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CHARACTERIZATION OF THE FIRST OPERATING PERIOD
OF A TWO-UNIT STANDBY REDUNDANT SYSTEM
WITH THREE STATES OF UNITS

ANTONIN LESANOVSKY

(Received May 12, 1980)

This paper is closely connected with the paper [1]. Let us consider the same
two-unit cold-standby redundant system with three states of units — good (l),
degraded (II), and failed (111). This paper is devoted to the problems which arise only
provided that the units of the redundant system can be in more than two states
(in the operating and failed states). The following characteristics concerning the first
operating period of the system (at the starting instant both units are in state I) are
studied: the whole time of operation of units in state I (or Il), the whole time of re-
pairs of units of the type II — I (or I - I) and the number of finished repairs
of units of the type II — I (or 111 — I).

We suppose that the condition (2.3) from [1] is fulfilled, i.e. that a failure of the
system comes with probability 1. We use the same notation as in [1]. Moreover,
let #,(i) express the fact that the starting state of the random process J(1) is e;,
Je{Y.Z}, ie{P;S;So; Si; Siis L; Lo; Ly; Ly}, where the processes Y(t) and Z(t)
and the states ey, 5, €5,,, €1, €, and e, will be determined in Section 1.

1. SOME CHARACTERISTICS OF THE BEHAVIOUR OF THE SYSTEM
DURING ITS FIRST OPERATING PERIOD

We shall deal with random variables “the whole time of operation of units in state I,
and I1, respectively, during the first operating period of the system”. Let us construct
a random process Y(f) with six states ep, e, €g,, €, €, , €, Which changes its state
at the same moments as the process X(¢) defined in Section 2 of [1] and, moreover,
at the moments when a unit deteriorates from I to II and the other one is being
repaired. Let 7, be such a moment. We say that the process Y(7) enters at ¢, the states
ep, €5, €, and ey under the same conditions as the process X(f) and the states:
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— if at t, a unit deteriorates from I to I1 and the other one is being repaired from
the state I1;

e,, — if at 1, a unit deteriorates from I to I and the other one is being repaired from

the state I11.

€s,

Changes of states of Y() having positive probability are illustrated in Figure 1.

Fig. 1.

Let us denote the random variables “the whole time of operation of units in state
I(II) during the first operating period of the system under the conditions 2,(P),
Py(S), 24(S,), Py(L) and 2y(L,)”, respectively, by the symbols 2, &, ¥, ;& and
1ZLo(22, 2F, 2%, 2L and ,Z,). Obviously

(1.1) P=od+,5.

Let the starting state of the system be eg, and let the first state-transition of the
process Y(t) lead from ey, to eg. Then till the moment of this change of state of
Y(t) a unit is operating in state I/ and the other one is being repaired from state /1.
A failure of the first unit occurs sooner than the repair of the other one is finished.
So from the beginning (in state eg) to the first system failure still the same unit
has been operating in state II and therefore

1.2 Fo = 0, if the first state-transition of Y(t)is eg, — ey .
1< 0 0

On the other hand, if the first state-transition of the process Y(7) leads from e, to e,
then till the moment of its realization a unit is operating in state II and the other
one is being repaired from state I1. In this case, however, the repair is finished sooner
than a failure of the first unit occurs. At the moment ¢, of this failure the process
Y{1) enters the state e,. From the beginning (in state eg) to 1, still the same unit has
been operating in state II and therefore the whole time of operation of units in state
I during the first operating period in the cases that either the starting state of Y(r)
is e, or the starting state of Y(t) is eg, and its first state-transition leads to e, is
the same, i.e.

(1.3) 1 Fo =& if the first state-transition of Y(r) is eg, > e, .
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In the similar way one can also obtain relations for the random variable ;. :
(1.4) 1Zo = 0 if the first state-transition of Y(t)is e, — ez,

(1.5) 1Zo = & if the first state-transition of Y(t)is e, — e, .

The relations (1.2) to (1.5) imply that

Tss +.F if A=A,

(1.6) =L Tssp + 1L i A<M A+ B,
T ssor if o + B <M,
T s+ 0 A =N,
(1.7) L =L T+ L A<N A+ B,
T Lior if o +B <N,

where J;; or |7, are random variables “sojourn time of Y(t) in state e; under
the condition that after this time the process Y(r) enters state e; or that the subse-
quent two states of Y(r) will be the states e; and ej’, on the right hand sides are sums
of independent random variables, and the meaning of symbols 7, 4, # and A
is asfollows: . (A")istime of the repair which was started at the moment when the
system was activated in state eg(e;); &/ and # are times of work in state I and I/
of the unit which started to work at the same moment. Random variables ;.7 ;
and (7 ;;, have distributions:

P(,.7ss = x)=P(o x|t =),

P(T s <x)=P £x/ed 2NH),

P(T s Sx) =P S x| <M <A+ B),
P( T S %) =P(A S x| < NV S A + B),
P(,Tssr < x) =P < x|f + B < M),
P(T i < X) = P(A < x|od + B < N).

Relations of random variables ,2, ,&, ,%, . and ,.%, can be obtained in the
similar way. Following two theorems can be proved by calculation of distributions
of (7}, 17 ij and of similar variables with subscript 2 and by passing to Laplace
Stieltjes transforms.

Theorem 1. Let #(1) be Laplace Stieltjes transform of distribution function of
random variable ;2. Then

(1.8) ﬁ(1)=|:a.-(a—3)'(¢_8_1)+(9‘:¢)-(v—5)],

L=9).(p—e—1)+ec.(6—7)
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where o, y and ¢ have been determined in Section 1 of [1] and & and ¢ respectively
are Laplace Stieltjes transforms of functions

(1.9) (x) = J < j T My + z)dB(z)) dA(y),

x+0
-0 -«
x+0

(1.10) Fx) = LC (f Ny + 2) dB(z)) dA(y).

-0

Theorem 2. Let fc(t) be the Laplace Stieltjes transform of the distribution function
of the random variable ,%. Then

oy [B=¢).C—c.p)+(B—-8).(1—¢ +e.p)
(1-11) n(t)—l: l—c(l—¢+e.p)—e.(6—c.p) ],’

where ¢, e and § have been determined in Section 1 of [1] and § and @, respectively,
are the Laplace Stieltjes transforms of the functions

(L.12) B(x) = J : ( J : My + 2) dB(z)) dA(y).

- 0 - o0

(1.13) F(x) =r (FON(y 1) dB(z)) dA(y).

For the sake of a study of the whole time of repairs of units during the first operating
period of the system let us define a random process Z(t) with eight states e, e, €5,
€5, €L €1, €1, €g, Which changes its state at the same moments as the process
X(t) defined in Section 2 of [1] and, moreover, at the moments when a repair of
a unit is finished and the other one is operating. We say that the process Z(t) enters
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at 1, the states ep, eg, ¢, and e, under the same conditions as the process X(¢) and the

states:

eg, — if at 4 a repair of a unit of the type I — I is finished and the other one is
operating in state i, i = I, II;

e,, — if at t, a repair of a unit of the type III — I is finished and the other one is
operating in state i, i = I, 1.

The state-transitions of Z(t) having positive probability are illustrated in Figure 2-

Let us denote the random variables ,,the whole time of repairs of units (the whole
time of repairs of units of the types II — I and I — I, respectively)during the first
operating petiod of the system under the conditions 2,(P), 2,(S) and Z,(L)”,
respectively, by the symbols 2, #® and P (2", ", ,#® and 2",
SR, 2R, Obviously

(1.14) P® — B
(1.15) PR = 5%
(1.16) 2P = 5B

It can be shown that the whole time of repairs of units (and similarly for individual
types of repairs II - I or IIl — I) is the same under each of the following three
conditions: 2,(S,), #,(L;) and 2,(S). The same is true also under the conditions
2,(S1), Z4(Ly;) and 2,(L). The reason is the fact that from the states ey, or e, (eg,,
or e, ) the process Z(t) can enter only the state eg(e,) — see Figure 2 — and before
this state-transition no unit is being repaired. Thus the process X(r) with only four
states ep, eg, €, and e, describes the behaviour of our system sufficiently as concerns
the problem of the whole time of repairs of units. This implies that relations analogous
to the relations (3.2) and (3.3) from [ 1] are fulfilled if we only replace the variables
&, & and T ; by the variables %, 2™ 7 or ,® ,g® T or 5",

LR TR where TRGTE or . 7) expresses the time of repair (tlme of repair
of the type II —>Torlll -1) camed out while the process X(t) is being in a state e;
under the condition that after that time X(r) enters the state e, i € {S; L}, je{S; L; R}.
The random variatles 710, , 7% and ;.7( have the distributions:

PTE =x)=PLTW < x)=P(ll £ x| 2 M),

PTR <x)=PGITR < x) =P < x| 2 4),

PTR <x)=PLTR <x)=P(ll Sx|of <M <A+ B),
PTR <x)=PLIT® <x)=PN SxXIA<N £ o +B),
P(7§R = x) =PLITR <x)=P(M = x| + B < M),
PTR <x)=P(TR < x)=PN S x| + B < N),

P(zf‘g}):o): PLZE =0)=1 for je{S;L;iR}.
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After calculating these distributions and passing to the Laplace Stieltjes transforms
one can obtain the following theorem.

Theorem 3. Let n'®(1), #%(r) and 7#®(1) be the Laplace Stieltjes transforms
of the distribution functions of the random variables ?®, ,2® and ;P®, respec-
tively. Then
(117) a0 = [ @F = )1+ 0 = 0) = (o = ) 00 =)

' (1= p+ ) (14 o® = e®) 4 (v — e®) (6P — y®) |,

(118) (= [ =) +e=/) = (1L =f). (0 =) ]
(L=p+y®).(1+e—f)+e.(6® —y®)]

(1= d)(1+ o™ = ®) — (o = 9) . (¢ — d)

(1= c)(1 + o® = e®) 4 (v — ™) (c - d) ],

where ¢, d, e, f, a, B, 6 and ¢ have been determined in Section 1 of [1], y and v

are the Laplace Stieltjes transforms of the function M and N defined at the same

place and y® 5B B apd »™® are respectively the Laplace Stieltjes transforms
of the functions

(1.19) #®(1) = [

(1.20) C®(x) = fMA(y —0)dM(y),
(1.21) D®(x) =fx+o(A * B) (y — 0)dM(y),

(1.22) EP(x) = f MA(y — 0)dN(y),

x+0
(1.23) F®(x) = f (4% B)(y — 0)dN(y).

-~

Now we shall study the problem of the number of repairs of units finished before

the first failure of the system. Let us denote the probability that before the first
system failure n repairs of units (n repairs of units of the type Il — I and Il — I,
respectively) were finished under the conditions 2,(P) and 2,(L), respectively,
by the symbols x, and y,(x{* and y{? or x{* and y). Itis obvious that the probabilities

just mentioned are the same under the conditions 2,(P) and 24(S). One can
easily find that

(1.24) Xo=x =1-d,

(1.25) Yo=yd =1-71,

(1.26) 0 = Y [Pt 2 )]
. k=0
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P2 + B < ) + P(Z <M A+ B).P(d +B<N)] =

=1 - (d=o).f
1—c¢
(1.27) Y = i[P(&f <N/ <A+ B).
k=0

[P(f + B <N)+Pld 2N).PA+RB<M)]=

de
l+e—f

[ee]

Theorem 4. The generating function é(s) of the sequence {x,, oo has the form
R (S R (L () EX (I ()
(1 —es).(L —fs)+ es.(L — ds)

where the numbers ¢, d, e and f have been determined in Section 1 of [1].

5

Proof. We know from [1] that the chain X, embedded into the process X(r)

is markovian. Hence the elements of the sequences {x,}, and {y,},~, fulfil for each
natural n the relations

(1.29) Xy =C.Xog +(d =€)y,
(1.30) Vn=e. % +(f—€).y-q-

If we multiply both sides of equations (1.29) and (1.30) by s" and add each of them
over all natural n we obtain

(1.31) &s) — xo =es. &(s) + (d — ¢)s.n(s),
(1.32) n(s) — yo =es. &(s) + (f — e)s.n(s),

where #(s) is the generating function corresponding to the sequence {y,}s-,. The
system of equations (1.31) and (1.32) has obviously the solution (1.28) — it is only
necessary to substitute for x, and y, the values given in (1.24) and (1.25), respectively.

The following two theorems can be easily proved by using the Markov property
of the chain X,.

It

Theorem 5. The elements of the sequence {x>’}"., have the form
(1.33) xP =541,
where
d—c).
(1.34) j=cy @9
1+e—f



_(d—c).de

1.35 F=d(l —c .
(139 (1-g-Y=d.
Theorem 6. The elements of the sequence {x\>}7_ have the form
(1.36) ' =F.q",
where
(1.37) 67=f_e+(£__c)e’
1 —c
d—c).
(138) PO =)+ (1 — )]

(1=

The result of Theorem 4 can be used for finding the probability (let us denote
it by w) that the first system failure occurs during a repair of the unit which first
started to operate at the moment when the system was activated under the condition
2x(P). This probability equals the probability that an even number of repairs (of
both types II — I and IIl - I in sum) was finished before the first failure of the
system. On the other hand, the following relations are true:

(1.39) é(—l)zif\‘z,,—ixz,,ﬂ=w—(l——w):2w— 1.
n=0 n=0
Thus
(1.40) oo b= _ l+c—d—e+f
2 (L+e).(L+f)—e. (1 +4d)

2. MATHEMATICAL EXPECTATIONS

In this section we shall derive mathematical expectations of the random variables
in which we were interested in the preceding section. We shall deal with the random
variables 2, ,2, PP, ,® PR and with the random variables 2, Z®,and ),
expressing respectively the number of repairs of units, the number of repairs of units
of the type II - I and the number of repairs of units of the type III — I finished
before the first system failure under the condition 2(P).

Let us have a random variable # with a distribution function R. Let # be non-
negative with probability 1 and let o, 57(t) and gg(t) (if 2 is a discrete distribution)
be respectively the Laplace Stieltjes transform and the generating function corres-
ponding to the distribution R. If # has a finite mathematical expectation we know
that

1) E2 ;J

: x dR(x) = f%[l — R(x)]dx = — 0157(0+) = 0gr(1—)-

-
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In this section we shall suppose that the distribution functions 4, B, M and N
determined in Section 1 of [1] have finite mathematical expectations. Then

o0

0 §wax dC(x) =f:x M(x) dA(x) gJ' xdA(x) < o

-0

and

ong x dD(x) =r « M(x) d(4 * B) (x) <

- 0 - 0

0

gJ’w xd(4 % B)(x) = r’ di(x)+J xdB(x) < oo .

- 0 v 0 —

Similar relations are true also for the functions E, F, D, F, D, F, C®, p®_ E® and
F®_This implies that each of the Laplace Stieltjes transforms a, §, i, v, 7, 6, & @, 0,

O, 8, @, y®, 8P ™ and o® have finite derivatives at the point 0 fiom the right.

Theorem 7. Mathematical expectations of the random variables 2 and ,2?
have the expressions

(t—c+d+e—f).Eo
(1=c)(1 =) +e(l —d)
(d—c).EB
(1—c)(1 —f)+e(l —ad)’

where the random variables o/ and B and the numbers ¢, d, e and f have been
determined in Section 1 of [1].

(2.2) E,? =Edo +

(2.3) E,? =EZ +

Proof. The proof uses the forms of the corresponding Laplace Stieltjes transforms
given in Theorems 1 and 2 and the fact that

(2.4) d = lim D(x) = lim D(x), .
(2:5) f=1lim F(x) = lim F(x),

where the functions D, F, D and F have been determined by the relations (1.9), (1.10),
(1.12) and (1.13), respectively.

Theorem 8. The mathematical expectations of the random variables ?'®, ,7™®
and ;2™ have the expressions

(2.6) Ep® =

_(+e—))(Es +EB + EA —EZy) + (d - ) (Eo/ + EB + EN —EZ})
(1=c)(1 =f)+ el — d)

E)

349



(27)' £ g _ (L+e—f)(Ed +EB + Bl —EZ))
| ~ (L=c)(1 =)+ e(l — d)
d—c).(EZ + EB + EN — EZ))
(L=c). (L =f)+ el —d)

where the numbers c, d, e and f and therandomvariables o , B, M, N, % yyand &
have been determined in Section 1 of [1].

)

(2) E om0 = (

>

Proof. The corresponding Laplace Stieltjes transforms are given in Theorem 3.
It is necessary to find that

(2.9) P(Zy < x) = D(x) + D®(x),
(2.10) P(Zy <x)=F(x) + FR(x),
so that

(2.11) lim D®(x)=1-4d,
(2.12) lim F®(x) =1 — f

and similarly

(2.13) lerg CP(x) ::Lri [A(x) . M(x) — C(x)] =1 — ¢,
(2.14) :LrZE(R’(x) = iljrl[A(x)N(Y) —E(x)]=1-e,

where the symbols &, Z,A,C, D, E, F, M, N, ¢, d, e and f have been determined
in Section 1 of [1] and the symbols C'®', D®', E® and F'® by the relations (1.20)
to (1.23).

Theorem 9. The mathematical expectations of the random variables &, '* and
Z® have the expressions

(2.15) EZ = d + de — ¢f ,
(1=¢).(1L=f)+e(l —d)
(2.16) ' Ex® — d(l +e—f) ,
(1 =)t =f) +e(l - d)
(2.17) Eq® — (d—co)f

(1=c)(1 —f) +e(l —a)’
where the numbers c, d, e and f have been determined in Section 1 of [1]

Proof. The existence of the mathematical expectations in question is guaranteed
by the assumption that the relation (2.3) from [1] is fulfilled. The generating function
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&(s) corresponding to the random variable Z is given in Theorem 4. The probabilities
P(@? = n)=x{? and P(#? = n) = x> are known for all ne NU {0} from
the refations (1.24), (1.25) and from Theorems 5 and 6. The mathematical expectations
of the random variables 2* and 2’ are obtained from the formulae

)
(2.18) E2D =% n.x” for i=223.
n=1

In this paper we have derived distributions, Laplace Stieltjes transforms, generating
functions and mathematical expectations of some random variables characterizing
the behaviour of the system in question during its single operating period. In all the
cases it has been supposed that the condition 24(P) is fulfilled. In this way all the
random variables considered in Theorems of this paper deal only with the first
operating period of the system (only this one can start with both new units). All the
other operating periods of the system start in the state e, (see Section 2 of [1]). It is,
however, necessary to szy that all characteristics of the random variables mentioned
above under the condition #(L) can be found in a similar way.
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Souhrn

CHARAKTERIZACE PRVNIHO PRACOVNIHO OBDOBI SYSTEMU
S NEZATIZENOU ZALOHOU SLOZENEHO ZE DVOU PRVKU,
KTERE MOHOU BYT VE TRECH STAVECH

ANTONIN LESANOVSKY

V ¢ldnku je uvazovan jisty systém s nezatiZzenou zdlohou sloZeny ze dvou prvki
a jednoho zafizeni pro jejich opravy. Prvky mohou byt ve tfech stavech: bezvadném
(I), zhorseném (II) a poruchovém (I11). Predpokldddme, Ze moZné jsou pouze ndsle-
dujici zmény stavu prvka: I — I, Il - III, I — I, I1] - 1. Pozornost je vénovédna
chovini tohoto systému do jeho prvni poruchy. V ¢lanku je odvozena fada takovych
jeho charakteristik, které jsou specidlni pro systémy s vice nez dvéma zdkladnimi
stavy prvka (bezvadnym a poruchovym) — napt. rozloZeni a stfedni hodnota doby,
po kterou v systému pracuji prvky ve stavu I, resp. II, celkové doby oprav prvka
typu 11 — I, resp. 111 — I, a poétu dokonlenych oprav prvka typu Il — I, resp.
111 - 1.
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