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SVAZEK 27 (1982) A P L I K A C E M A T E M A T I K Y ČÍSLO 4 

SOME PROPERTIES AND APPLICATIONS 
OF PROBABILITY DISTRIBUTIONS BASED 

ON MACDONALD FUNCTION 

OLDR1CH KROPAC 

(Received April 3, 1981) 

1. INTRODUCTION 

The introduction of more and more complicated probability models into different 
application fields gives rise to increasing demands on necessary mathematical tools. 
One feature of this general tendency consists in the need for some higher transcen­
dental functions to be included in to the currently used analytical apparatus. In the 
probability theory the error integral is of basic importance and also the incomplete 
gamma function is often used. Considerable application possibilities can be found 
for the modified Bessel function of the second kind (or the modified Hankel function), 
which is also called the MacDonald function. The last denotation will be used in this 
paper particularly for the sake of brevity of expression. It is the aim of this paper 
to recall some basic properties of this function and of some probability distribution 
functions based on it. Some interesting applications in probability theory will be also 
discussed. 

2. DEFINITION AND BASIC ANALYTICAL PROPERTIES 
OF THE MACDONALD FUNCTION 

It is well known that the generating differential equation of Bessel functions has 
the form 

(!) u" + (\jz)u' + (1 - n2jz2)u = 0 , 

the particular solution of which is the Bessel function of the first kind of order n 

(2) J„(z) = | ( - 1 ) - (z/2)2"-+" [ r(m + 1) r (m + n + l ) ] " 1 . 
m = 0 

Substituting in (l) iz for z we obtain the modified Bessel equation 
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(3) u" + (1/z) u - (1 + n2\z2) u = 0 , 

the general solution of which may be written in the form 

(4) u = C. I„(z) + C2 K„(z), 

where 

(5) In(z) = exp ( - nnijl) Jn[z exp (ni/2)] 

is the modified Bessel function of the first kind and 

(6) K„(z) = 7i(2 sin Bit)"' [I_„(z) - I„(z)] 

is the modified Bessel function of the second kind or the MacDonald function. 
The theory and analytical properties of Bessel functions are described in detail 

in Watson [17] and in a concise form in [ l ] . Here we shall recall some of the most 
important properties of the MacDonald function, which are interesting from the point 
of view of applications in the probability theory. 

It follows from the definition that for n real and z positive, K,.(z) is real. Further, 
the following relations hold: 

(7) K_„(z) = K„(z) , 

(8) K._.(z) - K„ + 1(z) = -(2n/z) K„(z), 

(9) K;(z) = -(1/2) [K„+1(z) + K__.(z)] = ~(n\z) K„(z) - K„_,(z) , 

(10) f z "K„_ 1 ( z )dz= - z " K „ ( z ) . 

One subclass of MacDonald functions which is important in applications is that 
containing functions with integer indices n. These functions and their derivatives 
may be expressed recurrently by means of K0(z) and Ki(z), the values of which 
may be found in mathematical tables (see e.g. [6], [17]). 

Another interesting subclass in formed by functions with the indices equal to halves 
of odd numbers. These functions may be expressed by means of elementary functions 
following the relation 

(U) K„+1/2(z) = (n\(2z)y>2 exp ( - z ) £ (» + m)! [m! („ - m)!]" 1 ( 2 z ) -
m = 0 

or the recurrent formula 

(12) K„ + 1/2(z) = ( -1 ) " [„ / (2- ) ]" a z" + 1[d/(z dz)]« ( e - / - ) • 

Remember also that the function K„ (z) is continuous in n, thus 

(13) lim K„(z) = Kp(z) . 
п-p 
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Concluding this review chapter we mention some important integral representations 

of the MacDonald function [2j: 

Í
oo 

x"" 1 exp (-д/x - bx) àx = 2(ajb)n/г K„(2 v !(aЬ)), 

a > 0 , b > 0 , 

(15) [ x"~l exp (-д/x" - bxk) dx = (2/fc) (л/b)'"'(2,i) K„ д(2 .y(дft)) 

д > 0 , /? > 0 , 

(16) 

(17) 

[ V 2 " ( u 2 - A- 2 )"- ' e x p ( - a / x ) d x = TT" 1 / 2(2/«)"" 1 / 2 u"'32 I » K„ 

a > 0 , M > 0 , 

" c o 

I xp-1(x - i/)77" í exp ( - bx) dx = 

= n-1/2(ujb)p-1/2 T(p) exp (-611/2) K,_ 1 /2(bu/2), 

t / > 0 , p > 0 , b>0, 

- 1 / 2 a м , 

(18) :2 - u2)""1 e x p ( - b x ) d x - к-l'2(2ulby-1/2 Г(n) Kn,1/2(ub) , 

u > 0 , t? > 0 , b > 0 . 

For applications in the probability theory the following definite integral of the 

MacDonald function will be useful: 

(19) xp K„(x/ò) dx = 2"-1 bn+l Г[(l + p + и)/2] Г[(l + p - и)/2] 

b > 0 , (p + 1 + n) > 0 . 

3. PROBABILITY DISTRIBUTION FUNCTIONS OF THE TYPE \" + p K„(v) 

In probability problems, the distribution functions based on the MacDonald 

function most often have the form xn Kn(x) or xn + l Kn(x). Using equation (19) 

we can easily calcuate the normalizing constants. 

3.1. Type xn Kn(x), x e <0, 00) 

The probability density function of this distribution with the scale parameter b 

included has the form 

(20) Д х ) = к-1'2 2-'+1 [Г(и + 1/2) b]-1 (х/Ь)" К„(х/а), 

287 



where the index n has the meaning of the shape parameter. The probability densities 
f(x) for n = 0(1/2) 5/2 and b == 1 are shown in Fig. 1. 

Fig. 1. Probability densities of distributions of the type xn K,,(x), * = 0, for n = 0 (f) f, 6 = 1 , 
N — one-sided Gaussian distribution. 

The distribution function F(x) is easily expressible only for n = k + 1/2, k integer. 
Otherwise, F(x) may be expressed only through Kn(x), Kn^t(x) and Ln(x), L„_ t(x), 
the latter being the modified Struve functions [17]. 

The fc-th moment of (20) may be expressed via equation (19) in the form 

(21) mk(n) = 2-bf T[(k + l)/2 + n] T[(k + l)/2] [ > r(« + 1/2)]"1 

and detailed specification for the expected value E, dispersion D, third and fourth 
centra] moments, [i3 and fiA, respectively, yields 

(21a) E(n) = 2bK~l/2 r(n + 1) [r(n + 1/2)]""1 , 

(21b) z)(rt) = b2{(2« + i) - (4/JT) [r(rt + i)]2 [r(« + i/2)]"2}, 

(21c) /j3(rt) = 2fc37i-1/2{-(2n - l )r ( / j + l)[r(rt + 1/2)]"1 + 

+ (8/n)[r(« + i)]3[r(rt + i/2)]-3}, 

(21d) fi4(n) = (j>4/7r) {3(2n + l) (In + 3) - 8(2rt + 5) [r(n + l ) ] 2 . 

. [r(rt + 1/2)]-2 - 48[r(n + l)]4 [r(« + 1/2)] ~4 . 
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A graphical representation of dependencies of F, D (for b = 1), skew A = /i31>"3 

and curtosis B = /i4D~2 — 3 on n is given in Fig. 2. 
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Fig. 2. Moments of distributions of the type A" KJX), X ^ 0, b — 1: dependence on n. 

3.2. Type |x|" K„( |x | ) , x e ( - oo, GO) 

In practical applications the random variables defined on x e ( — oo, oo) often 

occur with a symmetric probability density 

(22) /(x) = n'"2 2 - [ r ( n + 1/2) fo]"1 (|x|/fc)" K„(|x|/fc) 

and with moments 

(23) m 2 , + 1 ( n ) = 0 , k = 0,1,2, . . . , 

m2,(n) = 7 T 1 / 2 ( 2 b ) 2 k r ( k + n + 1/2) F(k + 1/2) [r(n + i/2)]" 1 , 

particularly 

(23a) D(n) = b2(2/. + 1), 

(23b) /(4(/T) = 3b4(2/i + 1) (2/i + 3) , 

where of 

(23c) B(n) = 6(2/i + l ) " 1 . 

The dependencies of D/b2 and B on rc are shown in Fig. 3. 

3.3. Type xn + i Ktt(x) , x e <0, oo) 
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The probability density of this distribution is 

(24) / (*) = 2-- [ r (n +l)b]~1 (xjb)n+» K„(x/6) 

Fig. 3. Moments of distributions of the type \x\n Kn(\x\), x e R , b = 1: dependence on n. 

and the distribution function may be expressed by using (10) in the form 

(25) F(x) = 1 - 2 - [ r ( n + l ) ] " 1 (x/6)" + 1 K n + 1 (x/6) . 

The probability densities/(x) for n = — 1/2(1/2) 2 are shown in Fig. 4. 

For general moments the relation 

(26) mk(n) = 2*6* F(« + 1 + fc/2) r(/</2 + 1) [r(« + I ) ] " 1 

may be easily derived with the specific values 

(26a) E(n) = K1,2b F(n + 3/2) [ r(n + l ) ] " 1 , 

(26b) D(n) = 62{4(n + 1) - n[r(n + 3/2)]2 [ r (« + l ) ]" 2 } , 

(26c) th(n) = 27t1/263{-3(n + 1/2) T(n + 3/2) [T(n + l)]""1 + 

+ K[T(n + 3/2)]2 [F(„ + I ) ] - } , 
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(26d) ,t4(л) = Ь4{32(л + l)(ii + 2) - 12л[Г(л + 3/2)]2 [Г(л + 1)]" 

-Зя2[Г(л + 3/2)Г[Г(« + l ) ] - } . 

Fig. 4. Probability densities of distributions of the type xn K„(x), x ^ 0, for n 
b= 1. 

R — Rayleigh distribution. 

= - ÌФ 2, 

0 2 

Fig. 5. Moments of distributions of the type A " " 1 K„(A), x^ 0, b = 1; dependence on n. 
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The dependencies of F, D (for 6 = 1) and of A, B o n n are shown in Fig. 5. 

3.4. Type xn+p KH(x), x e <0, oo) 

This is a generalization of the preceding types. The probability density of this 
distribution is 

(27) f(x) = 2~—>^{b r [ n + (p + l)/2] T[(p + 0 / 2 ] } - 1 (x/ft)" + p K„(x/6). 

Its distribution function F(x) cannot be expressed generally in a simple form. For 
general moments the following relation holds: 

(28) mk(n, p) = 2kbk T[n + (k + p + l)/2] r[(fc + p + l)/2] . 

. { r [ n + (p + l ) / 2 ] r [ (p + l ) / 2 ] r , 

which may be easily specified for the values of k desired. 
The probabilities for the case n = 0, p = 0(l) 4 are shown in Fig. 6, and for the 

case n = 1, p = 0(1) 4, in Fig. 7. Let us recall that the case n = 1/2 may be expressed 
by means of the gamma distribution. 

3.5. Some convergence properties 

Let us discuss the asymptotic behaviour of the above mentioned distributions 
for n -> oo. This analysis is simplest for the symmetric type (22). It follows from 

0,6 

Fig. 6. Probability densities of distributions of the type xp K0(x(, x ^ 0, forp = 0(i; 4, b = 1. 
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convergence of the type (22) towards the normal distribution is distinctly visible. 
The one-sided distribution (20) forms a continuous sequence of functions from the 

Fig, 8. Distributions of the types xn Kn(x\ \x\n Kn(\x\) and xll+i Kn(x) plotted in the A2 

diagram. 

exponential (n = 0-5) to the one-sided Gaussian (n -> oo) distribution, the rate 
of convergence being rather slower than in the case of the symmetric distribution. 
In a similar way, the distribution of the type (24) passes continuously from the 
exponential (n -= —0-5) over the gamma distribution Nexp( — x) for n = 0-5 up 
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to the Rayleigh distribution (n -> oo). The rate of convergence is approximately 
of the same order as for the one-sided distribution (20). 

4. APPLICATIONS 

The application of the MacDonald function in probability theory is connected 
with different types of composed distributions, the analytical expressions of which 
in form of certain integrals lead just to the MacDonald function. In this chapter 
we shall giwQ some typical examples. 

1. Let X, Y be independent normal random variables with zero expected values 
and standard deviations bx, by, respectively. Then the random variable Z = XT has 
the probability density 

f(z) = (nbxby)-
lK0{zl(bxby)]. 

When Ex + 0, Ey + 0 then the probability density f(z) will be expressed by means 
of an infinite series, the terms of which contain products of the MacDonald function 
Kn and the modified Bessel function of the first kind I2n. Even a more complicated 
relation will be obtained for X and Ycorrelated (for details see [4]). The MacDonald 
function appears also in distributions of a product Z = XY when X, Y are inde­
pendent gamma, Pearson % or generalized gamma distributed. General expressions 
with some interesting particular cases are summarized in Table 1. All random va­
riables X, Yand Z considered in this table are defined on <0, oo). 

2. Let X, Y be independent random variables with probability densities of the 
gamma (Pearson III) type, i.e. 

f,(x) = [r(p + l ) ] - 1 ^ e x p ( - x ) , 

/ , ( y ) - [ r ( q + i ) ] - 1 / e x P ( - y ) . 

Then it may be shown (see e.g. [12]) that the random variable U = X — Yhas the 
probability density 

/„(«) = l/2(u/2)<"+«>'2 [r(p + I ) ] " 1 W ( ,_ , ) / 2 > ( p + , + 1 ) / 2 (2u) , 

where Wkfttl(u) is the confluent hypergeometric (Whittaker) function which for p = q 
reduces to the MacDonald function, thus yielding 

flu) = n-*»[r(p + I ) ] - 1 (ujir^ Kp + 1 / 2(«) . 

3. To express the distributions of mean values of random samples from exponen­
tial and Laplace populations, the functions of the form exp( —b |x|). Jx|" Kn(jx|) 
have been used in [14]. 

4. The MacDonald function also appears in composed distributions created 
from conditional distributions of the exponential type, the scale parameter of which 
is considered to be a random gamma distributed variable [16]. 
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Denoting the probability density of a conditional variable X as f(xjX), the scale 

parameter A having the probability density g(X), we express the probability density 

of the unconditioned variable X* as 

(30) j*(x) = Г д x / Л ) g(X) dX . 
Jo 

A detailed discussion of this topic with a number of corresponding functions f(xjX) — 

— g(X) — f*(x) is given in [9]. Some interesting cases leading to distributions 

discussed in Chapter 3 are summarized in Table 2. 

5. A very important class of distributions is obtained when we consider the con­

ditional normal distribution with the random variance which is gamma distributed, 

or with the standard deviation which is Pearson % distributed. The extraordinary 

significance of these distributions belonging to a class called elliptically symmetric 

distributions [3], [13] lies in the possibility of expressing their joint probability 

density in a very simple way [10], [11]. Following the definition of the total (un­

conditioned) probability for the joint probability density, we may derive that for the 

marginal probability density f*(x) given in Table 2, line 1, the correponding joint 

(two-component) probability density has the form f*2(B, O) given in Table 2, line 2, 

where 

R = [ 0 ? + x\ - 2eXlx2)l(l - Q

2)Y» 

and O is the correlation coefficients of the generating normal distribution. It follows 

from the relation between f*(x) and f*2(
xi> xi) t r i a t t r i e analytical form of the 

Laplace distribution is to be understood as the distribution of the type |x|" K„(|x|) 

with n = 1/2. This also offers new views on the incorporation of Laplace (or expo­

nential) distribution into the system of distributions (cf. also Fig. 8). Thus, exponen­

tial distribution may be considered to be a special case of the gamma or of the 

Weibull distribution and of two classes of distributions based on the MacDonald 

function, types xn K„(x) and xn + 1 Kn(x). 

The commonly known difficulties occurring when formulating analytical expressions 

for joint distributions with given marginal distributions are to be mentioned. So e.g. 

for the exponential (or Laplace) distribution just mentioned, several ways for ex­

pressing the joint distribution have been proposed (a review of them see e.g. [7], 

Chapter 41.3) which, of course, in many cases have some undesirable properties. 

On the other hand, the analytical expression based on the MacDonald function 

yields a unified expression for both the marginal and joint distributions of arbitrary 

orders. The parameter entering the joint probability density is equivalent with the 

correlation coefficient O (the normalized centred moment /j(1'n//c(2)) derived from 

the joint normal probability density. In a similar way, the marginal and joint prob­

ability density functions may be expressed for other values of the parameter n. 

Thus we obtain a sufficiently rich subclass of distributions with elements continuously 
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moving from (ftb) -1 K0(|x|/b) with B = 6 over the Laplace distribution (B = 3) 
up to the normal distribution (B = 0). 

Considering the Rayleigh distribution for f(x\X) in (30) and assuming g(X) to be 
Pearson x-distributed we arrive at distributions of the type xn + 1 K„(x), see Table 2, 
line 3. It has been shown in (29) that a connection exists with the type |x|" K„(|x|). 
From the point of view of applications in the random process theory, the distribution 
xn + 1 KM(x) describes the envelope of a narrow-band vibratory random stationary 
process the state variable of which has the distribution of the type |x|"~rl/2 K ; j+1 /2(|x|) 
[11], Thus the above discussed system of both interconnected subclasses offers 
a valuable mathematical tool for the description and analysis of random vibratory 
processes (see also [8]). 

6. CONTRIBUTIONS TO MATHEMATICAL ANALYSIS 

From the relation between the joint and marginal probability densities some 
interesting expressions for definite integrals containing the MacDonald function 
may be deduced, which have general application possibilities in mathematical 
analysis. Two of these expressions are given below: 

{31 „n+ l / v 2 (x2 - u2)^'2 Kn(xjb)dx = (Kbl2y<2\u\"+1'2Kn+í/2(\u\lb), 

ueR, b > 0, n ^ 0 , 

/*oo 

(32) (x2 + y2 -2rxy)"/2Kn[(x2 + y2 -2rxy)1/2 b-^l - r2yl,2]dx = 
J — oo 

= (2nby2 (I - r2)<"+1>/2 \y\"+í>2 K„+1/2(|,>|/fo) 

x,yeR, b > 0 , r e < 0 , l > , n ^ 0 . 

7. TABLES OF PROBABILITY DISTRIBUTIONS BASED 
ON MACDONALD FUNCTION 

While the MacDonald function K„(x) is tabulated in some comprehensive mathe­
matical tables [6], [17], usually for n integer, the probability densities f(x) of the type 
x" Kn(x), x ^ 0 are tabulated only in [5] for n = 0(1/2)23/2, and the corresponding 
distribution functions F(x) in [15]. The probability densities and distribution func­
tions for the type xp + n K„(x) are not available in current references but they may be 
easily adapted from [5]. 
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8. CONCLUSIONS 

In this paper the basic analytical properties of the MacDonald function (the modi­
fied Bessel function of the second kind) have been summarized and then properties 
of some subclasses of distribution functions based on the MacDonald function, 
especially of the types x" Kn(x), x ;> 0, |x|" K„(|x|), xe R and xn+l K„(x), x >. 0 
have been discussed. The distribution functions mentioned are useful for analytical 
modelling of composed (mixed) distributions, especially for products of random 
variables having distributions of the exponential type. Extensive and useful applica­
tions may be found in the field of non-Gaussian random processes, the marginal 
and joint probability densities of which and of their envelopes may be described 
by means of the types discussed. 
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S o u h r n 

NĚKTERÉ VLASTNOSTÍ A POUŽITÍ 
ROZDĚLENÍ PRAVDĚPODOBNOSTI OBSAHUJÍCÍCH 

MACDONALDOVU FUNKCI 

OLDŘICH KROPÁČ 

V článku jsou nejprve stručně shrnuty základní analytické vlastnosti MacDonaldo-
vy funkce (modifikované Besselovy funkce druhého druhu). Dáh jsou diskutovány 
vlastnosti několika podtříd rozdělení pravděpodobnosti obsahujících MacDonaldovu 
funkci, zejména typy xn Kn(x), x ^ 0, |x|" Kn(|x|), x e R a xn + 1 K„(x), x ^ 0. Uve­
dená rozdělení se uplatňují při analytickém popisu složených rozdělení, zejména 
součinu náhodných veličin s rozděleními exponenciálního typu. Zvlášť rozsáhlé a 
přínosné jsou aplikace pro popis a analýzu negaussovských marginálních a sdruže­
ných rozdělení náhodných procesů a jejich obálek. 

Authoťs address: Ing. Oldřich Kropáč, CSc, Výzkumný a zkušební letecký ústav, 199 05 
Praha 9 - Letňany. 
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