Aplikace matematiky

Ta Van Dinh
Some fast finite-difference solvers for Dirichlet problems on special domains

Aplikace matematiky, Vol. 27 (1982), No. 3, 161-166

Persistent URL: http://dml.cz/dmlcz/103959

Terms of use:

© Institute of Mathematics AS CR, 1982

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/103959
http://dml.cz

SVAZEK 27 (1982) APLIKACE MATEMATIKY cisLo 3

SOME FAST FINITE-DIFFERENCE SOLVERS
FOR DIRICHLET PROBLEMS ON SPECIAL DOMAINS

TA VAN DINH

(Received April 20, 1979)

Our aim is to prove the existence of asymptotic error expansions to some simple
finite-difference schemes for Dirichlet problems on the so-called uniform domains.
The Richardson extrapolation [1] then leads to fast finite-difference solvers for the
problers mentioned.

1. UNIFORM AND NEARLY UNIFORM DOMAINS

In order to simplify the notation we shall consider only the two-dimensional
geometry; the result can be generalized to the n-dimensional case. Let D be a bounded
domain in the (x, y)-plane with a boundary G. For some real numbers x,, y, let us
consider a uniform grid over the (x, y)-plane:

(1) (xiv;)s x;=xo+ ih, h=const >0,
yj =Yo +jk, k=const >0,
0 < const < h/k < const.

The domain D will be called uniform if there exist two values x,, y, and two sequen-
ces of positive numbers {h} and {k} tending simultaneously to zero so that the grid
lines x = x; and y = y; cut the boundary G only at the points of the form (x,, »,).
Then the points (1) cover D with a uniform grid which consists of the set D, of inte-
rior grid points (x;, ;) which belong to the interior of D and the set G, of boundary
grid points (x;, y;) lying just on G. The domain D will ve called nearly uniform if
there exist four real numbers a, b, ¢, d, a sequence of positive numbers {h} tending
to zero and two strictly increasing and smooth functions x(t), (a < t < ¢), y(1),
(b =1 £ d), such that D lies in the rectangle x(a) < x < x(c), y(b) < y < ¥(d)
and the lines: x = x; = x(a + ih) and y = y; = y(b + jh), i, j integers, cut the
boundary G only at the points of the form (x,,,, y,,), m, n integers. So we can cover D
with a grid (x;, y;), x; = x(a + ih), y; = y(b + jh), i, j =0,1,2,3,..., which
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consists of the set D, of interior grid points (x;, y;) which belong to the interior
of D and the set G, of boundary grid points (x;, y;) lying just on G. This grid is not
uniform but depends uniformly on one parameter h.

2. THE DIFFERENTIAL PROBLEM

On a uniform domain D consider the differential problem

@) = 2 () ) o () 2 = ey =

=f(x.y), (x,y)eD,
u(x, y) = 9(x,y), (x,y)eG,

where p, g, ¢, f, g are given smooth enough functions with p = p, = const > 0, g =
= gy, = const > 0, ¢c = 0.

3. THE DISCRETE PROBLEM

We cover D with a uniform grid D, u G, as described above and consider the
following discrete problem with respect to the unknown o(x;, y;):

Lw = (1/h*) [p(x; + 0-5h, y;) (vxis 1, ¥;) = vlxi ¥;) =
= p(x; = 0-5h, y;) (v(xi, ;) — v(xio1, y,)] +
+ (1/k?) [a(xs, v; + 0-5k) (o(xis yj41) = v(xi0 ¥7)) =
— q(xi, y; — 0-5k) (v(xs, ¥;) = v(xi y;-1))] —
— o(xi y;) o(xis ;) = f(xi ), (xi y;) € Dy,
o(xi, v;) = 9(x ¥;) > (xi ¥;) € Gy

It is clear that the operator L, satisfies the maximum principle.

4. MAIN RESULT

Theorem 1. Assume that the problem (2) has a unique solution u(x, y)e C*"*%(D),
p and q € C*"*3(D), and that the problem

Lw = F(x, y)e ¢"(D), (x,y)eD,
w(x,y) =0, (x,y)eG,
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has a unique solution we C"*2(D). Then for h and k small enough there exist

n(n + 1)/2 = 1 functions wii(x, y) independent of h and k so that
U(xi’ yi) - u(xl-, J"_,') - h? WIO(Xh Yj) - k? Wm(xi» )’j) -

— W wao(xi, y;) — h? k2w (x5 v;) = k* woo(xs ¥)) — oo —

— B woo(xy, v;) — W22 Woo 11X ;) = oo = K2 woulxs, y)) =

— O(th+2 + k2n+2)’ (Xi’ y,-)ED;,-

Proof. For any we C*?**(D) we have by Taylor’s formula:

Lw = Lw 4+ h* G o(w) + k2 Goy(w) + h* Gyo(w) + k* Gop(w) + ... +

+ h27 Goo(w) + k2P Go(w) + O(h*P*2 + k2r*2),

where G;;(w) depend only on w and its derivatives and belong to C2P*2~2'/*/(D).

Now for w;; e C*"**#~2G*)(D) we put

z=0—u— hwy — k*wy, — h*wyy — h2k?w,, —
— k*woy — .o = B, — BT Wo, oy — . — kg,
Then we have
Lz = I'Z("wa + Fm) + kz(_LWm + Fox) +
+ h*(=Lwyo + Fao) + ..o 4+ h*"(=Lw,y + F,0) +
+ B (= Lw,_ g+ Fuoyq) + oo+ K2"(—Lwg, + Fo,) +
+ O(h2"+2 + ](2"+2),

where F;; depend only on u and w,, with r + s < i + j and F; e C>"*272(*/)(D).

Now we choose w;; recursively by
Lw
which exist by assumption and satisfy w;; € C*"**~20*)(D). Then we have

Lz=¢ on D,, z=0 on G

ho»

where
@ = O(h*"*? + k*"*?%).
To evaluate z we consider the problem
LB(x,y)= =2 on D, B(x,y)=0 onG.
We deduce

A

B=0, B(x,y) <M = const

and, by Taylor’s formula,

L,B = LB + O(h* + k*) on D,.

5= Fy. (x9)eD. wy=0. (x))eG, itj=1..n,
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Then for h and k small enough we have
LLB= —1.
Now we consider the problem
LA(x,y)= —2K on D, A(x,y)=0 on G,
where K = max I(pl on D,. Then we have
A=KB, 0<4=KBZMmax|p| on D,,
and at the same time

L,A=KLB< —K.

I\

Hence
L(A4+z2z)£0 on D,, A+z=0 on G,.
Then by the maximum principle we have A + z > 0, that is

lz] < A £ M max ](p| on D,.
Theorem 1 is proved.

Note I.If p = const > Oand g = const > 0, the theorem is true without assuming
that h and k are small enough.

Note 2. The result is still available if the term cu in the differential equation is
replaced by ¢(x, y, u) with dc/ou = 0.

Note 3. The result is still available if the domain D is nearly uniform. Then we use
the grid D, U G, as described in Section 1. This grid is not uniform but depends
uniformly on one parameter h and has all the boundary grid points just on the
boundary G. We put h; = x(a + ih) — x(a + (i — 1) h), k; = y(b + jh) —
— »(b + (j — 1) h) and consider the discrete problem

Ly = [2/(l7i + hi+1>] [P(xi + 0-5hiy ¢, ,Vj) (v(xi+1’ ,Vj) - U(Xis J’j))/hiH -
= px; = 0-5hy, ) (v(xi, ;) = v(xiz g y))[hi] +
+ [2)(k; + k)] [aCxs vy + 0-5k;50) (o(xs vy 1) = vxi yi)[Kjur =
—q(xp y; = 0-5k;) (v(xs, ;) — v(xiy yi-))[ki] = elxin v)) vlxi v;) =
= f(xi: }’j) B (X,', Yj) eD,, U(xi) J’j) = g(xi, ,Vj) B (xis Y_,') €G,.

The result can be stated as follows:

Theorem 2. Assume that the problem (2) has a unique solution u(x, y) € CZ"“(D)
and p, ge C*"*3(D), x(t) e C*"**([a, c]), y(t)e C*"**([b, d]), and that the problem
Lw = F(x, y)e C"(D), (x,y)eD,

w(x,y) =0, (x,»)eG,
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has a unique solution w(x, y)e C"**(D). Then for h small enough there exist n
functions wi(x, y) independent of h so that
v(xb .Vj) - “(xi: Yj) - h? Wx(xb )’j) - h* “’z(xf, Yj) — ... — k¥ Wn(xi’ )'j) =
— O(th+2) .

5. A NUMERICAL EXAMPLE

Let D be a circle x? + y? < 1 with the boundary G. Consider the differential
problem

du =f(x,y), (v, y)eD, u(x,y)=g(x, ), (x,y)€G,
where
f(x,y) = —sinx —cosy, g(x,y)=sinx + cosy.
The solution is u = sin x + cos y. Because the circle clearly is a nearly uniform
domain, we use a one-parameter grid
x; =cosn(l — ih), y; =cosn(l — jh),

h = I/N, N being an even integer >0, i, j = 0, N as in Section 1.

We consider the discrete problem described in Section 3 and denote the appro-
ximate value of u(x,, yp) calculated on this grid at a grid point P by o(P; h). From
Theorem 2 we deduce

o(P; h; h[2) = 4 v(P; h[2) — $ o(P; h) = u(xp, yp) + O(h*),

where P denotes a grid point common for the two grids with grid spacings h and h)2.
The numerical results at the point 00, 0) are presented in Table 1.

Table 1
N=1)p  Number o(0; /) o(0: h: hJ2)  u(©, 0)
of equations
2 1 1-02015 1-00049 1.
4 5 1-00541

These results show the effectiveness of our algorithm.
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Souhrn

RYCHLE RESENI DIRICHLETOVA PROBLEMU
NA SPECIALN{ OBLASTI METODOU KONECNYCH DIFERENCI

TA VAN DINH

Autor dokazuje existenci mnohoparametrického asymptotického rozvoje pro chybu
obvyklého pétibodového diferenéniho schématu pro Dirichletiv problém pro line-
drni a semilinedrni eliptickou parcidlni rovnici na jistych specidlnich (tzv. uniformnich)
oblastech. Tento rozvoj ddvd s pouzitim Richardsonovy extrapolace jednoduchy
zplsob zrychleni konvergence dané metody. Postup je ilustrovdn na numerickém
prikladé.

Author’s address: Ta Van Dinh, Bo Mon Toan-Tinh, Khoa Toan-Ly, Truong Dai Hoc Bach
Khoa, Ha-Noi, Vietnam.
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