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OF PROBABILITY DISTRIBUTIONS BASED
ON MACDONALD FUNCTION
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(Received April 3, 1981)

1. INTRODUCTION

The introduction of more and more complicated probability models into different
application fields gives rise to increasing demands on necessary mathematical tools.
One feature of this general tendency consists in the need for some higher transcen-
dental functions to be included in to the currently used analytical apparatus. In the
probability theory the error integral is of basic importance and also the incomplete
gamma function is often used. Considerable application possibilities can be found
for the modified Bessel function of the second kind (or the modified Hankel function),
which is also called the MacDonald function. The last denotation will be used in this
paper particularly for the sake of brevity of expression. It is the aim of this paper
to recall some basic properties of this function and of some probability distribution
functions based on it. Some interesting applications in probability theory will be also
discussed.

2. DEFINITION AND BASIC ANALYTICAL PROPERTIES
OF THE MACDONALD FUNCTION

It is well known that the generating differential equation of Bessel functions has
the form

(1) u 4+ (12)u + (L = n*[z5)u=0,

the particular solution of which is the Bessel function of the first kind of order n

(2) J(z) = i(~l)"‘ (z22™* [T(m + ) T(m + n + 1)]7".

m=0

Substituting in (1) iz for = we obtain the modified Bessel equation
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(3) u' + (1z)u = (L + n*z2))u =0,

the general solution of which may be written in the form

) u=Ci1(z) + C; K2,
where
(5) I(z) = exp (—nmif2) J,[z exp (ri[2)]

is the modified Bessel function of the first kind and

(6) K,(z) = n(2sin nm) ! [I_,(2) — L(z)]

is the modified Bessel function of the second kind or the MacDonald function.

The theory and analytical properties of Bessel functions are described in detail
in Watson [17] and in a concise form in []] Here we shall recall some of the most
important properties of the MacDonald function, which are interesting from the point
of view of applications in the probability theory.

It follows from the definition that for n real and z positive, K,(z) is real. Further,
the following relations hold:

) K_,(2) = K\(2),
(8) K, (z) = K,14(z) = = (2n/2) K,(2),
©) K2 = ~(12) [Ks1(2) + Komi(2)] = =(n/2) Ky(2) — K,4(2) ,

(10) jz" K,,_l(z) dz = —=Z" Kn(z) .

One subclass of MacDonald functions which is important in applications is that
containing functions with integer indices n. These functions and their derivatives
may be expressed recurrently by means of Ky(z) and K,(z), the values of which
may be found in mathematical tables (see e.g. [6], [17]).

Another interesting subclass in formed by functions with the indices equal to halves
of odd numbers. These functions may be expressed by means of elementary functions
following the relation

(11) K, 1/2(2) = (n/(22))"/? exp (—2) i (n+ m) [m!(n —m)!]" " (2z)™™

m=0

or the recurrent formula
(12) Ko12(2) = (=1 [7/(22)]"2 27 [d](z d2)]" (e7"/2) -
Remember also that the function K, (z) is continuous in n, thus

(13) lim K,(z) = K,(z) .

n—p
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Concluding this review chapter we mention some important integral representations
of the MacDonald function [2]:

0

(14) J X" exp (—afx — bx)dx = 2(a/b)"? K,(2 \/(ab)),
a>0, b>0,
(15) f L exp (—af¥t — b} dx = (2/k) (/b)) K, 42 ((ab))

0
a>0, b>0,

(16)

u
J. x—Zn(uz _ XZ):wl exp (_a/x) dx = n71/2(2/a\’n~~|/2 “:1—3/2 r(”> K:hl/z(”/“) ,
0

a>0, u>0,

(17) J xP N x —u) Vexp (—bx)dx =
=1 "2(ulb)"" "2 T(p)exp (= bul2) K,_,,(bu/2),
u>0, p>0, b>0,
(18) J (x* = u?) lexp (=bx)dx = n~ V2 (2u/b)" V2 [(n) K, -, (ub),

u

u>0, n>0, b>0.

For applications in the probability theory the following definite integral of the
MacDonald function will be useful:

09 [ = 20 p ] = 2],
0
b>0, (p+1+£n)>0.

3. PROBABILITY DISTRIBUTION FUNCTIONS OF THE TYPE x"*7 K, (x)

In probability problems, the distribution functions based on the MacDonald
function most often have the form x" K,(x) or x"*' K,(x). Using equation (19)
we can casily calcuate the normalizing consiants.

3.1 Type x" K, (x), xe<0, »)

The probability density function of this distribution with the scale parameter b
included has the form

(20) f(x) = n" 227" [ 0(n 4 1)2) b] 7" (x/b)" K, (x/b),



where the index » has the meaning of the shape parameter. The probability densities
f(x)for n = 0(1/2) 5/2 and b = 1 are shown in Fig. 1.

1,0

f(x)
10,8 "

|

6

Fig. 1. Probability densities of distributions of the type x" K, (x), x = 0, for n =0(3) 5, b = 1.
N — one-sided Gaussian distribution.

The distribution function F(x) is easily expressible only for n = k + 1/2, k integer.
Otherwise, F(x) may be expressed only through K,(x), K,_(x) and L,(x), L,_(x),
the latter being the modified Struve functions [17].

The k-th moment of (20) may be expressed via equation (19) in the form

(21) my(n) = 2*0* T[(k + 1)/2 + n] T[(k + DR2][JrT(n + 1)2)]!

and detailed specification for the expected value E, dispersion D, third and fourth
central moments, 5 and py, respectively, yields

(2ta)  E(n) =2bn "2 T(n+ 1)[I(n + 1/2)]7*,
(21b)  D(n) = b*{(2n + 1) = (@[m) [C(n + )] [[(n + 1/2)]77
(21c)  py(n) = 2b°n~ V2 {—(2n — 1)T(n + 1) [[(n + 1/2)]7" +
+ (8m) [T(n + D] [Tn + 1/2)]7%}
(21d)  py(n) = (b)) (3(2n + 1) (2n + 3) = 8(2n + 5) [(n + 1)]*.
00+ 1/2)]72 = 48[T(n + 1)]* [D(n + 1/2)]7*.

|

|
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A graphical representation of dependencies of E, D (for b = 1), skew A = ;D73
and curtosis B = u,D~? — 3 on n is given in Fig. 2.

10

Fig. 2. Moments of distributions of the type 1" K, (v), x == 0, b = 1: dependence on n.

3.2. Type |x|" K,{|x]), xe(—=, =)

In practical applications the random variables defined on xe{—o0, w) often
occur with a symmetric probability density

= 1/2 ~=n I - REFAVE Vs A
(22) fx) =n" 2270 (n + 1/2) b] 7 (|x]/b) K, (] x]/b)
and with moments
(23) myq(n) =0, k=0,1,2,...,

my(n) = n 226 T(k + n + 1)2) T(k + 1/2)[T(n + 12)]71,

particularly

(23a) D(n) = b*(2n + 1),
(23b) pa(n) = 36*(2n + 1) (2n + 3),
where of

(23¢) B(n) = 6(2n + 1)~

The dependencies of D/b® and B on n are shown in Fig. 3.

3.3. Type x"" ' K, (x), xe{0, )
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The probability density of this distribution is

(24) flx) =27"[(n + 1) b]7 " (x/b)"* " K, (x/b)

=
=
~
\Q
\L

\ -
2 \/ /,-'//
. //\/ —|
’d
\‘\~\_\B
0 .L R
0 2 4 6
————n—-—

Fig. 3. Moments of distributions of the type |x|" K, (|x]), x € R, b == 1: dependence on n.

and the distribution function may be expressed by using (10) in the form
(25) F(x) =1 —=2""[T(n + 1)]7" (x/b)"" " K, (x/b).

The probability densities f(x) for n = —1/2(1/2) 2 are shown in Fig. 4.

For general moments the relation
(26) my(n) = 20" T(n + 1 + k[2) T(k]2 + 1) [T(n + 1)]!
may be easily derived with the specific values
(26a) E(n) =="?bT(n + 3/2)[T(n + 1)]71,
(26b)  D(n) = b*{4(n + 1) — n[T(n + 3/2))* [T(n + 1)]7?},
(26c)  ps(n) = 2n'2p*{ =3(n + 1[2) T(n + 3/2) [[(n + 1)]7" +
+ n[C(n + 32)] [[(n + 1)]7%},
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(26d)  jig(n) = b*{32(n + 1) (n + 2) — 12r[T(n + 3/2)]* [[(n + 1)] ? -
— 3’[[(n + 3/2)]* [T(n + 1)]7*} .

0.6 - T T T T

1

L

6

Fig. 4. Probability densities of distributions of the type »"*1 K, (x), x = 0, for n = — ';('i) 2,
b= 1.
R — Rayleigh distribution.

Fig. 5. Moments of distributions of the type X"t K,(x), x= 0, b = [; dependence on n.
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The dependencies of E, D (for b = 1) and of 4, B on n are shown in Fig. 5.
3.4. Type x"+7 K, (x), xe<0, o)

This is a generalization of the preceding types. The probability density of this
distribution 1is
@7) s =27 b T+ (p + D2]T[(p + 1)/213 7 (x/b)"* 7 K (x/b) .

Its distribution function F(x) cannot be expressed generally in a simple form. For
general moments the following relation holds:

(28) my(n, p) = 2°0*T[n + (k + p + V2] T[(k + p + 1)/2].
Ar[n + (p + 2] T[(p + 1))2]} 71,
which may be easily specified for the values of k desired.
The probabilities for the case n = 0, p = 0(1) 4 are shown in Fig. 6, and for the

case n = 1, p = 0(1) 4, in Fig. 7. Let us recall that the case n = 1/2 may be expressed
by means of the gamma distribution.

3.5. Some convergence properties

Let us discuss the asymptotic behaviour of the above mentioned distributions
for n — . This analysis is simplest for the symmetric type (22). It follows from

0,6

\ T T T T T T

£9,5]
i
fix)

|
| \!,4/_4

03]
02]

01

00

0 A 2 3 A ' '8 7
i VP
Fig. 6. Probability densities of distributions of the type x? Ky(x), x = 0,forp = 0(1,4, b = 1.
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— W —

Fig. 7. Probability densities of distributions of the type xP*! K, (x), x= 0, forp = 0(1) 4, b = 1.

(23c) that lim B(n) = 0 and all higher even semiinvariants for n increasing also
asymptotically approach zero. Thus the distribution (22) with increasing n approaches
the normal distribution. Using the simple relation between (20) and (22) we may
state that the distribution (20) for increasing n approaches the one-sided Gaussian
distribution. Finally, it may be shown that between the random variable X described
by means of f,(x) following (22) and the random variable Y described by means
of f,(y) following (24) the relation

(29) FO(x) = nfljvwf;"—rz)(y) (y2 — x?)"V2 dy

holds (see e.g. [8], [10], [11]), where the probability density functions f,, f, have been
assigned the corresponding values of indices. After passing to the limit n — co we
obtain on the left-and right-hand sides of (29) the normal and the Rayleigh distribu-
tion, respectively. Thus the distribution (24) with increasing n approaches the Ray-
leigh distribution.

The classes of distribution functions considered and their convergence for increas-
ing n may be vizualized in a graph with axes (4%, B) introduced by Pearson in a slightly
different arrangement of the axes (Fig. 8). In this graphical representation the rapid
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convergence of the type (22) towards the normal distribution is distinctly visible.
The one-sided distribution (20) forms a continuous sequence of functions from the

10 T T
‘9 - —
o7 ‘
B8
7 :
640 4
|
) |
4+ ]
! : exponential
3Jro G : one-sided Gaussian |
' ! ‘ Rayleigh
N
2]‘1? type XK (x) s
i_z type Ixf" K, bixd)
1 T4 pe x‘MKn(x) -
[5 gamma
v
0-¢ t - f
0 4 5 ) ) 7
J— A-_;.—
Fig. 8. Distributions of the types x" K, (x), |x|" K,(]x]) and X K, (x) plotted in the 47— B
diagram.

exponential (n = 0-5) to the one-sided Gaussian (n — o) distribution, the rate
of convergence being rather slower than in the case of the symmetric distribution.
In a similar way, the distribution of the type (24) passes continuously from the
exponential (n = —0-5) over the gamma distribution xexp(—x) for n = 05 up
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to the Rayleigh distribution (n — o0). The rate of convergence is approximately
of the same order as for the one-sided distribution (20).

4. APPLICATIONS

The application of the MacDonald function in probability theory is connected
with different types of composed distributions, the analytical expressions of which
in form of certain integrals lead just to the MacDonald function. In this chapter
we shall give some typical examples.

1. Let X, Y be independent normal random variables with zero expected values
and standard deviations b,, b, respectively. Then the random variable Z = XY has
the probability density

S) = (eb,b)" Ko [2/(b.0)]

When E, # 0, E, = 0 then the probability density f(z) will be expressed by means
of an infinite series, the terms of which contain products of the MacDonald function
K, and the modified Bessel function of the first kind I,,. Even a more complicated
relation will be obtained for X and Y correlated (for details see [4]). The MacDonald
function appears also in distributions of a product Z = XY when X, Y are inde-
pendent gamma, Pearson y or generalized gamma distributed. General expressions
with some interesting particular cases are summarized in Table 1. All random va-
riables X, Y and Z considered in this table are defined on <0, ).

2. Let X, Y be independent random variables with probability densities of the
gamma (Pearson III) type, i.e.

fdx) = [T(p + )] ' x"exp (=x),
f,(v) =[T(g + 1)]7" yexp(—y).

Then it may be shown (see e.g. [12]) that the random variable U = X — Y has the
probability density

Fuw) = 12u/2)P* 2 [T(p + )] Wmgy2.p4 g4 1)2(26) 5

where W, (i) is the confluent hypergeometric (Whittaker) function which for p = g
reduces to the MacDonald function, thus yielding

Julu) = 7 20(p 4+ D] (f2)77 12 Ko gya(w) -

3. To express the distributions of mean values of random samples from exponen-
tial and Laplace populations, the functions of the form exp(—blxl). %x " K,,(l'c[)
have been used in [14].

4. The MacDonald function also appears in composed distributions created
from conditional distributions of the exponential type, the scale parameter of which
is considered to be a random gamma distributed variable [16].
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Denoting the probability density of a conditional variable X as f(x/2), the scale
parameter A having the probability density g(2), we express the probability density
of the unconditioned variable X* as

(30) ) = j " fx2) a2) .

)

A detailed discussion of this topic with a number of corresponding functions f{x/1) —
— g(4) = f*(x) is given in [9]. Some interesting cases leading to distributions
discussed in Chapter 3 are summarized in Table 2.

5. A very important class of distributions is obtained when we consider the con-
ditional normal distribution with the random variance which is gamma distributed,
or with the standard deviation which is Pearson y distributed. The extraordinary
significance of these distributions belonging to a class called elliptically symmetric
distributions [3], [13] lies in the possibility of expressing their joint probability
density in a very simple way [10], [11]. Following the definition of the total (un-
conditioned) probability for the joint probability density, we may derive that for the
marginal probability density f;k(x) given in Table 2, line 1, the correponding joint
(two-component) probability density has the form f7,(R, ¢) given in Table 2, line 2,
where

R = [(x] + x3 = 20x,x,)](1 — 0?)]'"?

and g is the correlation coefficients of the generating normal distribution. 1t follows
from the relation between f7(x}) and f7,(x,, x,) that the analytical form of the
Laplace distribution is to be understood as the distribution of the type ‘x " K,,(!x])
with n = }/2. This also offers new views on the incorporation of Laplace (or expo-
nential) distribution into the system of distributions (cf. also Fig. 8). Thus, exponen-
tial distribution may be considered to be a special case of the gamma or of the
Weibull distribution and of two classes of distributions based on the MacDonald
function, types x" K,(x) and x"*! K,(x).

The commonly known difficulties occurring when formulating analytical expressions
for joint distributions with given marginal distributions are to be mentioned. So e.g.
for the exponential (or Laplace) distribution just mentioned, several ways for ex-
pressing the joint distribution have been proposed (a review of them see e.g. [7]
Chapter 41.3) which, of course, in many cases have some undesirable properties.
On thie other hand, the analytical expression based on the MacDonald function
yields a unified expression for both the marginal and joint distributions of arbitrary
orders. The parameter entering the joint probability density is equivalent with the
correlation coefficient ¢ (the normalized centred moment p''*"/p) derived from
the joint normal probability density. In a similar way, the marginal and joint prob-
ability density functions may be expressed for other values of the parameter n.
Thus we obtain a sufficiently rich subclass of distributions with elements continuously
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moving from (nb)~ ' Ko(|x|/b) with B = 6 over the Laplace distribution (B = 3)
up to the normal distribution (B = 0).

Considering the Rayleigh distribution for f(x/4) in (30) and assuming g(2) to be
Pearson y-distributed we arrive at distributions of the type x"*! K,(x), see Table 2,
line 3. It has been shown in (29) that a connection exists with the type |x|" K,,(M).
From the point of view of applications in the random process theory, the distribution
x"*1 K,(x) describes the envelope of a narrow-band vibratory random stationary
process the state variable of which has the distribution of the type !x]" UK, 2(x])
[11]. Thus the above discussed system of both interconnected subclasses offers
a valuable mathematical tool for the description and analysis of random vibratory
processes (see also [8]).

X

6. CONTRIBUTIONS TO MATHEMATICAL ANALYSIS

From the relation between the joint and marginal probability densities some
interesting expressions for definite integrals containing the MacDonald function
may be deduced, which have general application possibilities in mathematical
analysis. Two of these expressions are given below:

@31 Jﬁx”“(xz — ) 12 K (x/b) dx = (rb[2)V [u 12 K,y o(|uljb)

ueR, b>0, n=20

s

(32) J (x2 + y7 = 2rxy) 2 K [(x* + y? = 2rxp) 2 0711 — ?) V2] dx =

"2 K a((6)

x,yeR, b>0, red0,1), n=0.

— (Zﬂb)l/z (] - r2)(n+l)/2 l.\‘

7. TABLES OF PROBABILITY DISTRIBUTIONS BASED
ON MACDONALD FUNCTION

While the MacDonald function K,(x) is tabulated in some comprehensive mathe-
matical tables [6], [ 17], usually for n integer, the probability densities f(x) of the type
x" K, (x), x = 0 are tabulated only in [5] for n = 0(1/2)23/2, and the corresponding
distribution functions F(x) in [15]. The probability densities and distribution func-
tions for the type x”*" K,(x) are not available in current references but they may be
easily adapted from [5].
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8. CONCLUSIONS

In this paper the basic analytical properties of the MacDonald function (the modi-
fied Bessel function of the second kind) have been summarized and then properties
of some subclasses of distribution functions based on the MacDonald function,
especially of the types x" K,(x), x = 0, [xl" K. ( xl), xeR and x"*P K, (x), x =0
have been discussed. The distribution functions mentioned are useful for analytical
modelling of composed (mixed) distributions, especially for products of random
variables having distributions of the exponential type. Extensive and useful applica-
tions may be found in the field of non-Gaussian random processes, the marginal
and joint probability densities of which and of their envelopes may be described
by means of the types discussed.

References

[11 H. Bateman, A. Erdélyi: Higher transcendental functions. Vol. 2. New York, McGraw-Hill,
1953.

[2] H. Bateman., A. Erdélyi: Tables of integral transforms, Vol. I, II. New York, McGraw-Hill,
1954.
[3] K. C. Chu: Estimation and decision for linear systems with elliptical random processes.
1EEE Trans. Autom. Control, AC-18, 1973, pp. 499—505.
[4] C. C. Craig: On the frequency function xy. Ann. Math. Statist., 7, 1936, pp. 1 —15.
[S] E. M. Elderton: Table of the product moment T,, function. Biometrika, 21, 1929, pp. 194 to
201.
{61 Jahnke-Emde-Losch: Tafeln hoherer Funktionen. Stuttgart, Teubner, 1960.
[7] N. L. Johnson, S. Kotz: Continuous multivariate distributions. New York, J. Wiley, 1972.
[8] O. Kropdc: Relations between distributions of random vibratory processes and distributions
of their envelopes. Aplik. Matem., 17, 1972, pp. 75—112.
[9] O. Kropdé¢: Rozdéleni s nahodnymi parametry a jejich inzenyrské aplikace. Strojn. Cas. 31,
1980, pp. 597—622.
[10] O. Kropdé: A unified model for non-stationary and/or non-Gaussian random processes.
J. Sound Vibr., 79, 1981, pp. 11—21.
[11]1 O. Kropaé: Some general properties of elliptically symmetric random processes. Kybernetika,
17, 1981, pp. 401—412.
[12]1 S. Kullback: The distribution laws of the difference and quotient of variables independently
distributed in Pearson I laws. Ann. Math. Statist., 7, 1936, pp. 51—53.
[13] D. K. McGraw, J. F. Wagner: Elliptically symmetric distributions. TEEE Trans. Inform.
Theory, 1T-14, 1968, pp. 110—120.
[14] K. Pearson, G. B. Jeffery, E. M. Elderton: On the distribution of the first product moment-
coefficient, in samples drawn from an indefinitely large normal population. Biometrika,
21, 1929, pp. 164—193.
[15] K. Pearson, S. A. Stouffer, F. N. David: Further applications in statistics of the 7,(x)
Bessel function. Biometrika, 24, 1932, pp. 293—350.
[16] D. Teichrow: The mixture of normal distributions with different variances. Ann. Math.
Statist., 28, 1957, pp. 510—512.

[17] G. N. Wartson: A treatise on the theory of Bessel functions. Cambridge, Univ. Press, 1944
(2nd edit.).

301



Souhrn

NEKTERE VLASTNOSTI A POUZITI
ROZDELEN{ PRAVDEPODOBNOSTI OBSAHUJICICH
MACDONALDOVU FUNKCI

OLDRICH KROPAC

V cldnku jsou nejprve strucné shrnuty zdkladni analytické vlastnosti MacDonaldo-
vy funkce (modifikované Besselovy funkce druhého druhu). Ddle jsou diskutoviny
vlastnosti nékolika podtfid rozdéleni pravdépodobnosti obsahujicich MacDonaldovu
funici, zejména typy x" K,(x), x = 0, |x|" K,,([,\‘[), xeRax""1 K, (x), x = 0. Uve-
dend rozdéleni se uplatiiuji pfi analytickém popisu sloZenych rozdéleni, zejména
soucinu ndhodnych veli¢in s rozdélenimi exponencidlniho typu. Zvldst rozsihlé a
prinosné jsou aplikace pro popis a analyzu negaussovskych margindlnich a sdruze-
nych rozdéleni ndhodnych procesi a jejich obalek.

Author’s address: Ing. Oldiich Kropaé, CSc., Vyzkumny a zkuSebni letecky ustav, 199 05
Praha 9 - Letnany.
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