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SVAZEK 27 (1982) A P L I K A C E M A T E M A T I K Y ČÍSLO 2 

ON THE TWO-SIDED QUALITY CONTROL 

FRANTISEK RUBLLK 

(Received August 25, 1979) 

1. INTRODUCTION 

Statisticians often have to test whether 100(1— A) % of a population have values 
of an investigated quantity in a prescribed interval <m — 3, m + e5>, where m, 
S(S > 0) are fixed real numbers. This two-sided control is often performed by 
a graphical method, which can be found in [5], pp. 54 — 57 (cf. also [3]). The aim 
of this paper is to apply the maximum likelihood principle for the two-sided control. 
The second part of the paper contains an exact formula for the asymptotic distri­
bution of the test statistic and the third part contains its critical values. 

2. ASYMPTOTIC DISTRIBUTION OF THE MAXIMUM LIKELIHOOD STATISTIC 

Let us denote 

where R is the real line, and for 0 = I J e 0 put 

* U * ) - r ZeOOdz , flz) = - i - exp ( - í i Z J f í ! ) . 
J-co y/(2n)a V 2a2 J 

Let A E (0, 1), 4> = F0jl and 4>(cA) = 1 — A/2. If we denote 

(1) HA = UM J e <9; ii + cAo S rn + 5,n - cAcr ^ m - si , 

then for (JJL, a)' e H/d (where x' means the transpose of the vector x) we obtain 

P»AX E (m - c^ m + s)~\ = FnAv + c ^ ) - F,JJL - CAG) = 
-= 2^( C j ) - 1 = 1 - A , 
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and the population has the mentioned property. Now we describe the maximum 
likelihood statistic for testing the hypothesis HA against the alternative 0 — HA. 

Let us put for cp cz 0 

(2) L(x<">, <p) = sup nf0(xk), L(x<">) = sup n f0(xk) 
0e<P k = 1 O e 0 k = í 

where xin) = (xu . . . , x„) consists of n independent realizations of the randor 
variable X, and define a mapping Tn : R" -• HA as follows. Let us denote 

x = - I ** 
n Һ=Í 

•s2= '; l(xk-x) 

and puí 

(з) T,(,x<">) = (M„(x<">), Ą,(.x<"0) , 

where the mappings M,r Dn are defined by the following formulas. If x e (m - S9 

m + S) we put 

(4) 
M„(x<">) = x , D„(x .<»П 

(x, s) є Hл 

-(x - m + ð) cл

 J (x, s) ф Hл, x є (m - ð, m> 
(m + ð - x) cл

 J (x, s) ф Hл, x є (m, m + ð) . 

Fur ther , if x <£ (m — O\ m + S), we put 

(5) M„(x<">) = m + 5 - cA D„(x<">), 

£>„(x<">) = min {SJCA, CA(X - m - 8)j2 + [s2 + (x - m - S)2 (1 + c 2 /4 ) ] J / 2 } 

if x > m + 6, and 

(6) M„(x<">) = m - S + cA D„(xM) , 

£>„(x<">) = min {SJCA, cA(m - 8 - x)/2 + [ s
2 + (x - m + S)2 (I + c 2 ) /4] J / 2 } 

if x S m — S. 

Theorem 1. (i) If we denote ff\x(n)) = T\f„(xk), then 
k=i 

(1) fi
T

nX^)) = L(x^,HJ), 

where T„ = Tn(x
{n)). 

(ii) If t > 0, then for Pery 0 e HA 

(8) l im Pg' 
П~* co 

, . L(x<">, H,) ^ 
-2 hi —ч —~-L > i 

L(x<">) ~ 
á 1 -ғл(t), 



where FA(t) = 0 if t < 0. If / ^ 0, then 

(9) F,(/) = [2- ' - (1/TI) arctan (21/2/c,)] + 2" ' F,(/) + 

+ [2" ' - (1/TI) arctan (c J /2
, / 2)] F2(t) , 

where Fj is the chi-square distribution function on j degrees of freedom and the 
function arctan takes its values in the interval ( —7i/2, nil). If 0' = (m,5jcA), then 
(8) //O/Js u'///? t/7e equality sign. 

Proof. First we prove the first part of the assertion. Since /7.s2 is chi-square distri­
buted, we may assume that s > 0. 

If (3c, s) e H„ then (7) holds (cf. [4], p. 504). Let x e (m - O\ m + <)) and (x, s) <£ 
^ Hj. If we put 

/,,,^,",) = in/;;,v),(x
(")), 

then 

(10) - ^ = /7(7-2(N - //) , ^ - -/7O- * + f (** - / l fO - 3 , 

dfi do k = I 

which means that 

(U) A„,_^4 
vJC,f7 

for every // e R, O > 0. Further, if we denote g((x) = /^ as, we see that the function a 
is increasing on (0, 1). Hence if x e (/?? — <% m), the relations 

s > Cj ^ x - (m - 5)) ^ O if (x, cr)' G Hj , 

together with (11) and (4) imply (7). The case x e <m, m + S) can be treated similarly. 
Now we assume that x ^ m + O\ Making use of (10) we obtain that 

(12) in L(x<">, _/,) = sup {Am+,___.,,-(x<">); a e (0, , V > } . 

Denoting 1„ = A,„+__CZ1_,_(A-(")) we see that 

___: =_ _. r - 1 + n-2(.s'2 + („ - (m + <5))2) + a"1 c,(x - m + _))] 
dO er 

and the equation dlojdo = 0 has a unique positive solution 

O, = cA(x - (m + <5))/2 + ssx , 

where 

CsiS = [s- + (3c - (m + _))-(1 +c 2 /4 ) ] ' / 2 . 

Since the function A„ is increasing on (0, <r,> and reaches its maximum in the right 
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end-point of this interval, taking into account both (12) and (5) we see that (7) holds. 
The case x = m — S can be treated similarly. 

We begin the second part of the proof with the definition of the approximabiiity 
(cf. also [1], [6]). A set cp _ Rm is said to be approximate at a point 0 e cp by a cone 
C cz Rn\ if 

sup {o(x, C -f 9); x e <p, \x — 9\ = an} = o(an), 

sup {g(y + 0, (p); y e C, \\y\\ i% an} = o(an) 

for every sequence {an} of positive numbers which tend to zero. By a cone we under­
stand any closed convex set C cz Rm satisfying the relation y e C, a > 0 => ay e C, 
and 

(13) Q(Z, D) = inf {||_ - d\;deD} 

is the usual distance of a point z from a set D. To prove the second part of the theorem 
we shall need a version of the Chernoff theorem. Before stating it we introduce 
regularity conditions of the Rao-Cramer type (cf. also [ l ] , [4] and [7]). We assume 
that a class of probabilities 2P = {Pe; 0 e 0}, where 0 cz R™ is an open set5 is defined 
on (X, £f) by densities f? (x) = dPe (x)/d/t which for every 0 e 0 satisfy 

(Cl) fe(x) is positive on X x 0 and has all partial derivatives of the third order 

in 6. 

(C2) There are a P^-integrable non-negative function G and a neighbourhood 
U cz 0 of the point 6 such that 

sup sup 
i,j,k eU д i Ô j д k 

Ыf (x) _ G(л 

for every xeX. 

(C3) The coordinates of the vector (dlnfe(x)ldOi)i=l>m belong to L2(P0) and 
its covariance matrix J(6) is strictly positive definite. 

(C4) The identities 

Í; ~fe(x)dџ(x) = 0, 
Ö : д i ô j 

f (x) dџ(x) = 0 

hold for i,j = 1, ..., m. 

If we denote by x("} = (xi9 ..., xn)eXn independent realizations of the random 
variable X, then under the preceding regularity conditions the following assertion 
holds. 

Theorem 2. Let OJ, T be subsets of 0 such that 

(i) 60e (o'• n T. 
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(ii) If (p e {uj, T ) , then there is a sequence {0<",)]„x
=1 of measurable mappings 

0^> : X" -* <p such that 0^> -> 00 in the probability P0o and (cf. (2)) 

l i m P e o [ L ( x « , < P ) = L ( x « 0<">)]= I -
r.-*oo 

If co, T are approximate at O0 by cones Ca), Ct, then 

(14) Jž7 .2 ln
 L 0 » < в ) J?[ в | rV(0, J - Ҷ o))], 

L ( . , r ) ' 

fl(z) = inf (0 - z)' J(0O) (0 - z) - inf (0 - z)' J(0O) (0 - z ) , 
0eCo, 0eC T 

where the symbol 5£(Z I P) denotes the distribution function of the of the random 

variable Z under the probability P, —• denotes the usual weak convergence of pro­

bability distributions and N(0, J"1) is the normal distribution with zero mean and 

covariance matrix J"1. 

We remark that in contradistinction to [1] and [2 ] , p. 20 we have omitted the 

condition of the disjointness of the cones Cw, Cx. The proof of the preceding theorem 

can be performed similarly as proofs in [ l ] or [ 6 ] . 

N o w we can return to our hypothesis HA (cf. ( l ) ) . Since Tn -> 0 in the probability 

P0 for each OeHA and the regularity conditions (C l ) —(C4) are fulfilled, we may 

use the preceding theorem. 

If O0 is an inner point of HA, then according to (4) 

L(x(M), HA)JL(x(n)) -> 1 in the probability P0o 

and (8) holds. 

Let 00 be a boundary point of HA. If 0o = ( /J 0 , G0), where / i0 e (m — 5, m), then 

the set HA can be approximated at 0o by the cone 

K = Uyi) ; y. -cAy2 ^ 0 
Vy2 

and according to Theorem 2, 

(15) &[-2 In L(x("\ HA)JL(x^) \ Pdo] -> S£[ inf ||0 - z| |2 |N (0 , I)] . 

where J = J(t/0) and I is the unit matrix. Since J1/2 K = (z e P2; c'z g 0} where c 

is a non-zero vector, making use of the mapping x -* — x and the nota t ion D = 

= Ji/2K, gt(z) = O2(z, D) (cf. (13)), we obtain for every t > 0 

(16) P[9i(z) S 11 N(0, / ) ] = 1/2 + (1/2) P[g,(z) £t,ztD\ N(0, I)] . 

If we denote 

2c, (17) nD(z) = z-c'z\\c\\-
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then 7iD(z) is the projection of z into D and making use of the relation 

< ? [ | M - ( - Z | |2 ! N(0, /)] = - n * 2 I N(0, (\\4'lc\ /He"-1 c)] 

we see that the right hand side in (16) is of the form 

l/2 + ( l /2)E . (z) . 

But arctan y 4- arctan y~ l = njl implies 

F.(/) - (1/2 + (1/2)F.(Z)) g o , 

which means that (8) holds. Since the case fi0 e (m, m 4- S) can be treated similarly, 
we assume that 0o = (???, djcA). It is easy to see that HA can be approximated at 0o 

by the cone 
K - {y e R2: yj e <cdy2, - c d y 2 » , 

and Theorem 2 implies that 

i f [ - 2 In L(x("\ //;)/L(N(n)) | PJ - ^ [ e 2 ( z , J1/2K) | N(0, 1)] , 
where 

Jl/2K = {x e P2; x2 S 7*i, x2 ^ -y*i} , 7 = j(2)jcA . 

Hence to complete the proof of Theorem 1, we have to prove 

Lemma 1. / / D = { y t r \ 2 ; y 2 :g 7yj, y2 ^ ~7y t} w///i 7 > 0, then for every 
teR 

(18) ' P[e2(Z, D) ^ t I N(0, /)] = F(t) , 

where the function ¥ is defined by (9) with ^/(2)jcA replaced by 7. 

Proof. Since N(0. /) is a symmetric distribution, we have 

(19) P[o2(z, D) < /1 A'(0, / )] = 2P[z. < 0, ||z - TTD(Z)||2 < / | N(0, /)] , 

where 71 (̂2) is the projection of z on the convex set D. 
Let z1 < 0, z2 e (yzl5 — 7 - 1Zi) (cf. Fig. 1). Then nD(z) is the projection on the cone 

C = { x e R 2 ; c ' x - 0} , 

where c' = (7, — 1). Making use of the transformation 

we obtain 

(20) P [ Z l < 0, yz, < - 2 < - y - ' Z l , ||Z - 7iD(z)||2 < / J iV(0,/)] = 

= (1/2) P[y2 < 0, y2 < /(l + y2) | iV(0, y2 + 1)] = (1/4) F.(/) . 
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Fig. 1. 

Let Zj < 0, z 2 < yz{. Then nD(z) = z and the substitution 

(21) zx = r cos {// , z 2 = r sin *// 

yields 

(22) P[zj < 0, z 2 < yzu \\z - TI D (Z) | | 2 ^ t | N(0, /)] = 1/4 - (l/2/r) arctan y . 

Finally, let z1 < 0, z 2 > —y~1z1. Then 7rp(z) = 0 and the substitution (21.) yields 

(23) P[z{ < 0, z2 > - y~'z„ \z - nD(z)f <, l | N(0, I)] = 

Nt 
= (In)- l vL[il/ e (Ir/2, 3TT/2); tan ip < -y~ *] exp ( - r2/2) r dr = 

= 2~1 [ 1 / 2 - i arctan y ^ l F ^ t ) , 

where vL is the Lebesgue measure on the line. Combining relations (19) —(23) we see 

that (18) holds. 

3. REMARKS AND TABLES. 

If we denote for A e (0,1) 

(** - м,,)2 

where the quantities Dn = Dn(xx, ..., xn), Mn = Mn(xu ..., x„) are defined by the 

formulas (4)-(6), then the inequality (8) implies 

sup lim P(n)[t(

n

A) Zt] = I ~ FA(t) , 
OellA n-+co 
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whenever t > 0. Obviously, if we find a suitable constant t(A, a), then the tests 

( A _ (reject HA if tn

A)(xu ..., xn) >z t(A, a) 
„\xl9..., xn) | a c c e p t ^ j f ^ ) / X i 5 . ^ X J < ^ a ) 

will have the asymptotic size a. The values of t(A, a) for various A, a are given in the 

following Table 1. 

Table 1. 

Л 0Í t(A, a( 

0-05 4-11833 
0 1 002 5-84051 

001 716359 

005 3-98800 
005 002 5-69907 

001 7-01569 

005 3-91063 
003 002 5-61418 

001 6-92601 

005 3-85830 
002 0-02 5-55679 

001 6-86568 

005 3-78258 
001 002 5-47337 

001 6-77779 

We remark that for every / > 0 

inf lira P^[t'„A) ^ t] = 1 , 
e -HA и->oo 

which means that the test TK not only have the asynptotic size a but are consistent 

as well. 

Acknowledgement. I would like to thank Dr. Ivica Misikova for computing the 

values o^ t(A, a) in Table 1. 
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S ú h r n 

O DVOJSTRANNEJ KONTROLE KVALITY 

FRANTIŠEK RUBLÍK 

Nech náhodná premenná X má normálně rozdelenie N(/i, a2). V článku sú od-
vodené explicitně formuly pre odhad maximálnej vierohodnosti pre parametre n,a 
za předpokladu platnosti hypotézy JLL + ca ^ m + d, ji — ca g; m — S, kde c, m, S 
sú hocijaké pevné zvolené čísla. Táto hypotéza je testovaná pomocou poměru viero­
hodnosti, uvádzame jeho asymptotické rozdelenie a niektoré jeho kvantily. 
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