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SVAZEK 27 (1982) APLIKACE MATEMATIKY ČISLO 5 

NUMERICAL ANALYSIS 
OF THE GENERAL BIHARMONIC PROBLEM 

BY THE FINITE ELEMENT METHOD 

JlRI HREBICEK 

(Received September 22, 1980) 

INTRODUCTION 

The present paper deals with solving the general biharmonic problem by the finite 
element method using curved triangular finite C1 — elements introduced in [15]. 
Till now curved triangular C1 — elements have been analysed only for such second 
and fourth order elliptic boundary value problem where boundary conditions 
do not imply a boundary bilinear form in the variational formulation of the problem. 
The effect of numerical integration in the case of the fourth order problems has been 
studied only in the case of the Dirichlet problem (see [3], [6], [8], [12] —[17]). 
In this paper the general form of the bilinear form is considered and the effect of 
numerical integration is analysed in the case of mixed boundary conditions (1.2) —(1.4). 

In Section 1 the general nonhomogeneous biharmonic problem is described and 
a weak solution is defined. In Section 2 the finite element spaces are defined using 
curved triangular finite C1 — elements from [15] and Bell's elements [2]. The 
discrete and completely discrete problems are formulated together with an abstract 
error theorem which is a modification of similar theorems (see [3], [8], [16], [17]). 
In the last section the effect of numerical integration and sufficient conditions for the 
uniform V0h — ellipticity are studied. The results presented are generalizations 
of the similar results introduced in [3], [15]-[17] . 

The notation in this paper is the following. Let Q be a bounded domain in the 
x, y-plane with sufficiently smooth boundary F. Let k —^ 0 be an integer. The symbol 
Wj}

k)(Q) denotes the Sobolev space 

W^(Q) = {ve Lp(Q) : D*v e Lp(Q) |a| ^ k] , 

where Dav is the multiindex notation for derivatives, i.e., a = (a l 9 a 2 ) e N 2 , |a| = 
**at + a2, Dav = dlalv/dxai dy'2. 

352 



The norm and seminorm are defined in WJ,k)(Q) by 

\Dav\pdxdy 

P 

k 

\\k,p,Q ~ = I H ? , P , « . ML>,«= Z 
I = 0 \a\=j 

for 1 rg p ^ oo, with the standard modification for p = +co. We denote Hk(Q) = 

= W2 ("J* II i|fc,-2 ~ |V||fc,2,iQ a n ( l V|fc,iQ ~ V|fc,2,0-

For the sake of brevity we also use the symbol v^ for dvjdx, vxy for d2vjdx dy etc. 
The normal derivative vn and the tangential derivative vs are defined by 

vn = vxnx + vyny , vs = vx(-ny) + vynx , 

where nx, ny are the direction cosines of the outward normal n to F. 
C will denote a generic constant, i.e. C will not denote necessarily the same con­

stant in any two places. 

V S E T T I N G O F T H E B O U N D A R Y V A L U E P R O B L E M 

Let Q be a bounded, simply connected domain in the x, y-plane representing the 
shape of a thin plate, F its boundary. Let F consists of three mutually disjoint parts 

F = F! U F2 U F3 , 

where each F,- (i = 1,2, 3) is either empty or possesses a positive measure and does 
not contain isolated points. 

Let us consider the following problem of bending of a thin elastic plate: 

(1.1) A2u = / in Q, 

(1.2) u = g0, un = #! on Fj , 

(1.3) u = g2 , Mu + k!u„ = m! on F2 , 

(1.4) Nu + k0u = m0 , Mu + k1un = mx on F3 , 

where / , gt, kt ^ 0, mt, (i = 0, 1), g2 are sufficiently smooth prescribed functions 
(their smoothness will be specified later). Further, 

(1.5) Mu = JJLAU + (1 - fi)(uxxnl + 2uxynxny + uyyn
2) , 

(1.6) Nu = (-Au)n + (1 - u) [uxxnxny - nxy(n
2

x - n2) - uyynxiiy]s, 

where \i = const (0 ^ ji < 1/2) is the Poisson ratio of the plate material. 
In this paper we consider (1.2) — (1.4) under the assumption that at least one of the 

following six conditions holds: 
1° mes (Fx) > 0; 
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2° mes (F2) > 0, F2 is not part of a straight line; 
3° mes (F2) > 0, F2 is part of a straight line and there exists F2 <= F2 such that 

mes (F2) > 0 and kx g: klc > 0 on F2 (klc = const) ; 
4° mes (F2) > 0, F2 is part of a straight line, kx = 0 on F2, and there exists F* c F3 

such that mes (F3) > 0, k0 ^ k0c > 0 on F* (k0c = const) and F3 is not part 
of the straight line containing F2; 

5° there exists a subset F3 cz F3 such that mes (F3) > 0, F3 is not part of a straight 
line and k0 ^ k0c > 0 on F3 (k0c = const); 

6° there exist subsets F3 cz F3, F** cz F3 such that mes (F3) > 0, mes (F**) > 0, 
F3 is a part of a straight line, F3 * is not a union of segments which are perpendi­
cular to the straight line containing F3 and k0 ;> k0r > 0 on F3, kl ^ klc > 0 
on F** (k0c = const, klc = const). 

Let us define the space 

(1.7) 

V0 = {v e H2(Q) : v = 0 on Ft u F2, vn = 0 on rt in the sense of traces] 

and the set 

(1.8) 

Vg = (v 6 H2(Q) : v = g0, vn = gx on F1? v = g2 on F2 in the sense of traces} . 

The variational formulation of the problem (1.1) —(1.4) can be written as follows: 
Find u E Vg such that 

(1.9) a(u,v) = l(v) V v e V 0 . 

with 

(1.10) a(u, v) = aQ(u, v) + a
r(u, v) , 

aaíiD
auDpv áx áy , 

Q 

(1.11) a%u,v)= £ f' 
\«\AP\=2 J f c 

where aajj are constant coefficients (for their definition see [10, p. 365]), 

(1.12) ar(u, v) = kiunvn6s + (k0uv + k^i^^ds 

and ^Fl ^ f 3 

(1.13) l(v) =P(v)+F(v)9 

(1.14) f(v)= [[fvdxdy, 

(1.15) /r(v) = mlvn ds + (m0v + m^) ds . 
J T2 J T3 

It follows from [4, Lemma 3.1] that problem (l.9) has a unique solution. 
We shall solve problem (1.9) by the finite element method. 
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2. SETTING OF THE DISCRETE PROBLEMS 

Let Qh be a finite element approximation of the domain Q generated by a triangula-
tion Th (for details see [15], [17]). The symbols Th and Thi (i = I, 2, 3) will denote 
the boundary of Qh and the parts of Fh approximating Fh respectively. 

With every triangulation Th we associate three parameters /., h and $• defined by 

(2.1) h = max hT , h = min hT , 9 = min 9T , 
Texh' Texh Texh 

where hT and ^ r are the length of the greatest side and the smallest angle, respectively, 
of the triangle with straight sides which has the same vertices as the triangle T We 
restrict ourselves to triangulations Th satisfying 

(2.2) 9 ^ ,90 , B0 = const > 0 , 

(2.3) h = C0h , C0 = const > 0 . 

Let Wh denote the finite element subspacc cf the space C1(Qh) consisting of func­
tions which we obtain by piecing together curved triangular finite ^-elements [15] 
with Bell's elements [2]. 

Let V0/J be a subspace of W2 defined by 

(2.4) V0h = {v e Wh
2 : v = 0 on FM u F/l2, vnh = 0 on fhl} , 

where nh is the outward normal to Th. 
Let Vgh be the subset of Wh consisting of those functions which at the nodal points 

lying on F^ satisfy the boundary conditions (1.2) and the stable boundary condition 
(1.3) and all consequences of those conditions containing at most second derivatives 
(for details see [5], [16], [17]). 

Let nt (i = 1, 2, 3) be the degrees of curved sides ch (of the curved triangles) which 
rh consists of. If we set 

(2.5) nt = 3 , n2 = 5 , n3 = 3 . 

then (see [16], [17]) 

(2.6) v,weVgh=>v - weV0h. 

Now we can formulate the discrete problem corresponding to problem (1.9): 
Find uh e Vgh such that 

(2.7) ah(uh, v) = lh(v) Vv e V0h, 

where the bilinear form dh(v, w) is defined by 

(2-8) a»(v, w) = af(v, w) + al(v, w) , 

(2.9) ařtøw)- I ľ aapD*vDpwdxdy, 
«h 
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(2.10) ãl{v, w) = fciftWh ds + 
TҺ2 

f (fco 
JTh3 

tvw + klhvn2wn2)ds 

and the linear form ~lh(w) is defined by 

(2.11) lh(w) = 7?(w) + 7[(w), 

(2.12) 

(2.13) 

JJfíh 

I»= fwáxdy, 

ÏM = и ц \ ds + (ҷo/,w + m l h w W h )ds. 
TҺЗ 

The symbol / in (2.12) denotes a continuous extension of the function f onto 
a domain Q ZD Qh (h < h) and will be specified in (2.21); kih, mih (i = 0, 1) are func­
tions obtained by "transferring" the functions kt, mi from F onto Th (the definition 
of transferring functions from F onto Th is the same as in [16], thus we refer to 
[16, p. 130]). 

Using quadrature formulae with integrating points lying in Q we replace the forms 
a^(v, w) and ~lh(w) by the forms ah(v, w) and lh(w), respectively (for their definition 
see Section 3). Further, computing numerically the integrals on the right-hand sides 
of (2A0) and (2A3) for each ch c Fh2 u rh3 we obtain the forms ah(v, w) and lh(v), 
respectively (see Section 3). 

Now we solve the following problem instead of problem (2.7): Find uh e Vgh 

such that 

(2.14) ah(uh,v)= lh(v) VveV0 / j , 

where the forms ah(v, w) and lh(w) are defined by 

(2.15) ah(v, w) = a^(v, w) + ar
h(v, w) 

and 

(2.16) lh{w) = / » + fh(w) . 

Theorem 2.1. Let a family of discrete problems (2.14) be given. Let us assume 

that there exists a constant y > 0 independent of h, satisfying for h < h the in-

quality 

(2.17) y\\v\\2
2A^ah{v,v) W e V 0 / , . 

Then for h < h problem (2.14) has a unique solution uh. If u e H4(Q) is a continuous 

extension of the solution u of (1.1)— (1.4) onto a domain Q ID Qh then for h < h 

we have 

/^ , r . \ n ~ ii . , f - ^ I ii ii \ah(v,w) — ah(v, w)\ 
(2 .18) \\u - Uh\\2tQh g C J in f I IIf7 - «IL - 4- ciin L *V ) _ \2,Qh + S U P 

W 6 V 0 h 

+ sup 
weVoh 

J inf ||w — v 
[veVgh L 

\W - M + SUD 1?» - lM\ 
II li p li li í ' 
| |W | |2 , í3h weKoh P | | 2 , f l h J 
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where C is a constant independent of both u and h, and lr(w) is defined by (2.23). 

Proof. Assumption (2.17) implies that for h < h every problem (2.14) has a unique 

solution uh. Using (2.6) and (2.17) we obtain similarly as in the proof of [16, The­

orem 1] 

(2.19) \U - uh\U ^ C \ inf \\\u - » | U + sup l - f r . * ) - - ^ ) . ! + 

+ sup ]*&>»)- *W 
WЄVOҺ 1.2,0* 

C being a constant independent of u and h. 

Using the identity [10, (23, 22)] we obtain the following identity for u e H4(.(3) 
and w є V O/i* 

(2.20) dh(u, w) = wA2u dx dy + wnhMhii ds + (wNhu + wnhMhu) ds , 
J J o h JTh2 JTh3 

where the operators Mh and Nh are defined by relations similar to (1.5), (1.6). The 

only difference consists in replacing n, nx, ny and 5 by nh, nhx, nhy and sh, respectively. 

Setting 

(2.21) / = A2u, 

adding dh(u, w) to both sides of (2.20) and using (2.12) (2.13) we can easily obtain 

for u 6 H4(.(2) the identity 

(2.22) ah(u, w) = lh(w) + lr(w) - Vh(w) Vvv e V0h, 

where 

(2.23) / » = f 
JTЙ2 

WІҺWПҺ á s + (m0^w + mlftwMh)d 
TҺЗ 

(2.24) m0h = Nhu + k0ft t7, mlh = Mhu + klhunh . 

Inserting (2.22) into (2.19) we get (2.18). Theorem 2.1 is proved. 
There are three sources of errors in solving (1.1) —(1.4) by the finite element 

method: 

i) the error of interpolation (the first term on the right-hand side of (2.18)). In 
estimating the interpolation error we shall use [15, Theorem 5] and a similar theorem 
for Bell's elements [2, p. 819]. In accordance with the assumptions of these theorems 
we shall assume that u e H5(Q). Let Vj be the function from Wh which interpolates 
u (i.e. the parameters uniquely determining v7 are the function values and derivatives 
of u at the corresponding nodal points). Then vl e Vgh and we have 

(2.25) inf ||u - v||2jňh á ||fi - vi\i,nh = c^\u\2,nh 
veVgh 
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ii) the error of approximation of the boundary (the last term on the right-hand 
side of (2.18)). In estimating the boundary approximation error it suffices to modify 
slightly the proofs of inequalities [17, (109) and (110)]. We obtain 

(2-26) \V(w) - Vh(w)\ = Ch3\\w\\2}Qh Vw e V0h ; 

iii) the error of numerical integration (the second and third terms on the right-
hand side of (2A8)). it will be analysed in Section 3. 

3. THE EFFECT OF NUMERICAL INTEGRATION 

Before studying the effect of numerical integration we introduce some lemmas. 

Lemma 3.1. (see [3, (4 J .42)]). Let D be an open bounded subset of EN.Let (peW^k)(D) 
(l = q S oo), w e W£\D). Then the function cpw belongs to the space W^k)(D) and 

k 

V3'1) k W k q , D = C X \<p\k-j,q,D \w\j,ao,D > 
7 = 0 

where C is a constant depending only on the integers k and N. 

Lemma 3.2. (see [14]). Let D be an open bounded subset of EN. Let k be a given 
integer. There exists a constant C independent of p e PN(k) such that 

(3-2) \p\jtD S C\p\lfD O^iSj Vp G PN(k), 

(3-3)) \p\J>o0>D S C\p\JtD j Z 0 Vp G PN(k), 

PN(k) being the space of all polynomials in N variables of degree not greater than k. 

Lemma 3.3. Let D be an open bounded subset of EN with a Lipschitz-continuous 
boundary. Let k, m be given integers and u e Hk+m+1(D). Let H be the orthogonal 
projection in the space Hk(D) onto the subspace PN(k), i.e. 

(3.4) (u - nu, p\,D = 0 VpGPN(k). 

K •+• J -ř- m 

(3.5) \u - nu\iD ^ c X \U\J,D > 0^i^k+í + m: 

Then there exists a constant C such that 

k+l+ m 
: I I 

j = k+l 

Proof. For a given v e # * + - » + 1 ^ w e d e f i n e t h e h n e a r f u n c t i o n a l 

(3.6) f^u) = ^~nu,v\+m+UD VueHk+""(D). 
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As |/7w||fcfD S |M||fc,D» t r i e linear functional (3.6) is continuous with the norm less 
than or equal to 2||v||fc + m + 1 D on the one hand, and is vanishing on PN(k) on the 
other hand. Therefore, using the Bramble - Hilbert lemma in the form introduced 
in [7] we obtain 

k + m+l 

(3-7) \f(u)\^C\\v\\k+m + 1>D £ \u\JtD9 
j = k+l 

where C is a constant independent of u, v. 

Choosing v = u — Flu we get from (3.6) and (3.7) the inequality 

k + m+1 

||u - nu\\k+m+UD ^ c £ \u\JtD 
j = k+l 

from which (3.5) follows. Lemma 3.3 is proved. 
First we shall analyse the effect of numerical integration in the domain Q]v The 

theory is a generalization of Zenisek's results [15]. Let us have a numerical quadra­
ture scheme over the unit triangle T0 

(3.8) IT F*(&i0d{df,~j>fF*(Bf), 

where co* are the coefficients and Bf the integration points of the formula. (We can 
use conical product formulae which are known for arbitrary degree of precision — 
see [11]). Using the theorem on the transformation of multiple integrals and the 
transformation [15, (23)] of a curved triangle Tonto the unit triangle T0 we obtain 
in the same way as in [15]. 

(3.9) N F(x, y) dx dy ~ | > l > r F(Bi>T), 

where coiT and BiT are defined by [15, (125)]. 
Through the paper we assume that for h < h the integration points Bt lie in the set 

Q. Then 

(3.io) M)=M). 
\ 

Let us approximate the bilinear form (2.9) and the linear form (2.12) by means 
of (3.9), i.e. let us define the forms 

(3.11) «*>,*) = X i > „ T X (a«irvD>w){BltT), 
TET„ 1=1 | a | , | / ) | = 2 

(3-12) ' * » = ! E «,,-(/•*) (B, , r) . 
Tern i = 1 

With respect to (3.10) we writef instead of fin (3.12). 
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Let us define the error functional by 

(3.13) Fr(F) = IT F(x, y) dx dy - £ coitT F(BitT) , 

(3.14) E*(F*) = j | F*(£, rj) d£ dn - £ co* F*(B 

In the same way as [15, (150)] was derived we obtain 

*)• 

(3.15) ET( £ axpD*vD*w) = E*( £ aaPbtyb*dJ*Dyv*Dsw*), 
H,\P\=2 |a | , | /? |=2 

where J* is the Jacobian of the transformation [15, (23)] and where the coefficients 
b*y have the property (see [15, Lemma 3]), 

(3.16) D\b*ayb*dJ*) = 0 ( b r ~ | y M 5 | + H ) . 

The proof of the following two theorems is a generalization of the proof of [15, 
Th. 1, Th. 8] for the case of ^-elements. In [15] the prescribed homogeneous 
Dirichlet boundary conditions are utilized in the proof; here we consider more 
general boundary conditions (see (1.2) —(1.4)), thus the proofs must be modified. 

Theorem 3.1. Let 

(3.17) E*(cp*) = 0 V(p* G P2(2N* - 4 ) , 

where N* = 4 + n for curved C1-elements and N* = 5 for interior elements and 
n is the degree of the curved side ch of the boundary triangle, i.e. n = nt if ch cz Thi. 
Then 

(3.18) \ET( £ tfa/?D
avDV)| S Ch r | |v | |2 , r | |w| |2 ) T , 

|a|,|/5|=2 

where C is a constant independent of hT, v and w. 

Theorem 3.2. Let r ^ 2 be a given integer and let 

(3A9) E*(<A*) = 0 V</>* e P2(r + N* - 3) , 

where N* is the same as in Theorem 3.1. Then 

(3.20) \ET( X aaPD'vDfiw)\^Ch^v\\r + 2 t T \ \ w \ \ 2 t T , 
1*1,l/*l=2 

where C is a constant independent of hT, v and w. 
Proof of Theorems 3.1 and 3.2. A typical term on the right-hand side of (3.15) 

is of the form 

(3.21) E*(c*Dyv*D3w*) 
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with \y\ = \S\ = 2 for the interior elements and with 1 :g \y\, \S\ = 2 for the boundary 
elements. The function c* is given by 

(3.22) c* = aafib*yb*dJ* . 

Since v*, w* e P2(N*) we have Dyv* e P2(N* ~ |y|), D*w* e P2(N* - |<5|). Now we 
distinguish two cases: 

1) Estimating (3.21) for the interior elements and the boundary elements with 
1 ^ |y| ^ 2 and \s\ = 2 is the same as in [15, pp. 370 — 372]. Thus we omit it. 

2) We shall estimate (2.21) for the boundary elements with 1 ^ \y\ :g 2 and |d| = 1. 
In the proofs we modify the method of orthogonal projections introduced in [3]. 
Let us consider the form 

E*(cp*u*) \fcp* e W^(T0), Vw* e P2(N* - \S\), 

where in the case of Theorem 3A 

(3.23) s = N* + \S\ - 3 

and in the case of Theorem 3.2 

(3.24) s = r + |<5| - 2 . 

Let u* e P2(N* — \S\) and let TI be the orthogonal projection in the space L2(T0) 
onto the subspace P2V0), i.e. 

(u* - nu*, p)0)To = 0 VpeP2(0). 

The following identity holds (according to (3.14)) 

(3.25) E*(cp*u*) = E*(cp*(u* - Ilu*)) + E*(cp*Ilu*) . 

Now we consider the form 

(3.26) E*(cp*(u* - nu*)) \ftp* e W%\T0), Vu* e P2(N* - \S\) . 

We have, according to (3.14) and (3.26), 

(3.27) | £ % * ( M * - Hu*))\ ^ C|<p*|0>a),ro \u* - i7M*|o>00,ro . 

Using (3.3) and Lemma 3.3 we obtain the inequality 

\u* - nu*\0f03fTo = \u* - 17u*|0,ro ^ c|u*| l jTo. 

Thus we get from (3.27) 

\E*(<p*(u* - nu*))\ Z C\<p*\s^To\u*\liTo. 
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From here and from (3.17), (3A9), (3.23), (3.24) we obtain by means of the Bramble-
Hilbert lemma (see [1] or [2]) 

(3.28) \E*(cp*(u* - Uu*))\ £ C|9*|.fcoiro|«*|i.ro V<?* G W<$(T0) , 

Vu* e P2(N* - \5\). 

Let us consider the form 

(3.29) E*(cp*nu*) V<p* e W£+ m(T0) , Vu* e P2(0) . 

Using the inequalities |17u*|0,r0 S |w*|o,.r0. k*|o,oo,T0 -S ||<P*|Ul<5|,oo,T0
 a n d 2\3\ < 

< N* we obtain in a similar way as above that 

(3.30) \E*(cp*nu*)\ ^ C\cp*\s+]slt„,To \u*\0;To Vcp* e W£+^(T0) , 

Vu* G P2(N* - |<5|) . 

According to (3.16), (3.22) we have 

(3.31) \c%,x,ToSChT-M-^K 

Let us set cp* = c*Dyv*. Using Lemmas 3.1 and 3.2 and (3.31) we obtain 

k 

(^ M\ \m*\ < Ch2~\y\~\s\+k V h~j\iM 
\ J - J Z 1 l ^ |fc,oo,To = L/IJT LnT \V \j+\y\,T0' 

j = 0 

Let US set u* = D3w*. Inserting (3.32) into (3.28) and (3.30) we obtain, according 
to (3.25), 

(3.33) \E*(c*Dyv*Dsw*)\ ^ C{h2
T~^-^+s £ hT

j\v*\j+]y],To |w*|1 + m , r o + 
1=o 

s+|<5| 

+ h2
T-^ + sJ] hT

j\v*\j+^ TJw* 
1 = 0 

-Ь\,To I ^ Р ' Тoi * 

The theorem on transformation of multiple integrals and [15, Theorem 2] imply 

the estimate 

(3-34) \w*\KTo^ChT-
1jw\\KT. 

Using (3.34) we obtain from (3.33) (because \d\ = 1) 

(3.35) \E*(c*Dyv*D3w*)\ g C{h2

T~^+sj]hT

j\v*\j+lyUTo + 
j = o 

+ *J-,Tl+'+l'lT*FVU|-|.r.}||w||_.r. 
1 = 0 

First we prove Theorem 3.1. By using (3.2) and (3.34) it is easy to see that the first 

term in brackets on the right-hand side of (3.35) can be estimated by hr|v||2,r- As 
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to the second term we shall distinguish two cases: 

i) If |y| = 1 then using (3.34) and (3.2) we obtain for sufficiently small h 

(3-36) S l V ' M j + M , T o = CAr" -" , ' l lHl2.r-
1 = o 

ii) If \y\ = 2 then |v*|s+|(5| + M > r o - |v*|N*+1,To = 0, according to (3.23), and 
we obtain 

(3.37) Tv>1j+|yUTo^^T"1HkT-
j = o 

The inequalities (3.35)— (3.37) imply (3.18). Theorem 3.1 is proved. 
Now we prove Theorem 3.2. According to (3.34) we have 

(3-38) H+iyl,r0^Chi+^-'\\v\\j+2,T. 

Inserting (3.38) into (3.35) and using (3.24) we obtain (3.20). 
Remark. It is not difficult to generalize the proof of Theorems 3.1 and 3.2 for Cm-

elements. We should define the orthogonal projections TI in the spaces Hl<51_1(r0) 
onto the subspaces P2(|O1 — 1) and we should prove (3.18), (3.20) in a similar way 
as above for 1 = \d\ :g m. 

With respect to (2.12) and (3.12) we derive 

(3.39) ? ( w ) - / ? ( * ) = £ E - W . 
Tezh 

The relation [15, (144)], i.e. ET(F) = E*(F*J*), implies 

ET(Jw) = E*(J*w*J*) 

with J% n) = J(x% n), y% n)), where 

(3.40) x = x%n), y = y%n) 

is the transformation [15, (23)]. 

Theorem 3.3. Let the assumptions of Theorem 3.2. be satisfied and J e Hr(Q). Then 

(3.41) | i » - / » | ^ C^||/ | | r>f i \\w\\2tQh 

where C is a constant independent of h, J and w. 
The proof of Theorem 3.3 is similar to that of [3, Theorem 4.L5] or [5, Veta 6.3]; 

therefore it is omitted. 
Now we shall analyze the effect of numerical integration on the boundary Th. 

Let us have a numerical quadrature scheme over the segment I = [0, 1] 

(3.42) [1G*(t)dt~'Za>jG*(tj), 
Jo )=i 
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where co, are the coefficients and tj are the integration points of the formula. Accord­
ing to the definition of the line integral we have 

(3.43) f G(x, y) ds = f G(cp*(t), xjj*(t)) Q*(t) dt = f G*(t) Q*(t) dt, 
J ch Jo Jo 

where 

(3.44) <p*(t) = x*(l - t,t), i^*(t) = y*(l - t,t), 

x*(<£, ?/), y*(£, r\) being the functions from (3.40), and 

(3.45) x = cp*(t), y = xl>*(t), le[0,l] 

are the parametric equations of the curved side ch of the boundary triangle T*. The 
function O*(t) is defined by 

(3.46) Q*(t) = ([<p*'(0]2 + [^*'(0]2)1/2 • 

The relations (3.42) and (3.43) imply 

(3-47) f G(x,y)ds~icojfC;G(BjJ 
Jch J=1 

with coJ>Ch = COj Q*(tj), Bj,Ch = (<p*(tj), ^(tj)) • 

Let us approximate the bilinear form (2.10) and the linear form (2.13) by means 
of (3.47), i.e. let us define the forms 

(3.48) 4(v,w)= £ icoJ>Ch(klhvttHwJ(BjJ + 
Ch^Thi j=l 

J 

+ E I Mj,ch(
k0hVW + klhVnh

Wnh) (Bj,ch) > 
Ch c Eh3 j = 1 

(3.49) fh(w)= Y, icoj_Ch(mlhwnh)(BjJ + 
Ch^rh2 j=i 

j 

+ 1 1 oj^Ch(m0hw + mlhwj (BjfCh). 
Ch^Thi y = i 

With the quadrature schemes (3.42), (3.47) we associate error functional 

(3.50) ECh(G) = f G(x, y)ds-i coJtCh G(BjJ, 
Jo, J'l 

(3.51) E,(G*) = Cc*(t) dt-Z coj G*(tj) . 
Jo ;=i 
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According to (3.42) —(3.47), we have 

(3.52) ECh(G) = E,(G*Q*) . 

Taking into account (2.10), (3.48) and (3.50), we can write 

(3.53) ar
h(v, w) - ar

h(v, w) = £ ECh(klhvniwnh) + £ Ech(k0hvw) . 
ehcrTh2UTh3 Ch cTh3 

In what follows it will be convenient to use the following notation: 

(3.54) {/} (t) = f(x*(l -t,t), y*(l - t, 0 ) , 

(3.55) {D>'x*} (t) = ( D V ) (1 -t,t), {Dyy*} (t) = ( D V ) (1 ~t,t), 

(3.56) {wj (t) = w j x * ( l - t, r), y*(l - t, 0) , 

(3.57) {D}'w*}(t) = (Dyw*) (1 - t, t ) , 

where w*(£, ?;) = w(x*(£, n), y*(£, ^)). It should be noted that the definition of curved 
triangular Cm-elements (see [15]) implies that {w} and {Dyw*} (|y| = 1) are poly­
nomials of the fifth and fourth degree, respectively. 

With respect to (3.52) we have 

(3.58) ECh(k0hvw) = E7(/c*ft Q*{V} {w}), 

(3-59) ECh(klhvnhwJ= E,(/c*„ Q*{vnh} {wnh}), 

where, according to the definition of transferring functions kt from F onto rh (see 
[16, p. 130]), 

(3.60) k*(t) = ki{cp(s2 + s32t), i>(s2 + s32t)) , i = 0, 1 . 

Here x = cp(s), y = \p(s), s2 ^ s ^ s3, is the parametric representation of the arc 
c c= F which is approximated by the arc c,, c F/r P2 and P3 are the end points 
of both arcs c, ch and s32 = s3 — s2. 

Now we derive (3.62). We have 

(3.61) wnh = wxnhx + wynhy , 

where, according to (3.45), nhx = i/T*'(t)/O*(t), w^ = — (p*f(t)jg*(t). Further, w(x, y) = 
= w*(£*(x, y), ?/*(x, y)), where £ = c*(x, y), n = -7*(x, y) is the inverse transforma­
tion to the transformation (3.40). Using the rule of differentiation of a composite 
function and the relations [15, (13)] we obtain from (3.61) 

(3-62) {wj = £ {cy} {D?w*} , 
I v l - i 

where we denote 

(3-63) {cuo} = [{<} cp*> + {y*} r']l({J*} 6*) > 

(3.64) {c0,t} = -[{x*} <p*> + {.v-n r']i({J*} «*) • 
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Inserting (3.62) into (3.59) we obtain 

(3.65) ECh(klhvnhwJ = E,(fciV I W W W W ) . 
lvU*l--

In [16] the following estimates are proved: 

(3.66) |<P*a)(0| ^ C4 > |<A*a)(0| ^ Ch r (j = 1, 2,...) 

(3.67) ChT ^ O*(t), |^*^(t) | ^ C*hr
+1 (j = 0, 1,...) 

where the constant C depends only on F and the constant C* only on F and j . Using 
(3.66), (3.67), the rule of differentiation of a composite function and [15, (24), (25)] 
we obtain from (3.63), (3.64) 

(3.68) d\{cy} {cs} Q*)lář = OQtf1) (fe = 1,2, ... 

Lemma 3.4. The inequality 

(3.69) | { W } | M = C/^'-^IHkw.o, (*, H = 0, 1...) 

holds, where C is a constant independent of h T and w and we denote 

II2 - V 
Цfc+jľUh — Ł 

|«|-=fc+|ľ| 

(D*w)2 ás. 

Proof. According to the rule of differentiation of a composite function we have 
for |y| > 0 

dn + y*w* _ dyi+y2w /dx*\n fdx*V2 dw dn + y2y* 
* ' d£n dny2 ~ dxyi+y2 \~d~) \dn) " ' + O> d?1 dny2' 

Thus we can write with respect to (3.54) and (3.55) 

{Dyw*}2 Q* dt = 

JoLW'Wlso l^j '" WW'-WJ 
Using the Cauchy inequality, (3.67) and [15, (25)] we obtain 

C!hr f } D ¥ j 2 dt = C2h
2

T
M f [ X {£>aw}2] 8* dt. 

Jo Jo i3l«l.»lrl 

from where and [16, Lemma 3] we deduce 

(3.71) 'j{I>V}|o,/ ̂  CAtr'^^lllwlll,.,^ , |y| = 0, 1, .... 
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According to the rule of differentiation of a composite function we have 

dk({DW}) = * (_l)k-j (k\ f dk + Mw* ) 

dtk ; = <> ' \j)\d?-J*ndnt+nl 

and using the Cauchy inequality we obtain 

(3.72) \{Dy^}\2
kI<Cy\ 1 - . W . I df, 

where C is a constant dependent on k. The inequalities (3.71) and (3.72) imply (3.69). 
Lemma 3.4 is proved. 

Theorem 3.4. Let the parts T2, F3 Of the boundary F Of Q be of class C6. Let the 
functions kt e C5(U), (i = 0, 1), where U is a domain containing F2 u F3. Let 

(3.73) Ej(o) = 0 V O e P ! ^ ) . 

Then 

(3-74) K(k0hvw)\ ^Cfc r | |H| | l t C h | | |w| | | l t C h , 

(3-75) \Ech(klhvnhwnh)\ = C/z r | | |v | | | l jCh | | |w|| |1>Ch, 

where C is a constant independent of hT, v and w. 

Theorem 3.5. Let r _ 1 be a given integer. Let the parts T2, F3 Of the boundary 
r of Q be of class Cr + 1 and the functions k0, ki e Cr(U), where U is a domain 
containing F2 u F3. Let 

(3.76) Ej(a) = 0 Vcr e P,(r + 3) . 

Then 

(3-77) \Ech(hhvw)\ = C/ i r | | |v | | | r + l j C h | | |w| | | l f C h , 

(3-78) K(klhvnhwJ\ = C / i r | | | v | j | r + 1 , C h |||W|||liCfc , 

where C is a constant independent of hT, v and w. 

Proof of Theorems 3.4 and 3.5. First we shall prove (3.75) and (3.78). A typical 
term on the right-hand side of (3.65) is of the form 

(3.79) Ej(c*{Dyv*} {Ddw*}) 

with |y| = lOi = 1. The function c* is given by 

(3.80) c* = k*lhe*{cy}{c5}. 

We have {Dyv*}, {Ddw*} e P^). Let us consider the form 

(3.81) E{{a*u*) V(T* W%\I), Vu* e P,(4) , 
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where in the case of Theorem 3.4 

(3.82) 5 = 5 

and in the case of Theorem 3.5. 

(3.83) s = r . 

According to (3.51) and (3.81) we can write 

|£z(ex*u*)| S C|(T*|0 f00 f7 M o . a o . 7 

and using Lemma 3.2 we obtain 

| P z ( ^ * ) | g C | | o - * | | S j 0 0 ) J | u * | O J . 

According to the Bramble - Hilbert lemma and (3,73), (3-82) and (3.76), (3.83)* 

respectively, we conclude that 

(3.84) \Ejo*u*)\£C\o*\,fQBj\u*\0J. 

The relation (3.60) gives 

« ^ # ( S ) J + • • • • .*£]• ' - 0, ..., s, i = 0, 1 . 

The assumptions of Theorem 3.4 and 3.5 about F2, F3 and k( together with (3.85) 
imply kih e C5(I). Thus, the relations (3.85) and the estimate s32 ^ ChT (see [16]) give 

(3-86) | f c * | w g Ch{ , j = 0 , 1 , . . . , 5, 

where C is a constant depending on kt and F. Now we use Lemma 3.1 which together 
with (3.68), (3.80) and (3.86) gives 

(3-87) \c*\k,KjSChT-1. 

Let us set G* = c*{Dyv*},u* = { D V } and estimate |(T*|S)00/ by means of Lemmas 
3.1, 3.2 and (3.87), and |u*|0,/ by means of Lemma 3.4. Then we obtain from (3.84) 

(3.88) lE^cҶDV*} { D V } ) | ѓ Clrт-Í/2 X KJ\{Dyь*}\ja 

i = o 
11 ,cъ • 

In the proof of (3.75) we use the relation |{Dyv*] \sl = 0. Then according to Lemmas 
3.2 and 3.4 we have 

(3-89) thrJ\{Dyv%^ Chy2-s\\\v\\\Uch. 
j = o 

The inequalities (3.88) and (3.89) together with (3.65) and (3.80) imply (3.75). 
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Now we prove (3.78). Again using Lemma 3.4 and (3.83) we obtain 

(3-90) ih'T^v%J = Ch^\\\vl+Uch 

1 = 0 

and the inequalities (3.88) and (3.90) together with (3.65) and (3.83) imply (3.78). 
Now we prove (3.74) and (3.77). Let us consider the form 

Ej(a*u*) VCT* e W(£(l), Vw* e P-(5) , 

where in the case of Theorem 3.4 

(3.91) s = 4 

and in the case of Theorem 3.5 

(3.92) s = r - 1 . 

Let u* e Pi(5) and let 17 be the orthogonal projection in the space L2(l) onto 
the subspace Pi(0), i.e. 

(u* - nu*,p)OJ = 0 VpeP i(O). 
We can write 

(3.93) E7(o-*u*) = Ei(a*(u* - I7u*)) -f Ej(a*nu*) 

and in a similar way as in the proofs of Theorems 3.1 and 3.2 we estimate 

(3.94) \Ej(a*(u* - I7w*))| ^ C|er*|Sj00>/ |w*|M Vex* e W%\l), VM* E PX(5) , 

(3.95) | £ i (^ /7«*) |^C | (T* | s + l f 0 0 j | i i * |o i i Va*eW^+1)(l), Vu* e Pt(5). 

Let us set a* = k*h Q*{v). Then, using Lemma 3.1 and (3.3), we obtain 

k-j,oo,I \lVj\j,I 
I = o 

and using (3.67) and (3.86) we derive that 

(3-96) \^\t.a>j^Chk
T

+1Y.hTJ\{v}\hI, 
j = o 

where C is a constant depending on k0 and F3. 
Let us set u* = {w}. Inserting (3.96) into (3.94) and (3.95) and using (3.93), Lemma 

3.4 and the inequality |||w|||o,ch -S |||w|||i,ch
 w e obtain 

(3.97) lEXC^W W)| = C>4+3/2[i V |WU + lV |W| W ] HHIIU-
i=o ; = o 

Inserting the inequality 

£ v ' lWL/ = c*f/2~*HHIIi^ (fe = s, k = s +1) 
J = 0 
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into (3.97) we get (3.74) and Theorem 3.4 is proved. The assertion (3.77) of Theorem 
3.5 follows from (3.97), Lemma 3.4 and (3.92). Theorems 3.4 and 3.5 are completely 
proved. 

We can write with respect to (2A3) and (3.49) 

#(w) ~ /[(w) = £ ECh(mlhwnh) + £ ECh(m0hW). 

Using (3.51), (3.54) we have 

ECh(m0hw) = EI(m^hQ*{w}) 

and 

ECh(mihwnn) = .E/K.e* £ {cy} { D V } ) , 
|y| = i 

where m%(t) = mt((p(s2 + S32t), i^(s2 + S32t)) (i = 0, 1) . 

Theorem 3.6. Let r = 3 be a given integer. Let F be of class Cr+1 and 
m0, mx G C(U), where U is a domain containing F2 u F3. Let 

Ej((j) = 0 Vcre Pt(r + 3) . 

Then 

(3-98) | / [ ( W ) - / [ (w) | ^C / t ' | | W | | 2 , f l ( i , 

where C is a constant independent of h and w. 
The p r o o f of Theorem 3.6 is similar to that of Theorem 3.5. Thus it is omitted 

(for details see [5]). 
It remains to establish the validity of (2.17) which expresses the uniform V0h-

ellipticity of the bilinear forms ah(v, w) (h < h). 

Theorem 3.7. Let the assumptions of Theorems 3A and 3.4 be satisfied. Let F 
be of class C4. Let (2.3) and (2.5) be satisfied. Then the inequality (2.17) holds for 
sufficiently small h. 

Proof. First we establish the validity of the inequality 

(3.99) ah(v, v) = K\\v\\lQh Vv e V0h, h < h , 

where K is a constant independent of v and h. We shall consider the cases 1° — 6° 
introduced in Section 1. 

In the cases 1° and 2° inequality (3.99) follows from considerations introduced 
in [17, proof (99)] and from the inequality dh(v, v) = (1 — /i) |v|2jfih. 

In the case 3° we have 

- U r . O ž c T f vl ás + \v\2
2fi 1 . 
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To prove (3.99) it suffices to use the inequality 

\2,Qh = < C f i>2dS + H 2 J VveV0h, 

the proof of which is a simple modification of proofs of [17, Theorems 1, 2] because 
1 2h 1 2* 

In the case 4° we have 

ah(v,v)^C2H v2ds + \v\2

2tQX 
-J E*3h J 

To prove (3.99) it suffices to use the inequality 

\2,Qh 
< C \2,Qh 

E2Һ^E*ЗҺ 

VveW?,(^ V0h), 

which follows from [17, Corollary 3]. In the case 5° the proof of (3.99) follows 
the same lines. 

In the case 6° we have 

ãh(v, v) ^ C3 v3 ds + 
LJ E"зh í -

J г**ЗҺ 

2 ds + \v\l,nh 

The proof of (3.99) now follow from the inequality 

(3.100) \\v\\UhSc\[ v2ás+[ v2
nhá 

J E"3h J E**3h 
is + V 2,QҺ 

Vv G Wl, 

which is proved in [5]. The inequality (3.99) is completely proved. 
Theorem 3.1 implies 

(3.101) - I \EÁ Z a^D"vďv)\ ^ - Ch\\vl2
2tBh 

Texh |«|,|/3|=2 

Theorem 3.4 together with the discrete form of the trace theorem with a constant C 
independent of h (see [16, Lemma 4]) give 

\3.102) - i K(lH„<)| - I K(k0y)\ = - ch\\v\ 
Ch c Eh2^Eh3 Ch c Eh3 

Relations [15, (145)], (3.53), (3.99), (3.101) and (3.102) imply 

2 
2,QҺ 

ah(v,v) ^ (K - 2Ch)\\v\ 2,QҺ 

Let us choose hx = K/4C. Then inequality (2.17) is satisfied with y = K/2 for h < 
< min (h, hx). Theorem 3.7 is proved. 

The main result of the paper is formulated in the following theorem where the 
results of Sections 2 — 3 are summarized. 
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Theorem 3.8. Let the extension u of u, the solution of the problem (1.1) —(1.4) 
to the domain Q ID Qiv satisfy 

UGH5(Q), / E E A2ueH3(Q). 

Let g0, gx e C2(UX), g2 e C2(U2), k{ e C5(U23), mt e C3(U23) (i = 0, 1), where Uj 
is a domain containing Fy (j = 1, 2) a/?<1 (j = V 2) and U23 is a domain containing 
F2 u F3. Let the part Fx of F be of class C4 and the parts F2, F3 Of F Of class C6. 
Let (2.3) and (2.5) be satisfied. Let 

E*(cp*) = 0 V<p* e P2(2N* - 4) 

with N* = 5fOr BelVs elements and N* = 4 + nfOr curved triangular Cl-elements 
from [15]. Let 

E^o-) = o WePt(S). 

Then for sufficiently small h the solution uh of the discrete problem (2.14) exists 

and is unique and the following estimate holds: 

(3-103) \\u - uh\\2_ah ^ Ch3[| |t7||5^ + 11/113ifi + 2] , 

where C is a constant independent of h and u. 

Proof. According to Theorem 3.7, the assumptions of Theorem 3.8 imply for 
sufficiently small h the inequality (2.17). Thus the solution uh of (2.14) exists and is 
unique. 

As P2(2N* - 4) =) P2(r + N* - 3) for r g J V * - l , the assumption (3.19) 
holds with r = 3. Using (2.9), (3.11), (3.13) and Theorem 3.2 we obtain 

(3.104) |af (v, w) - a*(v9 w)\ = Ch3 £ ||v||5>r | |w|2fT . 
Terh 

As Pi(8) => Pj(r + 3) for r ^ 5 , the assumption (3.76) of Theorem 3.5 holds with 
r = 3. Using (3.53) and Theorem 3.5 we obtain 

(3.105) 14(17, w) - aг

ћ(v, w)\ ѓ Ch3 £ ij 
^h^Thг^TҺЗ 

IH.<ъ IИIU.^ 

Let vj be the function from Wh interpolating u (see Section 2). Then, according to 
[15, Theorem 5] and [5,(8.49)], 

(3.106) Ik/1| 5, T = Ĥ ll 5 ,T + \\VI ~ u\\s,T = ^H^IkT? 

(3-107) H|».||l4>ft ^ | | |u| | |4 > c ;, + |||u - i>,|||4>c„ ^ C(|||fi|||4.Ch + | | fi | 5.r) • 
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As vj e Vgh we obtain from (3.104), (3.105), (3.106), (3.107), the Cauchy inequality 

and a modified trace theorem with a constant independent of h (see [16, Lemma 4]) 

(3.108) inf sup \Mv>»)-°^w)l<;ch>\\u\\5,0h. 
veVgh weVoh \\w\\2,Qh 

Inserting (2.25), (2.26), (3.41), (3.98) and (3.108) into (2.18) we obtain (3.103). Theo­

rem 3.8 is proved. 
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Souhrn 

NUMERICKÁ ANALÝZA OBECNÉHO BIHARMONICKÉHO PROBLÉMU 
METODOU KONEČNÝCH PRVKŮ 

JIŘÍ HŘEBÍČEK 

Zakřivené trojúhelníkové Cm — prvky zavedené v [12] — [14] (m = 0) a [6], [8], 
[15] (m > 0) byly doposud analyzovány pouze pro řešení takových eliptických 
okrajových problémů řádu 2(m + 1) metodou konečných prvků, kde okrajové 
podmínky neimplikují hraniční biiineární formu ve variační formulaci problému, 
přičemž účinek numerické integrace byl studován pouze v případě Dirichletových 
problémů (viz [3], [6], [8], [12] -[17]). 

V článku jsou zakřivené trojúhelníkové C1-prvky použity k řešení biharmonické 
rovnice metodou konečných prvků již s obecnými okrajovými podmínkami impliku­
jícími obecný tvar biiineární i lineární formy problému a účinek numerické integrace 
je studován jak v oblasti Qh, tak na hranici rh. 

Biiineární a lineární forma diskrétního problému (2.14) je definována pomocí 
kvadraturních formulí. Je-li stupeň přesnosti kvadraturních formulí 2N* — 4 pro 
zakřivené trojúhelníkové C1 — prvky, 6 pro Bellovy prvky, 8 pro integraci hraniční 
biiineární formy (3.48) a hranice F je dostatečně hladká (viz větu 3.8), pak existuje 
právě jedno řešení diskrétního problému (2.14) a rychlost konvergence k přesnému 
řešení problému (1.1) — (1.4) je 0(h3) v normě prostoru H2(Qh). 
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