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SOME METHODICAL REMARKS CONCERNING
THE FLOW AROUND ARBITRARY PROFILES

ILsa CErNY

(Received October 20, 1980)

Two definitions of the flow of fluid around a system of profiles are commonly used.
By the first definition, the stream function is constant on the boundary of each
profile; by the second one, the normal component of the velocity vector is zero
there. The main object of this paper is to prove that, after an appropriate arrangement
of the first definition, this definition is more general than the second one, and, more-
over, invariant under conformal mappings.

1. Let us commence with some generalities. The closed (i.e., extended) and the open
Gaussian plane will be denoted by S and E, respectively. By a well known theorem
(see [3] or [5]),

(1) for each two distinct components 4, A, of a compact set A = § there is always
a topological circle’) D = § — A such that A4;, 4, lie in distinct components

G,. G, of theset S — D.

Note that, by the Janiszewski Theorem (see [3] or [5]), G;n Q are regions,
if 2 =8 — Ais a region.

If a topological circle D has the properties from (1), we say that D separates A,
from A,. Further, we say a component 4; of a compact set A < § is isolated, iff
there is a topological circle D separating it from all components A, of A different
from A;.

Let H be a homeomorphism of a region Q = S onto Q*. Let {z;}, {z} be two
sequences of points from Q such that lim z, = z' € 8Q, lim z,, = z" € dQ, and that
both limits lim H(z,) = w', lim H(z)) = w" exist. By (1) (and the note just after it),
we easily see that the points z’, z” belong to two distinct components of § -- Q,
if and only if the points w’, w” belong to two distinct components of § — Q*. This

implies the existence of a one —one mapping y of the system //(Q) of all components

1) Y.e., a set homeomorphic to the circle {z; |z] = 1}.
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of § — Q onto the system .#(Q*) of all components of § — Q* with the following
property:
(2) ,€Q, Lsz, « Ae l(Q) = Ls H(z,) = x(A).

(Ls z, denotes the topological limes superior of the sequence {z,}, i.e., the set of all
its accumulation points — see [3] or [5].)

We then say that y(A4) is the component of S — Q* affixed to the component A
of § — Q by the homeomorphism H.

By (1), we easily see that

(3) the component A* of § — Q* affixed to an isolated component A of § — Q
by any homeomorphism H of Q onto Q* is isolated as well.

As a consequence of the famous Lindel6f’s Lemma (see [2] or [5]) the following
assertion can be proved:

Theorem 1. Let @ be meromorphic on a region Q = S and let a point z, € 0Q
lie in a continuum A = S — Q containing more than one point. Suppose there is
a wy € S and a neighbourhood U(z,, R) of z4 such that the implication

4) z2,€Q, z, > z€ QN U(zq, R) = ®(z,) - wy

holds.
Then wo€ E and ® = w, on Q.%)

As an easy consequence of Theorem 1 we have the following assertion:

Theorem 2. Let K be a conformal mapping of a region Q < S onto Q*. If A is
a component of S — Q containing more than one point and if there is a disc U(z,, R)
with zo € 04 and U(zq, R) — Q = U(zo, R) " A*), then the component A* od S — Q*
affixed to A by K also contains more than one point.

Proof. Suppose that, on the contrary, the component A contains more that one
point, but the affixed component A* only one point w,. Then (by (2) with H = K
and y(4) = A*) the implication (4) holds with @ = K, which leads to the contra-
dictory conclusion that the conformal mapping K is constant.

Remark. No analogue of Theorem 2 holds for homeomorphisms.

2. From this moment on we always suppose that

(5) @ = Eis a region, § — Q has only a countable number of components, and at
most one of these components is non-isolated.

For such a region Q, we denote by .47(Q) and 2(Q) the system of all isolated compo-

2) Theorem 1 is proved in [5]; a proof of its special case is given in [6].
3) Such a disc certainly exists, if A is an isolated component of § — Q.
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nents of the set § — Q containing exactly one point and more than one point, res-
pectively.

Further, we suppose that a vector field f = (f|, f,) on Q is given with rotf = 0
and divf = 0.%) Setting F, = f,, F, = —f,, the complex velocity F = F, + iF,
will be holomorphic on Q. Each analytic function J primitive of F is called the
complex potential of the field f.

The complex potential & admits unrestricted continuation in Q. We say that the
complex potential & has a single-valued imaginary part v, ifl the identity Im @ = v
holds for each element [, z] e Z (see [4]) in some neighbourhood of z. Then,
of course. v is a stream function of the field f. Two complex potential (two stream
functions — if they exist) of the same field differ only by a complex (real) additive
constant.

Bearing in mind only the case when the profiles are impermeable, for each 4 € 2(Q)
we suppose to have a Jordan region R 4 (i.e., aregion whose boundary is a topological
circle} with the following properties:

(6} R,—Q=4, (R,cQ,
(6") for some Jordan parametrization ¢, of the topological circle éR ,, the identity

!mj F= 0holds.
Pa

Remark. We tacitly suppose that all curves (especially, the curve ¢, from (6”))

in this paper have finite lengths. The identity ImJ F = 0 means that the flow
'
of the field f through 0R , is zero.
Noie that, by the Janiszewski Theorem, R, n Q = R, — A is a region. ———

By the Cauchy Theorem,
(7) tm J' F = 0 for any Jordan curve i loophomotopic to ¢ , with respectto R, — A%);
v

further. this implies lva F = 0 for any closed curve w in R, — A, and this is equi-

valent to the existence of a single-valued stream function v, of the field fon R — 4.
R, being fixed, we call v, briefly the local stream function of f at A.

Definition. Supposing Q as in (5) we say the field f flows around A e 2(Q), iff
there is a constant ¢, such that the local stream function v, at 4 extended by v = ¢4

4) fis thz velocity fizld of a fluid. #7{R2) correspond to ths set of all (isolated) point-singulari-
ties of the fizld f, Q) — to the set of all profiles. If both the systems are finite, then each profile
is isolated, of course; for a pzriodical cascade of profiles, the only non-isolated component of
S — Qs the set {0}

) For the definition of the loophomotopy see [1].
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onto ¢4 is continuous on R, N Q U 0A4.%) We say that the field f flows around ¢Q
(and S — Q), iff it flows around each A € 2(Q).

The main theoretical and practical advantage of this definition is its invariance
under conformal mapping of Q into E; it is very interesting and substantial that
no special boundary properties are imposed on the conformal mapping.

Theerem 3. Let K be a conformal mapping of the region Q (with the above proper-
ties) onto a region Q* < E. Let &F be a complex potential of a field f on Q and let
F*=FoK_.) ‘

Then the field f flows around 09, if and only if the field f* with the complex poten-
tial F* flows around 0Q*.

Proof. Q* evidently has analogous properties as Q. By Theorem 2, the component
A% of § — Q* affixed by K to any component A e #(Q) of § — Q belongs to 2(Q%).

Let us suppose the field f flows around 6Q and let A* e .@(Q*) be arbitrary; let
Ae .@(Q) be the component affixed to A* by the mapping K_,;. Use the above
notations R, ¢, v4, ¢, omitting the subscript 4, and set D* = K(@R). As may be
easily scen, the region K(R n Q) is part of a component R* of the set § — D*; R* is
a Jordan region containing A*, R* — Q% = 4* 0R* = D* < Q* The function
v* = vo K_, (defined on R* — A*) is a local stream function at A* of the field f*.

If z¥e R* n Q* are arbitrary points converging to a point z* e 4* we have
Ls K_,(zy) = 04 by (2). As v is continuous on R n Q U 34 and equal to ¢ on 94,
it follows that Ls v*(z;) = Ls v(K_,(z))) = [c}. Therefore, lim v*(z;) = ¢ (for each
sequence of points z e R¥ n Q% tending to any point z¥ € 8A*). Thus, setting
v* = ¢ on ¢A*, we extend the function v* continuously.

The field f* flows around A*; as A* ¢ OJ’(Q*) was arbitrary, f* flows around 0Q*.
The conditions of the theorem being symmetrical in Q, # and Q*, & * there is no
need of proof of the reverse implication; Theorem 3 holds.

3. Now let us proceed to another definition of the flow around Q. Let Q have
the hitherto properties and suppose moreover that

(8") every A e 2(Q)is a closure of a Jordan region with 04 < E
and that

(8") 44 : <0, V> — A is a Jordan parametrization of 04, the parameter se <0, V>
being the length of the curve 4, | €0, 5).%)

©) We see at once that the definition is independent of the choice of v, and also of R; in the
following, both R, and v, are supposed to be fixed.

7) There are no problems about the composition of the conformal mappirg K_; ard the
analytic function % admitting unrestricted contiruaticn. (See [4] or [5].)

8) The condition ¢4 = E may be omitted quite easily; it is sufficient to have an appropriate
dcfinition of the tangent vector ¢f a curve going through co. (See [5].) But here we suppose the
finiteness of lergth of any Jordan parametrization of 94 (for each 4 € #(R)) which is fully suf-
ficient in practical use.
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Suppose further that

(9) the field f (and consequently also its complex velocity F) admits a (finite) conti-
nuous extension onto QU | 0A4.
AeZ(2)
Remark. As is easily seen, the curves A, satisfy the Lipschitz condition \/Js) -
- AA(S’)‘ =< Is” — s'|. Hence, a finite derivative A, exists almost everywhere in
0. V.

Now we say that the normal component of the field f is zero almost everywhere on
0Q, iff

(10) Im [F(74(s) 2,(s)] = 0 almost everywhere on <0, V>

for each A € 2(Q).

Theorem 4. If the normal component of a field f is zero almost everywhere on 0Q,
then f flows around 0Q.

Proof. Let A€ .‘}"(Q) be arbitrary but fixed; abbreviate the above notations omit-
ting the subscripts A in R, ..., V. By the Cauchy - Goursat Theorem (see [ 1] or [5]),

JF = J F provided both ¢ and 2 have the same orientation, which. of course,
73 A

v
may be supposed. Asf F = J (Fo2)X and Im[(Fo2)4'] =0 almost every-
P 0 .

where by assumiption, we have
(11) }mf F=0.
Q

As we have already seen, this implies the existence of local stream functions on
R n Q. One of these functions may be obtained in this way:

Choose a linearly accessible point a € Q2 (see [5]); without any loss of gencrality
suppose a = 4(0). For each z € R n Q there is a piccewise linear curve o, : {0, 1) —
- S such that 0,(0) = a, w,(1) = =, @.((0, 1>} = R A Q. Then the function

(127) 1:(:):ImJ. F, zeRnQ,

1s, obviously, a lccal stream function of f at 4. Extend it onto Rn Q@ u {A setting
(127 v(z) =0 foreach zedd.

Since v l RnQandv ‘ 0A are continuous, the continuity of © on R n Q U ¢4 will
be proved by showing that
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(13) lim o(z) =0 foreach z,eé4.
z-2z0,zeRNN
For cach ze R Q let z’ = A(s(z)) be the nearest point of ¢4 = A(<0, V), and
let z. : <0, 1) — E be the linear curve connecting z with z’. Applying the Cauchy -
Goursat Theorem, we easily prove that

(14) f F—I—J F=Jv F foreach zeRn Q.
W= = A1<0,s(z)>

(If s(z) = 0 for some z, write 0 instead of the integral on the right-hand side of (14).)
If e R Q tends to z, € 04, then the length of g, tends to 0; as F is continuous

on R~ Q, it is bounded. This imp]iesj F—->0forzeRnNnQ, z -z, As
s(2) M=
Imj F =J Im [(FeZ)2] =0 by (10), we have (=) = Imj F — 0 for
20.s(2)) 0
ze Rn Q, - — zy, Q.E.D.
Thus. f flows around A4; as A € 2(Q) was arbitrary, f flows around Q.

©z

4. Supposing the field f admits a (finite) continuous extension onto Q U {J 4,
AeP(2)
we can prove the reverse of the implication in Theorem 4 as well:

Theorem 5. Suppose the region Q as in (5) and let (8') and (8") hold. Suppose the

field f admits a (ﬁnile) continuous extension onto Q n \J 0A.
Ac? ()
Then f flows around 09, if and only if its normal component is zero almost every-

where on ¢Q.

Proof. Choose A4 € 2(Q) arbitrarily and use the hitherto (abbreviated) notations.
Let so € (0, V) be an arbitrary point; as may be shown, there is a Jordan region U
containing the point A(s,) and points s, s” with 0 < s’ < s, < s < V'such that

(15) Unod = Ns,s"), U=Q=UnA4.)
By the theorem on O-curves (see [3] or [5]), this implies that
(16) U—04=U,nU,,

where U,, U, are disjoint Jordan regions (components of the set U — (3‘4); by the
Jordan Theorem (see [3] or [5]) one of these regions — say U; — is part of the
exterior of A, hence of Q (the other region U, being then part of the interior of A).

9} By a well known theorem of the plane topology (seee.g. [3] or [5]), there is a homeomorphism
H of S onto S such that H(6A4) is the unit circle. For the unit circle the existence of a Jordan
region U with properties analogous to the mentioned ones is evident. Hence, such a region U
exist in the general case as well.
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Choose s, € (s, s”) so that A(s;) is linearly accessible from U, and to each ze U,
assign a piecewise linear curve o, : €0, 1> — U, such that w.(0) = A(s,), w.(1) = z,
w.((0, 1) = U,. Then define

(17) P(z :j F forall zeU,.

The function @ is primitive of F in U, hence a holomorphic branch in U, of some
complex potential & of the field f; v = Im @ is a stream function off! U,. By our
assumptions, v may be extended onto U; U A((s, s”)) continuously by setting it
equal to an appropriate constant ¢ on J((s’, 5" ) Choose an arbitrary z € U, and set

o' = .| <0, 1) for each 1 € (0, 1); then obviously ®(w,(1)) = f F — 0fort— 0+.

Hence ¢ = 0.

If for some s € (s, s”) the point A(s) is linearly accessible from U, there is a linear
curve u: <0, 1) - U; with u(0) = 2(s), u((0, 1> < U,. Setting (for each positive
integer n) u, = u ' <0, 1/ny. w, = @, We show easily with aid of the Cauchy -
Goursat Theorem that

(18) J :‘(F o3 A = J - J o

Passing to the imaginary parts on both sides we obtain Imj F = Tm &(u(l/n)) =

Un

= v(u(1/n)) = v(i(s)) = 0 and Imf F - 0 (as F is bounded on U, and the length
of the curve w, tends to zero). Thus,f Im[(Fo2)2] =0 for each se(s’,s") with

St
A(s) linearly accessible from U,. Taking in account the continuity of the integral

(as a function of s e (s', s”)) and the density of lincarly accessible points, we see that

[ Im [(Fo2) 2] =0 for each se(s",s"). Thus, Im [(Fo 1) 2] = 0 almost every-
where in (s, s").

For each so€ (0, V) we have Im [(Fo )2 ] =0 almost everywhere on some
interval (s', s”) containing so; thus, Im [(F o 2) '] = 0 almost everywhere in <0, V).
As Ae 9’(9) was arbitrary, the normal component of f is zero almost everywhere
on 0Q, Q.E.D.

Remark. Let the field f(continuous onQu | EA) flow around 0Q. It mayv be
AeP(2)
shown (by a method slightly simpler than the above one) that the identity Im [(F(A(s)).

. 2/(s)] = 0 holds e.g. for any se (0, V) at which A" is continuous. An analogous
assertion holds for one-sided derivatives. Hence, provided the profile 04 is piecewise
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smooth, the normal component of the field f is equal to 0 at each point se (0, V)
with the exception of a finite set where only one-sided identities hold.
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Souhrn

NEKOLIK METODICKYCH POZNAMEK
O OBTEKANI LIBOVOLNYCH PROFILU

ILsa CERNY

Srovndvaji se dvé dobfe zndmé definice obtékdni hranice oblasti Q rovinnym
vektorovym polem. Ukazuje se, Ze (vhodnym zptsobem upravend) definice zaloZend
na konstantnosti proudové funkce na kazdém profilu je nejen invariantni vaci kon-
formnim zobrazenim, ale Ze je i obecnéjsi neZ definice zaloZend na nulovosti norma-
lové slozky pole v 0Q.
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