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SVAZEK 27 (1982) A P L I K A C E M A T E M A T I K Y ČÍSLO 2 

IMPROVEMENT OF PREDICTION FOR A LARGER NUMBER 
OF STEPS IN DISCRETE STATIONARY PROCESSES 

TOMAS ClPRA 

(Received May 22, 1980) 

In this paper conditions are investigated under which an additional process does 
not improve the prediction in a given discrete stationary process provided the "com­
pound" process is ARM A (m, ft) and the prediction is constructed for a general number 
of steps. So this paper develops some existing works devoted to the improvement 
of prediction for the single-step predictors and deals with the connection between 
the single-step prediction and the prediction for a greater number of steps. Moreover, 
some useful hints for the actual prediction in the multivariate ARM A (m, n) process 
are contained in the paper. 

1. INTRODUCTION 

Let {Xt} be a vector discrete stationary process with zero mean value. Denote 
by Xt(a) the predictor of Xt based on Xf_a, Xt_a_1, ... (i.e. the particular scalar 
components of Xt(a) are the best linear approximations of the corresponding compo­
nents of Xt in the Hilbert space generated by all scalar components of all vectors 
Xt-a, Xt_a-U ..., see e.g. [10]). It happens very frequently in practical situations that 
we are not satisfied with the accuracy of this predictor and therefore try to improve 
it by means of an additional (vector) process{Yf} (the dimensions of the processes 
{Xt} and {Yt} may be different but finite). Analogously, denote by Xt(a, b) the 
new "better" predictor of Xt based on X,_a, Xt_a_u ..., Yr__ft, Yr_^_i 

The predictor Xt(a, b) also plays an important role in such cases when particular 
components of a vector process are observed through various time periods which 
is typical for meteorology, hydrology and other technical and economic disciplines 
(e.g., data on the rainfall are delivered with a certain delay after the data on the 
temperature). 

The accuracy of the predictors is measured as usual by the matrices 

Ax(a) = E[X, - X,(a)] [_Xt - Xt(a)]', 

Ax(a, b) = E[X, - X,(a, b)] [X, - X,(a, b)]' . 
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Obviously, it holds that 

(1) Ax(a) Z Ax(a, b) ^ Ax(a, c) (b ^ c), 

where e.g. Ax(a) It AA(a, b) denotes that the matrix AA(O) — Ax(a, b) is positive 
semidefinite. If AA(a) = AA(a, b) we can say that the process {Yt} does not improve 
the prediction in the process {Xt} for the given steps of the prediction. 

There is another reason supporting the importance of the mentioned problem. 
The concept of causal relations (or causality) among time series may be based just 
on the improvement of prediction (see [8], [9] and for economic applications e.g. 
[11]). The basic definition of the causality is such that a time series {Yt} causes 
another time series {Xt} if Xt can be predicted better by some values of {Yr} than by 
not doing so (various types of causality are distinguished with respect to the used 
values of {Yt}). 

Andel [ l ] , [2], [3] and Cipra [4], [5], [6] dealt with various problems of the 
improvement of prediction for the single-step predictor Xt(l). Provided the compound 
process {Wt} = {(X't, Y/)'} is the process AR, MA or ARMA the conditions for the 
equality AA(l) = AA(1,b) were formulated in the mentioned papers and it was shown 
that certain equalities of this type can imply that the processes {Xt} and {Yf} are 
uncorrected. 

The problem of improvement of the predictor Xt(a) with a greater number of the 
predictive steps (a ^ 1) is much more complicated than the previous cases. In the 
present paper the equality AA(a) = AA(O, a) is investigated because of its importance 
from the practical point of view. An interesting connection of this equality with the 
equality AA(1) = Ax(\, 1) is revealed. 

2. PRELIMINARIES 

A brief survey of the mathematical tools used is given in this section. 

The following assertion is the well-known theorem on the inversion of a matrix 
divided into blocks: 

Theorem 1. Let 1 ' j be a square regular matrix with square blocks K and N. 

If the block N is regular then the matrix K — LN~"XM is also regular and 

K, L V 1 _ f(K - LN-'M)'1, -(K - LN~ 1 M)- 1 LN~ 1 

M, NJ ~ V - N ^ A ^ K - L N - ' M ) ' 1 , N"1 + N'lM(K - L N - 1 M ) - 1 L N ' 1 

Now consider an r-dimensional ARMA (m, n) process {Wt} defined by 
n m 

(2) lJAkWt.k = YjBJZt_j, 
k=Q j=0 
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where Ak and Bj are r x r matrices such that 
n 

(3) det ( £ -4fcz
fc) + 0 for |z| __ 1 , B0 * 0 

/c = 0 

and {Z j is an r-dimensional white noise, i.e. EZr = 0 , var Zt = IrXr (a unit matrix), 
cov (Zs, Zt) = 0 for s 4= t. The assumption (3) is usual for the model ARM A (ra, n). 

Further, let {Wt} = {(KJ, Y/)'}, where the process {XJ is p-dimensional and the 
process {Yt} is O-dimensional (p -f q = r). Denote 

,4x y „ 7_ __ (*(-), H » \ y e ^ _ (Pi*), Q(z)\ 
(4) ,foA "U(z). N(z))' h> " W %)/' 
(5) v(z) = det JV(z), iV0(z) = adj N(z) , 

(6) v(z) K(z) - L(z) N0(z) M(z) = " ' £ ' F t_- , 
fe = 0 

nq + m 

(7) v(z) P(z) - L(z) iV0(z) R(z) = £ G ^ , 
7 = 0 

nq + m 

(8) v (z)e (z)-L (z) iV 0 (z)5 (z) = £ ! V , 
1=0 

where the blocks K(z) and P(z) are p x p matrices, N(z)"1 = l/v(z)N0(z) and 
p x p matrices Fk, p x p matrices Gj sand p x q matrices Hj do not depend on z 
(obviously, the matrices Fk, Gj and Hj are unambiguously defined by (6) — (8)). 

The following theorem proved by Andel [3] will be very useful for this paper: 

Theorem 2. Let the model (2) satisfy the assumption (3) and let 

(9) detN(z) 4= 0 for |z| __ 1 . 

Consider the following model 
n(q+ 1) nq + m nq + m 

(10) I E*S.-„= I Gflt-j+ I tf,-C,-,-, 
/c = 0 7 = 0 j = 0 

where {rjt} is a p-dimensional white noise, {Ct} is a q-dimensional white noise and 
the processes {rjt} and {Cj are uncorrelated, i.e. 

En, = 0 , EC, = 0 , var ,7, = IpXp, var £, = / g X 4 , 

cov (ns, f/f) = 0 for s 4= . , cov (C„ C) = 0 fOr s 4= r , cov (f/s, Q = 0 . 

T/?_/2 t/i_ relation 
n(q+\) 

(11) det( X -V*) * 0 fOr |z| g 1 
/c = 0 

/i0/ds in the model (10) One/ t/zerc exists O p-dimensional process £t defined by the 
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model (10) such that 

(12) £ r e H{rjt, rjt_x, ..., £„ Ct-i, ..»} • 

Moreover, this process {ct} is unambiguously defined by (10) O/?d (12) and its 
spectral density matrix is equal to the spectral density matrix of the process {Xt}. 

The condition (12) indicates that each of the scalar components of £, lies in the 
Hilbert space generated by all scalar components of all vectors rjt, rjt-x, •.., Ct Ct-i> • ••> 
(see [10]). 

Since the processes {XJ and {£j have the same spectral properties they must also 
have the same predictive properties. Therefore Theorem 2 provides a convenient 
method how to predict in the process {X{) when only the model (2) for the compound 
process {Wt} = {(X't, Y/)'} is known. Using this method we take advantage of the 
explicit model 

n(q+l) nq + m nq + m 

(13) E F**.-*= I Gjn,-j+ I / / / , - ; , 
k = 0 7 = 0 j = 0 

when we predict in the process {XJ (i.e. when we look for Xt(a)). It is possible to 
write the model (13) in the following more compact form: 

n(q+ 1) nq + m 

(14) £ *•**,-*= I t!A->> 
k = 0 7 = 0 

where U7- = (G,-, H;) is a compound matrix and {er} — {(/7J, Ct)'} is a n r-dimensional 
white noise. 

3. IMPROVEMENT OF PREDICTION FOR A LARGER NUMBER OF STEPS 

We shall investigate the equality Ax(a) = Ax(a, a) for the model (2) in this section. 
The main result is contained in Theorem 4 where a general sufficient condition for 
this equality is given. Theorem 4 has a consequence that is important from the 
practical point of view. This consequence is formulated in Theorem 5. The following 
Lemma 3 has only an auxiliary character: 

Lemma 3. Consider the model (14) (i.e. specially, the relation (11) holds). Let 
T0, Tx, ... be p x r matrices such that 

(15) E(z) T(z) = U(z) for \z\ g 1 , 

where 
n(q+ 1 ) nq + m oo 

(16) E(z)=£E,z<, U(z )= ZUjzi, r (z) = E T , z ' . 
k = 0 / = 0 1 = 0 

Let a be an arbitrary fixed natural number. Further, let there exist p x p matrices 
C0 - I, Cl9 ..., C„q+m such that 

nq + m 

(17) det ( £ CjZJ) 4= 0 jor |z| g 1 
J = 0 
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and 

(18) Uj - CjU0 , ; - 0, 1, ..., nq + m . 

Then 

(19) Ax(a) = 7oT0' + T ^ ' + ... + Ta^Ta
f-i • 

Remark . The matrices T0, T1; ... exist and are unambiguously defined by (15) 
and (16). This follows from the assumption (11). 

P roof of Lemma 3. Put 

(20) U0et = v, . 

According to (18) and (20) we can write the model (14) in the following form: 

n(q+ 1) nq + m 

(21) _ FkX,_k= _ C,v,_,, 
k=0 7 = 0 

where Evr = 0, var vt = U0U0 and cov (vs, v,) = 0 for s + t. The assumption (17) 
guarantees that the model (21) is invertible (see e.g. [7]), i.e. 

(22) v ( e H { l t , I M , . . . ] , 

The inverse relation 

(23) _r ,eH{v, ,v ,_ . , . . .} 

holds according to (11). 

Further, introduce p x p matrices T0, jf\, . . . by the relation 

(24) F(z) f (z) = C(z), 

where 
nq + m oo 

(25) C(z)= _ CjzJ, f(z) = I f i z ' 
j=0 i = 0 

i.e. matrices _T0, T t . . . are defined analogously to the matrices T0, Tu ... (see Remark). 
Obviously, the relation U(z) = C(z) U0 holds so that 

(26) rf = f ,U 0 , i = 0 , l , . . . , 

since F(z) T(z) = C(z) U0, F(z) f (z) = C(z) and the matrices Tt and f, are unam­
biguously defined. 

According to (24) it follows from the model (21) that 

oo a — 1 oo 

(27) X, = _ _>,_,- = _ Tv, _, + _ f |v ,_, . 
/ = 0 1 = 0 i = a 

oo 

The condition (22) implies that ^ TiVt~i e H{X._a, X._a_1,...} and the condition (23) 
i — a 
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a- 1 

implies that £ Tivt_i is orthogonal to U{Xt_a, Xt_a_l, . . . } . Therefore 
i = 0 

(28) X, - * , ( _ ) = " £ _ > , _ , . 
i = 0 

and we can write 
Д » = E[X, - X,(a)] [X, - X,(a)]' = 

Ч_lT,v,-ò(_íЪ,-,У =в_.1î,
({E(vf_,v(_ł')} f/ = 

i = 0 i = 0 

=n£fU0U;f/="xV/, 
i = 0 i = 0 

making use of the relation (26). So the formula (19) is proved. 

Theorem 4. Consider an r-dimensional ARMA (m, n) process {Wf| defined by 
n m 

(29) _AkWt-k-ZBjZ,_j, 
k = 0 j = 0 

where Ak and B} are r x r matrices such that 
n m 

(30) det (X Akz
k) + 0 , det ( £ B^') + 0 , det N(z) + 0 for \z\ g 1 

fc=0 j = 0 

(the matrix N(z) is defined in (4)) c//icl {Zr} is O/? r-dimensional white noise. Lei 
{Wt} = {(X't, Yt)'}, where the process {Xt} is p-dimensional and the process {Yt} is 
q-dimensional (p + q = r). Let the denotation (4) —(8) hold. Finally, let there exist 
p x p matrices D0 = I, D l 5 ..., Dnq+m such that 

(31) (G,., H,) - D/Go, H0) , I = 0, 1, ..., nq + m . 

Then Ax(a) = Ax(a, a) holds for an arbitrary natural number a. 

Proof. It is convenient to divide the proof into several parts: 

(i) In the first part the matrix 

(32) A(a) = E[Wt - W,(a)] [W, - Wt(a)]' 

will be calculated, where Wt(a) is the predictor of Wt based on Wt_a, Wt_a_i, . . . (i.e. 
A(a) measures the accuracy of this predictor). If r x r matrices V0, Vl5 . . . are defined 
by 

(33) A(z)V(z) = B(z), 

where 
n m oo 

(34) A(z) = £Akz\ B(z) = YJBjz\ V(z) = I V,z', 
k=0 j-Q i = 0 

then it holds that 

(35) A(a) = VoVc + \\V[ + . . . + Va_X~i • 
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The formula (35) follows easily from the relation 

(36) ^ - # . ( « ) = I V.Z,-., 
/ = 0 

which can be derived similarly as the formula (28) for the model (21) in the proof 
of Lemma 3. Clearly, the matrix Ax(a, a) that is of interest to us is equal to the upper 
left p x p block of the matrix A(a). 

(ii) In the second part of the proof we shall prove that the matrices D0, D{, ... 
..., Dnq+m, the existence of which is assumed, must moreover fulfil the following 
relation: 

(37) det D(z) * 0 for \z\ g 1 , 

where 
nq + m 

(38) D(z) = X V -
i=o 

According to (7) and (8) we obtain that 

(39) v(z) R(z) - L(2) iV0(2) R(z) = Z)(z) G0 , 

(40) v(z) g(z) - L(z) N0(z) S(z) = D(z) tf0 . 

Further, according to Theorem 1, 

(K(z), L(z)\->(P(z), Q(z 
M(z), N(z)J \R(z), S(z) 

l[K(z)-L(z)N(z)->M(z)Y\P(z)-L(z)N(z)-iR(z)-\, 

[K(z)-L(z)N(z)~>M(z)yi 

\ 
holds, where the asterisks replace the blocks that are not important for the proof. 
According to the assumption (30) the both matrices on the left-hand side of the 
equality (41) are regular for |z| ^ 1 so that the matrix 

[K(z) - L(z)N(z)-> M ( z ) ] - ' [P(z) - L(z)N(z)-> R(z)], 

[K(z) - L(z)jV(z)-' M(z) ] - 1 [Q(z) - L(z)N(zy> S(z)] 

with p rows and r columns must have rank p for \z\ ^ 1. It is possible to reduce this 
matrix in the following way: 

[K(z) - L(z)N(z)- ' M(z)]" 1 (P(z) - L(z)N(z)-> R(z), Q(z) - L(z)N(z)~i S(z)) = 

= v- ' (z) [K(z) - L(z)N(z)-i M(z ) ] - 1 x 

x (v(z) P(z) - L(z)N0(z) R(z), v(z) Q(z) - L(z)N0(z) S(z)) = 

= v"(z)[K(z) - L(z)N(z)-i M(z)Y> D(z)(G0,H0), 
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where we took advantage of (39) and (40). Therefore the matrix D(z) must be regular 

for \z\ S 1. 

(iii) In this part of the proof we shah derive the formula for Ax(a). According 
to Theorem 2 we can use the model (14) for this purpose. Further, according to the 
assumption (31) and to the previous part of the proof, there exist matrices D0 = I, 
Dl> '••> Dna + m S U ^ h t h a t 

(42) Uj = DjU0 , j = 0, 1, ..., nq + m 

and (37) are fulfilled simultaneously. 
Therefore, the assumptions of Lemma 3 are fulfilled provided we write D • instead 

of Cj. Hence Ax(a) = T0T0 + ... + Ta_^T^l9 where the denotations (15) —(16) 
are used. 

(iv) In this part we shall complete the proof since we shall show that the matrix 
Ax(a) = T0T0' + ... + Ta_lTa_i is equal to the upper left p x p block of the 
matrix A(a) = V0V0' + ... + Va_xVa„v. 

From (15) we obtain 

(43) T(z) = F(z) - 'U (z ) = 

= [„(z) - L(z)N(z)" ' M(z ) ] " ' (T(z) - L(z)N(z)" ' R(z\ Q(z) - L(z)JV(z)- S(z)) 

and from (33) we obtain 

(44) V(z) = A(z)~>B(z) = 

= /rK(z)-L(z)N(z)-M(z)]-[P(z^ \ 

[K(zyL(z)N(z)^M(z)y^Q(zyL(z)N(z)^S(z)] 

I 
for |z| = 1. Comparing (43) and (44) we can conclude that 

(45) 7; = V;, i = 0, 1, . . . , 

where the p x r matrices Vt are formed by the first p rows of the matrices V{. Hence 
the matrix J]T- is equal to the upper left p x p block of the matrix VtV- and therefore 
the matrix Ax(a) = T0T0 + ... + Ta_lTa__1 is equal to the upper left p x p block 
of the matrix A(a) = V0V0' + .. . + P^_1Va'_1, i.e. to the matrix Ax(a, a). 

Andel [3] proved that for a = 1 the condition (31) is also necessary for the equality 
Ax(\) = Ax({,{). Combining this result with that of Theorem 4 we obtain the follow­
ing important conclusion: 

Theorems. Let {Wt} be the process from Theorem 4. Then the following implica­
tion holds: 

(46) [Ax(l) = Ax(l, 1)] => [Ax(a) = Ax(a, a), a = 1, 2, . . . ] . 
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In other words, provided the process {Yt} did not improve the single-step predictor 

in the process {Xt} it has no sense to use the process {Yt} when we wish to improve 

the prediction in {Xt} for a larger number of steps. This conclusion seems to be useful 

for practical forecasting. 
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S o u h r n 

ZPŘESŇOVÁNÍ PREDIKCE O VĚTŠÍ POČET KROKŮ 

V DISKRÉTNÍCH STACIONÁRNÍCH PROCESECH 

TOMÁŠ ClPRA 

Nechť {Xt} je vektorový diskrétní stacionární proces s nulovou střední hodnotou 

a nechťX t(a) označuje predikci veličiny Xt založenou na veličinách Xř_fl, Xí_fl_l9 . . . . 

V praktických situacích se často stává, že nejsme spokojeni s přesností této predikce 

a snažíme se ji zlepšit přidáním dalšího (vektorového) procesu {YJ, takže vlastně 

používáme predikci Xt(a,b) veličiny Xt založenou na __",__, _ft_fl_l9 . . . , Yt_b, 

Yt^b_í, .... Přesnost predikcí je měřena, jak je zvykem, pomocí rozptylových matic 

Ax(a) = E[Xt - _ _ » ] [Xt ~ Xt(a)J a Ax(a, b) = E[Xt - Xt(a, &)] [Xt - Xt(a, 6)]'. 

Jestliže Ax(a) = Ax(a, b), pak lze říci, že proces {Yt} nezlepší predikci v procesu 

{Xt} pro příslušné kroky predikce. Pro případ, že složený proces {(X't, Yt)'} je typu 
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ARMA (m, n), je v článku odvozena obecná postačující podmínka pro rovnost 
Ax(a) = Ax(a, a) (a je libovolné přirozené, číslo), neboť tento typ zpřesňování pre­
dikce je v praxi nejčastější. Jako důsledek se zajímavým praktickým dosahem je dále 
ukázáno, že rovnost Ax(\) = Ax(\, 1) již implikuje rovnost Ax(a) = Ax(a, a) pro 
všechna přirozená čísla a. Navíc mohou být z práce získány některé užité návody 
pro skutečnou konstrukci predikcí různého typu ve vektorovém procesu 
ARMA (m, n). 

Author"s address: RNDr. Tomáš Cipra, CSc, Matematicko-fyzikální fakulta University 
Karlovy, Sokolovská 83, 186 00 Praha 8. 

127 


		webmaster@dml.cz
	2020-07-02T04:25:24+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




