42)]). Let D be an open bounded subset of Ey. Let o€ W*)(D)
(1 £ g £ ), we WE(D). Then the function @w belongs to the space W(D) and

k
(31) [(pwik,q,D g C Z l(plk—j,q,D |W|f,oo,D H
i=0
where C is a constant depending only on the integers k and N.

Lemma 3.2. (see [14]). Let D be an open bounded subset of Ey. Let k be a given
integer. There exists a constant C independent of p € Py(k) such that

(32) lplip SClplip 05i<j VpePyk),
(33) |Plj.ep < Clplin =0 VpePyk),

Py(k) being the space of all polynomials in N variables of degree not greater than k.

Lemma 3.3. Let D be an open bounded subset of Ey with a Lipschitz-continuous
boundary. Let k, m be given integers and u e H**"* (D). Let I be the orthogonal
projection in the space H*(D) onto the subspace Py(k), i.e.

(34) (u — Mu, p)p =0 VpePyk).

Then there exists a constant C such that

k+1+m

(3.5) o~ Muliy<C Y Ju|,p, OSi<k+14m.

J=k+1

Proof. For a given ve H*m+1(p) e define the linear functional

(3.6) ’ f(u) = (u - Iy, U)k+,,.+1,n Yue Hk+m+1(D) :
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As |[Muly p < |ul p» the linear functional (3.6) is continuous with the norm less
than or equal to 2|0, on the one hand, and is vanishing on P,(k) on the
other hand. Therefore, using the Bramble - Hilbert lemma in the form introduced
in [7] we obtain

k+m+1
(3'7) 'f(“)' = C||U”k+m+1,D Z 'u|j,u,
j=k+1

where C is a constant independent of u, v.

Choosing v = u — ITu we get from (3.6) and (3.7) the inequality

k+m+1

|

hu - Hu.”k+m+l,D =C Z Iulj.l)
j=k+1

from which (3.5) follows. Lemma 3.3 is proved.

First we shall analyse the effect of numerical integration in the domain Q,. The
theory is a generalization of Zeni3ek’s results [15]. Let us have a numerical quadra-
ture scheme over the unit triangle T,

(38) J j TOF*(é, n) dé dy ~i=ilw?‘F*(BT),

where w? are the coefficients and B} the integration points of the formula. (We can
use conical product formulae which are known for arbitrary degree of precision —
see [11]). Using the theorem on the transformation of multiple integrals and the
transformation [15, (23)] of a curved triangle T onto the unit triangle T, we obtain
in the same way as in [15].

(3.9) ﬁrf(x, y)dxdy ~§lwi,r F(Bir),

where w; ; and B; r are dcfined by [15, (125)].

Through the paper we assume that for h < h the integration points B, lie in the set
Q. Then ‘
3

.10) J(B;) = 1(B).

Let us approximate the bilinear form (2.9) and the linear form (2.12) by means
of (3.9), i.e. let us define the forms

It
(3.11) ag(v,w) =Y Yo, r Y (a,DvD’w)(B;r),
la], |18l =2

Tetp i=1

(3.]2) I,?(W) =3y Ii wi,T(fW) (Bi,T) .

Tetrp i=1

With respect to (3.10) we write f instead of fin (3.12).
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Let us define the error functionals by

(3.13) (R - J f F(x. y) dx dy ”2“"’1 F(Bir).

(3.14) E*(F*) = f f FH, n)dédn—Zw F¥(BY).

In the same way as [15, (150)] was derived we obtain

(3.15) Er{ Y auDwD'w)=EX( Y a,blbiJ*Dv*D’w*),
al, =2
lol, 18] |§Hm<2
where J* is the Jacobian of the transformation [15, (23)] and where the coefficients
b}, have the property (see [15, Lemma 3]),

(3.16) DY(bE bk J*) = O(h2~ 1= 1ol+Iut)

The proof of the following two theorems is a generalization of the proof of [15,
Th. 7, Th. 8] for the case of C'-elements. In [15] the prescribed homogeneous
Dirichlet boundary conditions are utilizcd in the proof; kere we consider more
general boundary conditions (see (1.2)—(1.4)), thus the proofs must be modified.

Theorem 3.1. Let
(3.17) E*((p*) =0 Ve*e PZ(2N* — 4) s

where N* = 4 + n for curved C'-elements and N* = 5 for interior elements and
n is the degree of the curved side c, of the boundary triangle, i.e.n = n;if ¢, = I,
Then

(3.18) |[Er( Y a,DwD'w)| < Chy
la], 18] =2

o1 [wlar

E

where C is a constant independent of hy, v and w.

Theorem 3.2. Let r = 2 be a given integer and let

(3.19) E*(np*) =0 Vy* ePZ(r + N* — 3),

where N* is the same as in Theorem 3.1. Then

(3.20) lEr(| I|Z| Zaa,,D“vD"w)| < Chylolysar [War s
al,|p|=

where C is a constant independent of h, v and w.
Proof of Theorems 3.1 and 3.2. A typical term on the right-hand side of (3.15)

is of the form
(3.21) » E*(c*D'v*D’w*)
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with |y| = || = 2 for the interior clements and with 1 < 7|, 8] = 2 for the boundary
elements. The function c¢* is given by

(3.22) ¢* = aybtblJ* .
Since 1*, w* € Po(N*) we have D'v* € P,(N* — y]), D’w* € P,(N* — |5]). Now we
distinguish two cases:

1) Estimating (3.21) for the interior elements and the boundary elements with
1< M < 2and |b| = 2 is the same as in [15, pp. 370—372]. Thus we omit it.

2) We shall estimate (2.21) for the boundary elements with I < |y| < 2and |9| = L.
In the proofs we modify the method of orthogonal projections introduced in [3]
Let us consider the form

E*(g*u*) Vo*e WO(T,), Vu*eP,(N* —|9|),

where in the case of Theorem 3.1

(3.23) s=N*+[5| -3
and in the case of Theorem 3.2
(3.24) s=r+9 - 2.

Let u* € Po(N* — }5!) and let IT be the orthogonal projection in the space L,(Tp)
onto the subspace P,(0), i.e.

(u* — Mu*, p)or, =0 VpeP,y(0).
The following identity holds (according to (3.14))
(3.25) E*(p*u*) = E*(o*(u* — Iu*)) + E*(p*ITu*).
Now we consider the form
(3.26) EX(@*(u* — ITu*)) Vo*e WENT,), Vu*ePy(N* —|3)).
~ We have, according to (3.14) and (3.26),
(3.27) |E*(@*(u* — Iu*))| £ Clo*o,w,r, |u* — Hu*|o, o 1, -
Using (3.3) and Lemma 3.3 we obtain the inequality
[u* — Du*|o 1, < [u* — Du*|y r, < Clu*|, r, -
Thus we get from (3.27)
[E*(0*(u* = Mu*))| < Clo*|s,0,r, [4¥1.7, -
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From here and from (3.17), (3.19), (3.23), (3.24) we obtain by means of the Bramble-
Hilbert lemma (see [1] or [2])

(3.28) [E*(o*(u* — ITu*))| < Clo*|, mrou*|i0e Yo*e WS(T,),
Vu* e Po(N* — |5]) .

Let us consider the form
(3.29) E*(¢*[Tu*) VYo*e WETPN(T,), Vu* e Py(0).

Using the inequalities [ITu*|o 1, < [u*]o 70: [0*[0,m0,70 = [0* s+ 151,0,70 and 2J3| <
< N* we obtain in a similar way as above that

(3.30) [EX(0*Tu*)| = Clo*|ss jo1,m,10 [4¥|o, 70 Vo* € WS PN(T,),
Vu* e Py(N* — |d]).

According to (3.16), (3.22) we have

(3_31) IC*lk,oo.To < Ch%“|7|—|§|+k .

Let us set ¢* = ¢*Dv*. Using Lemmas 3.1 and 3.2 and (3.31) we obtain

k
(3.32) . l‘l’*lk,oo.To < Ch%_lﬂ—|6'+k.§;;)h;J,v*li+lvl,To'
j=

Let us set u* = D’w*. Inserting (3.32) into (3.28) and (3.30) we obtain, according
to (3.25),

S
(39 (DD £ U 1o i +
s+16] . !
+ p2mhiEs y h;JIU*IHIrI,To IW*IP' o) -
j=0

The theorem on transformation of multiple integrals and [15, Theorem 2] imply
the estimate

(3.34) [Ww*| 7o < CHE Wi -

Using (3.34) we obtain from (3.33) (because |s| = 1)

(3'35) IE*(C*D}’U*D(SW*)I < C{h;"““z /’;jlv*'jﬂyl,To +
j=0

s+18] X
S o [
P

First we prove Theorem 3.1. By using (3.2) and (3.34) it is easy to see that the first
term in brackets on the right-hand side of (3.35) can be estimated by hy|v|, ;. As

362



to the second term we shall distinguish two cases:

i) If M = 1 then using (3.34) and (3.2) we obtain for sufficiently small h

s+16] .
(3:36) ZO he|o*]j4 10,70 < ChE 7o) 5,
=
ii) If [y] =2 then [v*|,4 15415170 = [V*|wss1.1 = 0, according to (3.23), and
we obtain
s+16]| .
(3.37) Zol’;l|”*|j+m.ro < Chy~*[lolf2.r -
=

The inequalities (3.35)—(3.37) imply (3.18). Theorem 3.1 is proved.
Now we prove Theorem 3.2. According to (3.34) we have

(3.38) [o*]4 pptor0 < CHEF 0] iz -

Inserting (3.38) into (3.35) and using (3.24) we obtain (3.20).

Remark. It is not difficult to generalize the proof of Theorems 3.1 and 3.2 for C™-
elements. We should define the orthogonal projections I7 in the spaces H'"’!~'(T,)
onto the subspaces P,(|6| — 1) and we should prove (3.18), (3.20) in a similar way
as above for 1 < ’bl < m.

With respect to (2.12) and (3.12) we derive

(339) T20) — 120) = ¥ Eo(o) .

fen

The relation [15, (144)], i.e. Ex(F) = E*(F*J*), implies
Ex(jw) = EX(Jw*J%)

with J*(&, n) = J(x*(& n), y*(& n)). where

(3.40) x=x*&n), y=y*&n)

is the transformation [15, (23)].

Theorem 3.3. Let the assumptions of Theorem 3.2. be satisfied and f € H'(Q). Then
(3.41) [1i0e) = B0 = €T [w]2.0

where C is a constant independent of h, f and w.

The proof of Theorem 3.3 is similar to that of [3, Theorem 4.1.5] or [5, Véta 6.3];
therefore it is omitted.

Now we shall analyze the effect of numerical integration on the boundary I.
Let us have a numerical quadrature scheme over the segment I = [0, 1]

(3.42) f 1G*(t) dr ~ i o, G¥(1;),

0
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where ; are the coefficients and ¢; are the integration points of the formula. Accord-
ing to the definition of the line integral we have

(3.43) f G, y) ds — f Glo*(1). 0*(1)) *(1) d — J 'G(1) 0*(1) dr

where
(3:44) () = x*(1 — 1,1), 1) = y*(1 — 1, 1),

x*(&, 1), y*(&, n) being the functions from (3.40), and
(3.45) x = o*1t), y=y*7r), te[0,1]

are the parametric equations of the curved side ¢, of the boundary triangle T*. The
function ¢*(t) is defined by

(3.46) o*(1) = (L™ (1> + [y*()]*)".

The relations (3.42) and (3.43) imply
J
(3.47) f G(x, y)ds ~ Y o, .. G(B,.,)
Ch j= 1

with @; ., = @; ¢*(t;), Bj.q, = (¢*(1;) v*(1))) -
Let us approximate the bilinear form (2.10) and the linear form (2.13) by means
of (3.47), i.e. let us define the forms

J
(3.48) ay,w) = Y Y o, (kinwn,) (B ) +

ch<In2 j=1

J
+ Z Z wi,ch(k("'vw + klhvnhwnh) (Bi,Ch) ’

chelps j=1 ~

(3.49) E0) = X 3 0 amn) (Bra) +

chElh2 j=1

J
+ Y Yo, mow + myw,,) (B, -

cn<ln3 j=1

With the quadrature schemes (3.42), (3.47) we associate error functionals

(3.50) E.(G) - j G(x, y)ds_éw,.,q, G(B, ),
Gs) . E(69= f G0 dt - ¥ 0, G*(1).
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According to (3.42)—(3.47), we have

(3.52) E.(G) = E/(G*¢*).

Taking into account (2.10), (3.48) and (3.50), we can write

@5 Ao -don) = Y Eokuoan) + L Eolkem).

chIp2ulhs ch<Th3

In what follows it will be convenient to use the following notation:

659 DI =S -0, 20— 10,

(55 (D () = (%) (1= 1), (D () = (099 (1 - 11).

(3.56) (o) (1) = w, (x*(1 — 1, 1), y*(1 — 1, 1)),

(3.57) {(D'w*}(t) = (D'w*)(1 = 1,1),

where w*(&, n) = w(x*(, n), y*(&, n))- It should be noted that the definition of curved
triangular C™-clements (see [15]) implies that {w} and {D*w*} (|y| = 1) are poly-

nomials of the fifth and fourth degree, respectively.
With respect to (3.52) we have

(358) Ech(k()hvw) = El(k:)kh Q*{U} {W}) ’
(359) Ec,,(klhvn;.wnh): El(k’lkh Q*{vnh} {.Wm-}) b4

where, according to the definition of transferring functions k; from I' onto I', (see
[16, p. 130]),

(3.60) kT,,(r) = k{p(s, + $3a21), Y(s, + 5321)) , i=0,1.

Here x = ¢(s), y = Y(s), s, < s < s, is the parametric representation of the arc
¢ < I' which is approximated by the arcc¢, = I',. P, and P, are the end points
of both arcs ¢, ¢, and §3, = 53 — $,.

Now we derive (3.62). We have

(361) W”h = w.tnhx + Wy”lx,v >
where, according to (3.45), ny,, = ¥*(1)]o*(1), n,, = —@*'(¢)[*(¢). Further, w(x, y) =
= w*(&*(x, »), n*(x, v)), where & = &*(x, y), n = n*(x, y) is the inverse transforma-

tion to the transformation (3.40). Using the rule of differentiation of a composite
function and the relations [15, (13)] we obtain from (3.61)

(3.62) w,} = Y {e,} {D'w*},

where we denote o

(3.63) {evo) = [} o + D7 v} 0%),
(3.64) {eon) = =[x} % + DI Y ]I({I*} 0¥).-

It
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Inserting (3.62) into (3.59) we obtain

(3.65) E,(kiy0n,Wn,) = E,(k;",,g*' {c,} {5} {Dv*} {D°w*}).

vhol=1

In [16] the following estimates are proved:
(3.66) le* ()] = Chl, W) = Chi (j=1,2,..)
(3.67) Chy < 0*(1), |e* (1) = C*hf*t (j=0,1,...)

where the constant C depends only on I" and the constant C* only on I' and j. Using
(3.66). (3.67), the rule of differentiation of a composite function and [15, (24), (25)]
we obtain from (3.63), (3.64)

(3.68) d({e,} {e;} *)fdi = O(HE™T) (k=1,2,..).
Lemma 3.4. The inequality
(669 (D S OBl (] = 0.1..0)

holds, where C is a constant independent of hy and w and we denote

MWl 11, =M§;+m (D*w)?* ds.

Proof. According to the rule of differentiation of a composite function we have
for M >0

on

aynﬂzw* O T2 £0xF\T! /Ox*\ "2 ow mxﬂzy*
- ( ) ( ) T—

(3.70) = kel — .
657’ (3}1“ axvaz a& ay 66}’1 5”‘12

Thus we can write with respect to (3.54) and (3.55)

1
J‘ {D'w*}? o* dt =
0

1 A1ty *) 71 *) 2 yi+y2 %) ]2
LS S G B e
o oxrrtr2 oé 6}1 dy ik 5?1”

Using the Cauchy inequality, (3.67) and [15, (25)] we obtain

1 1
0

o 1=lal=(y|
from where and [16, Lemma 3] we deduce

(371) 100 S 2wl B = 0,1,
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According to the rule of differentiation of a composite function we have

d“({D"w*}) _ 2( 1)k,(>{ ai{ll*_}

d ék J+yna,11+12

and using the Cauchy inequality we obtain

(372) (D2, < cz '{ {_?kfw'w* }zdt,

aék J+v:an1+/z

where C is a constant dependent on k. The inequalities (3.71) and (3.72) imply (3.69).
Lemma 3.4 is proved.

Theorem 3.4. Let the parts IT',, I'y of the boundary I' of Q be of class CS. Let the
functions k;e C3(U), (i = 0, 1), where U is a domain containing I', U I's. Let

(3.73) Ec) =0 VYoeP,8).

Then

(3.74) E.(koww)| < Chel|olly e 1Wll1 e »
(3.75) lEc;.(klhvm, nh)l < Chyl|lolll1 e IWl1,en 5

where C is a constant independent of hr, v and w.

Theorem 3.5. Let r = 1 be a given integer. Let the parts I',, I'y of the boundary
I of Q be of class C"** and the functions ko, ky € C'(U), where U is a domain
containing I', U I'5. Let

(3.76) E(c) =0 VoePy(r+3).

Then

(3.77) Eo,(koww)| = Chilllolls e, W[l .co
(3.78) E,(kyvawa)| = CHE{0flr+ 1.0n 11wl 1,00 5

where C is a constant independent of hy, v and w.

Proof of Theorems 3.4 and 3.5. First we shall prove (3.75) and (3.78). A typical
term on the right-hand side of (3.65) is of the form

(3.79) E,(c*{Dv*} {D’Ww*})
with || = || = 1. The function c* is given by
(3.80) c* = k% o*{c,} {cs) -

We have {Dv*}, {D’w*} € P,(4). Let us consider the form

(3.81) E/(c*u*) Yo* WE(I), Vu*e P(4),
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where in the case of Theorem 3.4

(3.82) s=5
and in the case of Theorem 3.5.
(3.83) s=7r.

According to (3.51) and (3.81) we can write

|EI(‘7*u*)I = C|6*|o,w,1 Iu*l(),oc,l
and using Lemma 3.2 we obtain

|Ed(o*u*)| = Cllo*[smr [u*fo.s -

According to the Bramble - Hilbert lemma and (3.73), (3-82) and (3.76), (3.83),
respectively, we conclude that

(3.84) |E(c*u*)| < C|o*
The relation (3.60) gives

il j A qd
(3.85) KE() = sgz[a "f(ﬂf) T —’id—"i] =05 i= 0,1

ox? \ds dy ds’

*
s, o, |u |0,I .

The assumptions of Theorem 3.4 and 3.5 atout I',, I'y and k; together with (3.85)
imply ky, € C(I). Thus, the relations (3.85) and the estimate 53, < Chy (see [16]) give
(3-86) |&5, <Chi, j=0,1,...5s,

ih|j,o0,I =

where C is a constant depending on k; and I'. Now we use Lemma 3.1 which together
with (3.68), (3.80) and (3.86) gives

(3-87) |c*|i o = CHET

Let us set 0* = ¢*{D'v*}, u* = {D’w*} and estimate |o*|, ,, , by means of Lemmas
3.1, 3.2 and (3.87), and I“*IOJ by means of Lemma 3.4. Then we obtain from (3.84)

1.cn°

(388)  |E(c*{Dv*} {D'w*})| = Ch;‘”2'2011;"|{D%*}|j‘_, ]|
e

In the proof of (3.75) we use the relation |{D"u*}
3.2 and 3.4 we have

s,; = 0. Then according to Lemmas
. < j 25,111
(3-89) .Z(,h?’{D’U*}]j.l < Ch? ol e, -
j=

The inequalities (3.88) and (3.89) together with (3.65) and (3.80) imply (3.75).
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Now we prove (3.78). Again using Lemma 3.4 and (3.83) we obtain

(3.90) Y hpd|{D7o*} |, < Chy’?|lJo]]
Jj=0

ir+1,cn

and the inequalities (3.88) and (3.90) together with (3.65) and (3.83) imply (3.78).
Now we prove (3.74) and (3.77). Let us consider the form

E/(c*u*) Vo*e WS(I), Vu*e P(5),
where in the case of Theorem‘ 34
and in the case of Theorem 3.5

(3.92) s=r—1.

Let u* e Py(5) and let IT be the orthogonal projection in the space L,(I) onto
the subspace P;(0), i.e.

(u* — Hu*, p)o, =0 VpePy0).
We can write

(3.93) Ej(o*u*) = E|(a*(u* — Nu*)) + E(c*ITu*)
and in a similar way as in the proofs of Theorems 3.1 and 3.2 we estimate
(3.94) |E,(o*(u* — Du¥))| < Clo*|,., ; |u*];, Vore WE(I), Yu*e Py(5),

(3.95)  |E(o*Iu*)| £ Clo*

s+1,0,1 Iu*IO.I Vo* e W(7§+l)(]) , Yute PI(S) :
Let us set o* = kg, 0*{v}. Then, using Lemma 3.1 and (3.3), we obtain
k
s €5 s 0]
7=
and using (3.67) and (3.86) we derive that

k
(3.96) lo* ] o0t < Ch"r“zoh;j’{v}\j‘,,
=

" where C is a constant depending on ky and I';.
Let us set u* = {w}. Inserting (3.96) into (3.94) and (3.95) and using (3.93), Lemma
3.4 and the inequality [[|w| o, = |[W][];.c, We obtain

10,cn = ||

s s+1
(3.97)  |Ej(kgy 0*{v} {w})| = Ch?r”“[_zoh»}j\{v}[“ + ZOII;JI{UHJ'”] 1wl en -
i= i=

Inserting the inequality

.
Y h;jl{v}lj,, < Cchy?t
i=o

el (k=sk=5+1)
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into (3.97) we get (3.74) and Theorem 3.4 is proved. The assertion (3.77) of Theorem
3.5 follows from (3.97), Lemma 3.4 and (3.92). Theorems 3.4 and 3.5 are completely
proved.
We can write with respect to (2.13) and (3.49)
7,1:(W) - III:(W) = Z Ech(mlhwnh) + Z Ec‘;.(mohw‘) .

chETpaVlps ch<=Th3

Using (3.51), (3.54) we have
E,(mow) = E(mg, 0*{w})
and
E"h(rnlhw"n) = El(m;kh QT !Z {CV} {DVW*}) ’
yi=1

where mji(1) = m(o(s, + 53,1), Y(s, + 5321)) (i =0,1).

Theorem 3.6. Let »r = 3 be a given integer. Let I' be of class C™*' and
Mgy, My € C’(U), where U is a domain containing I', U I'5. Let

E(s) =0 VaoeP(r+3).
Then

(3.98) Ti(w) = Li(w)| £ CH'|[w]2 g, ,

where C is a constant independent of h and w.

The proof of Theorem 3.6 is similar to that of Theorem 3.5. Thus it is omitted
(for details see [5]).

It remains to establish the validity of (2.17) which expresses the uniform V-
ellipticity of the bilinear forms a,(v, w) (h < h).

Theorem 3.7. Let the assumptions of Theorems 3.1 and 3.4 be satisfied. Let I’
be of class C*. Let (2.3) and (2.5) be satisfied. Then the inequality (2.17) holds for
sufficiently small h.

Proof. First we establish the validity of the inequality
(3.99) av,v) 2 K|v|3.0, YveVo, h<h,

where K is a constant independent of v and h. We shall consider the cases 1°—6°
introduced in Section 1.

In the cases 1° and 2° inequality (3.99) follows from considerations introduced
in [17, proof (99)] and from the inequality @,(v, v) = (1 — p) |0]3 g,

In the case 3° we have

ayv,v) = C, [j v2ds + [ul%yﬂh:l .
I'2n
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To prove (3.99) it suffices to use the inequality
[o]3,0, = C,:f vrds + fu‘;gh] Yoe Vo s
I'an

the proof of which is a simple modification of proofs of [17, Theorems 1, 2] because
rlzh = r’2
In the case 4° we have

d,,(v, v) = C, [f v2ds + ]v"%,gh].
I'*3p

To prove (3.99) it suffices to use the inequality
H%mgcu ﬁm+M@]w@Mb%m
Iapul¥*ap

which follows from [17, Corollary 3]. In the case 5° the proof of (3.99) follows

the same lines.
In the case 6° we have

v, v) = Cy [f vdds + f vy, ds + ’Ulg,g,]-
I'"3n I'**3p

The proof of (3.99) now follow from the inequality

(3.100)  |o3.0, = CU v? ds +f vn ds + [u];m] Voe Wi,
I"3n I**3p

which is proved in [5]. The inequality (3.99) is completely proved.
Theorem 3.1 implies

(3.101) =Y |Ef( Y a,DwDv)| = — Chv|3,, -
Tety lal,18]=2

Theorem 3.4 together with the discrete form of the trace theorem with a constant C
independent of h (see [16, Lemma 4]) give

\(3.102) — Z Ec,‘(ku.l’f,, Z

chETh2UlR3 cn<=Tn3

Relations [15, (145)], (3.53), (3.99), (3.101) and (3.102) imply
ay(v,v) =2 (K — 2Ch) ||v]|3 o, -

Eo(kow?)| 2 = Chllv]3.q,

Let us choose /i, = K[4C. Then inequality (2.17) is satisfied with y = K/2 for h <

< min (, hy). Theorem 3.7 is proved.
The main result of the paper is formulated in the following theorem where the

results of Sections 2—3 are summarized.
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Theorem 3.8. Let the extension i of u, the solution of the problem (1.1)—(1.4)
to the domain @ > Q,, satisfy

dieH(Q), f=A%ieH Q).

Let go, g, € C(U,), go€ C¥U,), k;€ C*(U,3), m;e C¥(Uss) (i = 0, 1), where U,
is a domain containing I'; (j = 1,2) and (j = 1,2) and U, is a domain containing
' U I's. Let the part T’y of I' be of class C* and the parts T',, I'5 of T of class C°.
Let (2.3) and (2.5) be satisfied. Let

E*(¢*) = 0 Vo* e P,(2N* — 4)

with N* = 5 for Bell’s elements and N* = 4 + n for curved triangular C'-elements
from [15]. Let

E(c) =0 VoePy8).

Then for sufficiently small h the solution u, of the discrete problem (2.14) exists
and is unique and the following estimate holds:

(3.103) ld = |20, < CR[|i]s 5 + |Fls5 + 2],
where C is a constant independent of h and 1.

Proof. According to Theorem 3.7, the assumptions of Theorem 3.8 imply for
sufficiently small h the inequality (2.17). Thus the solution u,, of (2.14) exists and is
unique.

As P,(2N* — 4) o P,(r + N* — 3) for r < N* — 1, the assumption (3.19)
holds with » = 3. Using (2.9), (3.11), (3.13) and Theorem 3.2 we obtain

(3.104) \a (v, w) — az(v, w)| < Ch? Z Iolls.z [w]2.r -

Tet,

As Py(8) o Py(r + 3) for r < 5, the assumption (3.76) of Theorem 3.5 holds with
r = 3. Using (3.53) and Theorem 3.5 we obtain

(3.105) lar(v,w) = ap(e,w)| = C* Y o]l ]l

Ch‘:rthrhS

11,¢n

Let v, be the function from Wj interpolating i (see Section 2). Then according to
[15, Theorem 5] and [5, (8.49)],

(3.106) fodls.e < Jallse+ Jor = dlsr < Cllifsr,
(3.107)  onlllaen = [laen + 8 = 01 la0, = C[a]]a,c + ]s,7) -
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As v, € V,;, we obtain from (3.104), (3.105), (3.106), (3.107), the Cauchy inequality
and a modified trace theorem with a constant independent of h (see [16, Lemma 4])

(3.108) inf sup |ﬁ,,(v, w) — av, w)l

< ch’fils ., -
veVgn weVon ”W

|
|2,0n

Inserting (2.25), (2.26), (3.41), (3.98) and (3.108) into (2.18) we obtain (3.103). Theo-
rem 3.8 is proved.
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Souhrn

NUMERICKA ANALYZA OBECNEHO BIHARMONICKEHO PROBLEMU
METODOU KONECNYCH PRVKU

JIRi HREBICEK

Zakiivené trojuhelnikové C™ — prvky zavedené v [12]—[14] (m = 0) a [6], [8],
[15] (m > 0) byly doposud analyzovdny pouze pro feSeni takovych eliptickych
okrajovych problémi fddu 2(m + 1) metodou kone&nych prvki, kde okrajové
podminky neimplikuji hraniéni bilinedrni formu ve variani formulaci problému,
ptri¢emz uinek numerické integrace byl studovdn pouze v piipadé Dirichletovych
problémi (viz [3], [6], [8], [12]-[17]).

V ¢ldnku jsou zaktivené trojiihelnikové C'-prvky pouzity k feSeni biharmonické
rovnice metodou koneénych prvki jiz s obecnymi okrajovymi podminkami impliku-
jicimi obecny tvar bilinedrni i linedrni formy problému a u€inek numerické integrace
je studovan jak v oblasti Q,, tak na hranici I,

Bilinedrni a linedrni forma diskrétniho problému (2.]4) je definovdna pomoci
kvadraturnich formuli. Je-li stupen presnosti kvadraturnich formuli 2N* — 4 pro
zak¥ivené trojuhelnikové C' — prvky, 6 pro Bellovy prvky, 8 pro integraci hraniéni
bilinedrni formy (3.48) a hranice I' je dostate¢ng hladkd (viz v&tu 3.8), pak existuje
pravé jedno feSeni diskrétniho problému (2.14) a rychlost konvergence k piesnému
feSeni problému (1.1)—(1.4) je O(h®) v normé prostoru H*(2,).

Author’s address: RNDr. Jiri Hfebi¢ek, CSc., Ustav fyzikalni metalurgie CSAV, Zizkova 22,
616 62 Brno.
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