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IMPROVEMENT OF PREDICTION FOR A LARGER NUMBER
OF STEPS IN DISCRETE STATIONARY PROCESSES

TomAS CIPRA

(Received May 22, 1980)

In this paper conditions are investigated under which an additional process does
not improve the prediction in a given discrete stationary process provided the “com-
pound” process is ARMA (m, n)and the prediction is constructed for a general number
of steps. So this paper develops some existing works devoted to the improvement
of prediction for the single-step predictors and deals with the connection between
the single-step prediction and the prediction for a greater number of steps. Moreover,
some useful hints for the actual prediction in the multivariate ARMA (im, n) process
are contained in the paper.

1. INTRODUCTION

Let {X,} be a vector discrete stationary process with zero mean value. Denote
by X,(a) the predictor of X, based on X,_,, X,_,_¢, ... (i.e. the particular scalar
components of X (a) are the best linear approximations of the corresponding compo-
nents of X, in the Hilbert space generated by all scalar components of all vectors
Xi—as Xi—a-1s - see e.g. [10]). It happens very frequently in practical situations that
we are not satisfied with the accuracy of this predictor and therefore try to improve
it by means of an additional (vector) process{Y,} (the dimensions of the processes
{X,} and {Y,} may be different but finite). Analogously, denote by X,(a, b) the
new “better”” predictor of X, based on X,_,, X, _a_qs s Yoep, Yicpoge oven

The predictor X,(a, b) also plays an important role in such cases when particular
components of a vector process are observed through various time periods which
is typical for meteorology, hydrology and other technical and economic disciplines
(e.g., data on the rainfall are delivered with a certain delay after the data on the
temperature).

The accuracy of the predictors is measured as usual by the matrices

Ay(a) = E[X, — X,(a)] [X, - X,(a)]' >
Ax(a, b) = E[X, — X (a, b)] [X, — X /(a, b)] .
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Obviously, it holds that
(1) Ax(a) 2 Ax(a, b) = Ax{a, ¢) (b=o),

where e.g. Ax(a) = Ax(a, b) denotes that the matrix Ax(a) — Ay(a, b) is positive
semidefinite. If Ay(a) = Ay(a, b) we can say that the process {Y,} does not improve
the prediction in the process {X,} for the given steps of the prediction.

There is another reason supporting the importance of the mentioned problem.
The concept of causal relations (or causality) among time series may be based just
on the improvement of prediction (see [8], [9] and for economic applications e.g.
[11]). The basic definition of the causality is such that a time series {Y,} causes
another time series {X,} if X, can be predicted better by some values of {¥,} than by
not doing so (various types of causality are distinguished with respect to the used
values of {Y,}).

Andél [1], [2], [3] and Cipra [4], [5]. [6] dealt with various problems of the
improvement of prediction for the single-step predictor X (1). Provided the compound
process {W,} = {(X,,Y/)} is the process AR, MA or ARMA the conditions for the
equality Ay(1) = Ay(1,b) were formulated in the mentioned papers and it was shown
that certain equalities of this type can imply that the processes {X,! and {Y,} are
uncorrelated.

The problem of improvement of the predictor )?,(a) with a greater number of the
predictive steps (a = 1) is much more complicated than the previous cases. In the
present paper the equality Ax(a) = Ax(a, a) is investigated because of its importance
from the practical point of view. An interesting connection of this equality with the
equality Ay(1) = Ax(1, 1) is revealed.

2. PRELIMINARIES

A brief survey of the mathematical tools used is given in this section.

The following assertion is the well-known theorem on the inversion of a matrix
divided into blocks:

K, L
Theorem 1. Let (M, N) be a square regular matrix with square blocks K and N.

If the block N is regular then the matrix K — LN~ 'M is also regular and

K, L\™' _ [(K—=LN"'M)™", —(K = LN"'M)"'LN"!
M,NJ —~\=-N"'"M(K-LN"'M)™', N™' + N"'"M(K — LN"'M)"'LN~' |’

Now consider an r-dimensional ARMA (m, n) process { W,} defined by

(2) ZAkVV,_k= ZBJ'Z,~J-,
k=0 /=0

j=
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where A, and B; are r x r matrices such that

n

(3) det (Y A2Y) +0 for |z <1, By +0
k=0

and {Z,} is an r-dimensional white noise, i.e. EZ, = 0, var Z, = I,,, (a unit matrix),
cov (Z,, Z,) = 0 for s # 1. The assumption (3) is usual for the model ARMA (m, n).

Further, let {W,} = {(X},Y;)}, where the process {X,} is p-dimensional and the
process {Y,} is g-dimensional (p + g = r). Denote

. “;A# B (1;/1((?) i’ 8) éij:j - (2((22)) 28)

(5) v(z) = det N(z), No(z) = adj N(z),
(©) I KE) = LN ME) = 5 Fict

(7) v(z) P(z) — L(z) No(z) R(2) :j;o Gz,

nq+m

(8) v(z) 0(z) — (:) No(z) S(Z) :,Zo HJ.:j ,

where the blocks K(z) and P(z) are p x p matrices, N(z)~' = 1/v(z) No(z) and
p x p matrices F,, p x p matrices G; and p x q matrices H; do not depend on z
(obviously, the matrices F,, G; and H; are unambiguously defined by (6)—(8)).

The following theorem proved by Andé&l [3] will be very useful for this paper:

Theorem 2. Let the model (2) satisfy the assumption (3) and let

9) det N(z) £ 0 for Izl <1.
Consider the following model
n(g+1) ng-t+m ng+m
(10) Y F&= Y Guj+ X H;,
k=0 ji=0 j=0

where {n,} is a p-dimensional white noise, {{,} is a q-dimensional white noise and
the processes {n,} and {{,} are uncorrelated, i.e.

En,=0, E(,=0, vary,=1,.,, var{, =1,

cov(n,n) =0 for s+1, cov((,{)=0 for s=+1, cov(n, {)=o0.

Then the relation
n(g+1)

(11) det (Y F2*) 0 for |7 =1
k=0
holds in the model (10) and there exists a p-dimensional process &, defined by the
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model (10) such that
(12) SeH{nunoy, o Lo Cimgu i}

Moreover, this process {&,} is unambiguously defined by (10) and (12) and its
spectral density matrix is equal to the spectral density matrix of the process {X,}.

The condition (12) indicates that each of the scalar components of &, lies in the
Hilbert space generated by all scalar components of all vectors 7y, H,_ 1y -+ Ce C— gy -1,
(see [10]).

Since the processes {X,} and {&,} have the same spectral properties they must also
have the same predictive properties. Therefore Theorem 2 provides a convenient
method how to predict in the process {X,} when only the model (2) for the compound
process {W,} = {(X;,Y,)} is known. Using this method we take advantage of the

explicit model
n(g+1) nqg+m ng+m

(13) Y FEXi =% Gu;+ ) Hi,
k=0 j=0 ji=0

when we predict in the process {X,} (i.e. when we look for X ,(a)). 1t is possible to
write the model (13) in the following more compact form:

n(g+1) ng+m
(14) Y FXei= 3 Upgjs

k=0 j=0
where U; = (G;, H;) is a compound matrix and {¢,} = {(n;,;)’} is an r-dimensional
white noise.

3. IMPROVEMENT OF PREDICTION FOR A LARGER NUMBER OF STEPS

We shall investigate the equality Ay(a) = Ay(a, a) for the model (2) in this section.
The main result is contained in Theorem 4 where a general sufficient condition for
this equality is given. Theorem 4 has a consequence that is important from the
practical point of view. This consequence is formulated in Theorem 5. The following
Lemma 3 has only an auxiliary character:

Lemma 3. Consider the model (14) (i.e. specially, the relation (11) holds). Let
To, Ty, ... be p x r matrices such that

(15) F(z) T(z) = U(z) for 7| £1,
where
(16) F(z) =,llq§:0] )Fk;,’\' , U(z) = mg: U, T(z) = ;{OT,zi.

Let a be an arbitrary fixed natural number. Further, let there exist p X p matrices

Co=1,Cy, ..., Chysp such that
ng+m

(17) det( Y C€;z)+ 0 for lz| =1
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and

(18) ;j=Cly, j=0,1,....nq + m.
Then
(19) Ax(a) = T, Ty + T\ T + ... + T,_,T,_, .

Remark. The matrices Ty, T}, ... exist and are unambiguously defined by (15)
and (16). This follows from the assumption (11).

Proof of Lemma 3. Put
(20) Uge, = v, .

According to (18) and (20) we can write the model (14) in the following form:

n(g+1) nqg+m
(21) > FXiw= Y Cpyy,
k=0 ji=0

where Ev, = 0, var v, = UoU;, and cov (v, v,) = O for s & . The assumption (17)
guarantees that the model (21) is invertible (see e.g. [7]), i.c.

(22) e HIX, X 1.}
The inverse relation
(23) X, eH{v, vy, ...}
holds according to (11).
Further, introduce p x p matrices Ty, T, ... by the relation
(4) RO TE) = Ce),

where
nqg+m

(25) )= % e 1) =i§; T,

i.e. matrices T, T}... are defined analogously to the matrices Ty, Ty, ... (see Remark).
Obviously, the relation U(z) = C(z) U, holds so that
(26) T, =TU,, i=01,...,

since F(z) T(z) = C(z) Uy, F(z) T(z) = C(z) and the matrices T; and T; are unam-
biguously defined.
According to (24) it follows from the model (21) that

o0

a—1 o0
(27) Xo=) Ty = Z T + Z T
i i=0 i=a
The condition (22) implies that Z Tv,—ie H{X,_,, X,_,_4,...} and the condition (23)
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a—1

implies that Y Tv,_; is orthogonal to H{X,_,. X,_,_,....}. Therefore
i=0

a—1
(28) X, — Xt(”) = Z Ti":—i
i=0

and we can write
Ax(a) = E[Xt - X,(a)] [Xt - Xt((’)]/

a—1 a—1 a-1
= E(~Z’0Tiv'#") (.ZC’T:'V:—E)] = VZOTi{E(Vr—thi’)} Til =

i

a—1

a—1
= Z TEU0U6’TIV = Z TiTi/ s
=0 i=0
making use of the relation (26). So the formula (19) is proved.

Theorem 4. Consider an r-dimensional ARMA (m, n) process {W,} defined by
(29)

where A, and B; are r x r matrices such that

AW, =Y BZ

=i
0 j=0

M:

k

]

(30)  det(Y 4,2) + 0, det(Y Biz/) 0, detN(z)+0 for |z £1
=0 =0

k J
(the matrix N(z) is defined in (4)) and {Z,} is an r-dimensional white noise. Let
(W} = {(X,, Y)Y}, where the process {X,} is p-dimensional and the process {Y} is
g-dimensional (p + q = r). Let the denotation (4)—(8) hold. Finally, let there exist
p x p matrices Do =1, Dy, ..., D, such that
(31) (G;,H;) = D{Go, Hy), j=0,1,....,nq + m.

Then Ax(a) = Ax(a, a) holds for an arbitrary natural number a.

Proof. It is convenient to divide the proof into several parts:

1 n the first part the matrix
(i) In the first part th i
(32) Aa) = E[W, — W(a)] [W, — W(a)]

will be calculated, where W,(a) is the predictor of W, based on W,_,, W,_,_, ... (i.e.
A(a) measures the accuracy of this predictor). If r x r matrices Vo, Vi, ... are defined
by

(33) A(z)V(z) = B(2).

where

(34;) A(:) = iAk:" s B(:) = i Bj:j s V(:) =.i vz,
then it holds that o 0 o

(35) Ala) = VoV + ViV + ...+ V V.
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The formula (35) follows easily from the relation

a—1

(36) W, — W,(a) = Z ViZ,_;,
i=0

which can be derived similarly as the formula (28) for the model (21) in the proof
of Lemma 3. Clearly, the matrix Ay(a, a) that is of interest to us is equal to the upper
left p x p block of the matrix A(a).

(ii) In the second part of the proof we shall prove that the matrices Dy, Dy, ...
<+ Dygim» the existence of which is assumed, must moreover fulfil the following
relation:

(37) det D(z) 0 for |z] =1,
where
(38) D(z) = "zo D,
According to (7) and (8) we obtain that
(39) w(z) P(z) — L(z) No(z) R(z) = D(z) G, ,
(40) ¥(z) 0(z) = L(z) No(z) S(z) = D(z) H
Further, according to Theorem 1,

K(z), Lz)\"" (P(2). Q=) _
. (o ~0) (R $5) -

[K(2)~ LENGE) ME)] [PE) - LENE) T RE)].
- [K(z) - LENGE) ME)][06) - LENE)'SE)]

* &
s

holds, where the asterisks replace the blocks that are not important for the proof.
According to the assumption (30) the both matrices on the left-hand side of the
equality (41) are regular for |:| =< 1 so that the matrix

<[K(Z) L) NG ME)] [P() - )N() "R(=)], >
[K(z) = L(z) N(z)"" M(2)] 7" [0(z) = Lz) N(=) 7" S(2)]

with p rows and 7 columns must have rank p for lzl < 1. It is possible to reduce this
matrix in the following way:

[K(z) = L(z) N(z)™" M(2)]"" (P(z) = L(z) N(z)" " R(2). () = L) N(z)™" S(2)) =
= v '(2) [K(z) = Lz) N(z)" " M()] 71 x
x (v(2) P(z) = L(z) No(2) R(2), v(z) Q(2) = L{z) No(2) S(2)) =
- = v (@) [K(E) = L) N(z)7 M(2)] 7" D(z) (Go, H
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where we took advantage of (39) and (40). Therefore the matrix D(z) must be regular
for |z| < 1.

(iii) In this part of the proof we shall derive the formula for Ay(a). According
to Theorem 2 we can use the model (14) for this purpose. Further, according to the
assumption (31) and to the previous part of the proof, there exist matrices D, = I,
Dy, ..., Dy, such that

(42) U,=DU,, j=0,1,....,nq +m

and (37) are fulfilled simultaneously.

Therefore, the assumptions of Lemma 3 are fulfilled provided we write D; instead
of C;. Hence Ax(a) = ToTy + ... + T,.,T,_, where the denotations (15)—(16)
are used.

(iv) In this part we shall complete the proof since we shall show that the matrix
Ay(a) = ToTy + ... + T,_( T, is equal to the upper left p x p block of the
matrix A(a) = V) Vg + ... + V,_ V).

From (15) we obtain

(43) T(z) = F(z) " U(z) =
=[K(z) = L(z) N(z)"" M(z)]" " (P(z) = L(z) N(z)" ' R(z), Q(z) — L(z) N(z)~ " S(2))
and from (33) we obtain
(44) V(z) = A(z)"" B(z) =
— [[KE) = LENG) MET [P~ LENE) RE),
[K(z) = L(IN(z)" "M (2)]7'[Q(2) = L()N (=)~ 'S(=)]

* *
>

for |z| £ 1. Comparing (43) and (44) we can conclude that

(45) T,=V,, i=01,...,

where the p x r matrices V; are formed by the first p rows of the matrices V;. Hence
the matrix T,T; is equal to the upper left p x p block of the matrix V;V; and therefore
the matrix Ay(a) = To,Ty + ... + T,_,T,_, is equal to the upper left p x p block
of the matrix A(a) = VoVy + ... + V,_,V,_{, i.e. to the matrix Ay(a, a).

Andgl [3] proved that for a = 1 the condition (31) is also necessary for the equality
Ax(1) = Ax(1,1). Combining this result with that of Theorem 4 we obtain the follow-

ing important conclusion:

Theorem 5. Let {W,} be the process from Theorem 4. Then the following implica-
tion holds:

(46) [A(1) = A(1, 1)] = [Ax(a) = Af(a. @) a = 1,2,...].
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In other words, provided the process {Y;} did not improve the single-step predictor
in the process {X,} it has no sense to use the process {Y,} when we wish to improve
the prediction in {X,} for a larger number of steps. This conclusion seems to be useful
for practical forecasting.

References

[1] J. Andel: Measures of dependence in discrete stationary processes. Math. Operationsforsch.
Statist., Ser. Statistics 10 (1979), 107—126.
[2] J. Andél: On extrapolation in two-dimensional stationary processes. To appear in Math.
Operationsforsch. Statist., Ser. Statistics.
[3] J. Andél: Some measures of dependence in discrete stationary processes. Doctoral disserta-
tion (Department of Statistics, Charles University, Prague, 1980) (in Czech).
[4] T. Cipra: Correlation and improvement of prediction in multivariate stationary processes.
Ph. D. dissertation (Department of Statistics, Charles University, Prague, 1980) (in Czech).
[5] T. Cipra: Improvement of prediction in multivariate stationary processes. Kyternetika
17 (1981), 234—243.
[6] T. Cipra: On improvement of prediction in ARMA processes. Math. Operationsforsch.
Statist., Ser. Statistics 12 (1981), 567— 580.
[71 W. A. Fuller: Introduction to statistical time series. Wiley, New York, 1976.
[8] C. W. J. Granger: Investigating causal relations by econometric models and cross-spectral
methods. Econometrica 37 (1969), 424—438.
[9] D. A. Pierce, L. D. Haugh: Causality in temporal systems. Journal of Econometrics 5 (1977),
265—293.
[10] Yu. V. Rozanov: Stationary random processes. Gos. izd., Moskva, 1963 (in Russian).
[11] C. A. Sims: Money, income and causality. American Economic Review 62 (1972), 540—552.

Souhrn

ZPRESNOVANI PREDIKCE O VETSI POCET KROKU
V DISKRETNICH STACIONARNICH PROCESECH

ToMAS CIpPRA

Necht {X,} je vektorovy diskrétni staciondrni proces s nulovou stfedni hodnotou
a necht )?,(a) oznacuje predikci veli¢iny X, zaloZenou na veli¢indch X,_,, X, _,_4, ....
V praktickych situacich se ¢asto stdvd, Ze nejsme spokojeni s pfesnosti této predikce
a snazime se ji zlepsit pfiddnim daliiho (vektorového) procesu {Y,}, takZe vlastn&
pouzivdime predikci X,(a, b) velitiny X, zaloZenou na X, , X, , 1, ..., Y,
Y,—y_1,.... Pfesnost predikci je méfena, jak je zvykem, pomoci rozptylovych matic
Ax(a) = E[X, — X (a)][ X, — X (a)] a Ax(a, b) = E[X, — X (a, b)] [X,— X (a, b)]'.
Jestlize Ay(a) = Ax(a, b), pak lze Fici, Ze proces {Y,} nezlepsi predikci v procesu
{X,} pro prisluiné kroky predikce. Pro piipad, Ze sloZeny proces {(X;, Y/)'} je typu
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ARMA (m, n), je v €ldnku odvozena obecnd postadujici podminka pro rovnost
Ax(a) = Ax(a, a) (a je libovolné piirozené &islo), nebot tento typ zpresiiovdni pre-
dikce je v praxi nejéastéjsi. Jako dusledek se zajimavym praktickym dosahem je ddle
ukdzdno, Ze rovnost Ay(1) = Ax(1, 1) jiz implikuje rovnost Ay(a) = Ax(a, a) pro
viechna pfirozend Cisla . Navic mohou byt z prdce ziskdny nékteré uzité ndvody
pro skute¢nou konstrukci predikci rizného typu ve vektorovém procesu
ARMA (m, n).

Author’s address: RNDr. Tomds Cipra, CSc., Matematicko-fyzikalni fakulta University
Karlovy, Sokolovska 83, 186 00 Praha 8.
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