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1. INTRODUCTION

Statisticians often have to test whether 100 (1 —4) % of a population have values
of an investigated quantity in a prescribed interval {m — o, m + §», where m,
3(8 > 0) are fixed real numbers. This two-sided control is often performed by
a graphical method, which can be found in [5], pp. 54—57 (cf. also [3]). The aim
of this paper is to apply the maximum likelihood principle for the two-sided control.
The second part of the paper contains an exact formula for the asymptotic distri-
bution of the test statistic and the third part contains its critical values.

2. ASYMPTOTIC DISTRIBUTION OF THE MAXIMUM LIKELIHOOD STATISTIC

@={<ﬂ):ueR,a>0},
o

Let us denote

where R is the real line, and for 0 = <i;> € O put
v ! (z — w)?
F, (x) = flz)dz, folz) = — exp| — ——| .
o= [ ez ) = e (- C2)

Let 4e(0,1), ¢ = Fo, and ¢(cy) = 1 — 4/2. If we denote

) H, = {<u>e(~); ;l+cda§m+5,u—(‘Aa>1n—6},

g

then for (i, )’ € H, (where x’ means the transpose of the vector x) we obtain
P, lxe(m—235m+ )] =F, (1+co)—F,(1t—cuo)=
=2P(c,) —1=1—-4,
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and the population has the mentioned property. Now we describe the maximum
likelihood statistic for testing the hypothesis H, against the alternative @ — H,.
Let us put for ¢ < @

(2) L(x™, @) = sup TT fy(x,) . L(x") = sup I1 fy(x) »

Ocp k=1 0e@ k=1

where x™ = (x,,...,x,) consists of n independent realizations of the random
variable X, and define a mapping T, : R" — H , as follows. Let us denote

1 n n
R P
k= nK=1
and put
(3) T(x") = (M,(x™), (") ,

where the mappings M,. D, are defined by the following formulas. If Xe(m — 9,
m + J) we put

(4)

[s (%, s)e H,
M,(x") =5, D) ={=(X —m+d)c;" (X s5)¢H, Te(m— 6 m
(m+0—=3X)c;" (X.s)¢H, Xedmm + 9).

Further, if ¥ ¢ (m — 0. m + ), we put
(5) M) = m 5~ e D),

D,(x®) = min {5/ (X = m = 3)12 + [s* + (X — m — 0)* (I + IR
il X = m+ 9, and
(6) M (x")=m — 5+ ¢y D),

D,(x™) = min {§/ca cufm =0 — X)2 + [s* + (X — m + 0)* (1 + )41
ifx <m—o.

n

Theorem 1. (i) If we deote f"(x") = T1 fy(x,), then

k=1
(7) A = L(x™, Hy),
whe,.e ’]’;7 — 'II-I(.\.(::))'
(it) 1/ t > 0, then for ¢very O e H,
L(X'(") H )
H (n) —_ B o
(®) HIT;Pa [ 21n oy 2 r] <1 - F 1),
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where F (1) = Qif t < 0.1f 1 = 0, then

9) Fy(t)=[27" = (1/n)yarctan (2'2[c )] + 27" F (1) +
+ [277 = (1/m) arctan (¢ ,[2'2)] F, (1),

where I} is the chi-square distribution function on j degrees of [reedom and the
Junction arctan takes its values in the interval (—nf2, nj2). 1f 0" = (m, 3/c,), then

(8) helds with the equality sign.

Proof. First we prove the first part of the assertion. Since ns? is chi-square distri-
buted, we may assume that s > 0.
If (X, s} e H 4, then (7) holds (cf. [4], p. 504). Let X e (m — o, m + o) and (X, 5) ¢
¢ H,. If we put
1 ()Y ~(n) ()
Fuda®) = 0 180, (x),

NI a)’
then
("‘,J” - — 2= ("vm T -1 : 2.-3
(10) SR = e HX =), =T = =T+ Y (x, =)o
cu co k=1

which means that

(11) Puw S

ot

X .7

for every g e R, ¢ > 0. Further, if we denote g(2) = /%45 We see that the function g
is increasing on (0, 1. Hence if X € (m — &, m), the relations

s> (f=(m—=3d8)za if (Y o)eH,,

(F, e (x — (m = o)) e H,

together with (11) and (4) imply (7). The case X € {m, m + d) can be treated similarly.
Now we assume that X = m + d. Making use of (10) we obtain that

12 In L(x", H) = sup {,s5-c0o(x): ae(0,dc7'>).
1 [ TRUAN J

Denoting 7, = 15 c.0.0(x") we see that

dd, _» [l 4+ 0 (s> + (X = (m+0))7)+ 0 " ey(x = m+9))]
do o

and the equation dZe/de = 0 has a unique positive solution

o = (X — (m + 2+ & ¥,

where
gos = [2 4+ (= (m+ ) (1 + 3],

Since the function /, is increasing on (0, ¢,> and reaches its maximum in the right
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end-point of this interval, taking into account both (12) and (5) we see that (7) holds.
The case X < m — J can be treated similarly.

We begin the second part of the proof with the definition of the approximability
(cf. also [1], [6]). A set ¢ = R™ is said to be approximable at a point 0 € @ by a cone
C < R", if

sup {o(x, C + 0): xe o, |[x — 0] < a,} =o(a,),
sup fo(y + 0, 9); yeC, |y] £ a,} = ofa,)

for every sequence {a,} of positive numbers which tend to zero. By a cone we under-
stand any closed convex set C = R™ satisfying the relation ye C,a > 0=y e C,
and

(13) o(z, D) = inf{“: —d|;de D}

is the usual distance of a point = from a set D. To prove the second part of the theorem
we shall need a version of the Chernoff theorem. Before stating it we introduce
regularity conditions of the Rao-Cramer type (cf. also [1], [4] and [7]). We assume
that a class of probabilities Z = {P,; 0 € @}, where @ = R" is an open set, is defined
on (X, .¥) by densities f, (x) = dPy(x)/du which for every 0 € © satisfy

(C1) fy(x) is positive on X x O and has all partial derivatives of the third order
in 6.

(C2) There are a Py-integrable non-negative function G and a neighbourhood
U < O of the point 0 such that

N3

sup sup [—— -In fy(x)] £ G(x
ket |0, 20, 20, Jolx)| = 6&)

for every x € X.

(C3) The coordinates of the vector (¢ In f,(x)/00,);~,
its covariance matrix J(0) is strictly positive definite.

(C4) The identities

w belong to L,(Py) and

,,,,,

i

J%fe(x) du(x) = O’Ja‘i ~fo(x) du(x) =0

20, 00,

hold fori,j =1, ..., m.

If we denote by x = (x, ..., x,) € X" independent realizations of the random
variable X, then under the preceding regularity conditions the following assertion
holds.

Theorem 2. Let w, T be subsets of © such that

(i) pewn
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(ii) If ¢ € (@, 1}, then there is a sequence {07, of measurable mappings

noyn=

05 : X" — ¢ such that 0 — 0, in the probability Py, and (cf. (2))

lim Poo[L(-"(")’ @) = L(x™, ng))] =1.

If w, T are approximable at 0, by cones C,, C,. then

(14) k% [—2 In Lz((%)j Poo] - Z[g | N(0. J7'(0,)}],

k)

g(z) zoirclf(() —z) J(0,) (0 — z) — inf (0 — =) J(0p) (6 — =),

— i

0eC.
where the symbol £(Z I P) denotes the distribution function of the of the random
variable Z under the probability P, -» denotes the usual weak convergence of pro-
bability distributions and N(0, J ~') is the normal distribution with zero mean and
covariance matrix J ~ 1.

We remark that in contradistinction to [1] and [2], p. 20 we have omitted the
condition of the disjointness of the cones C,, C.. The proof of the preceding theorem
can be performed similarly as proofs in [1] or [6].

Now we can return to our hypothesis H (cf. (1)). Since T, — @ in the probability
P, for each 0 e H, and the regularity conditions (CI)—(C4) are fulfilled, we may
use the preceding theorem.

If 0, is an inner point of H 4, then according to (4)

L(x", H,)/L(x") - 1 in the probability Py,
and (8) holds.
Let 0, be a boundary point of H . If 05 = (1. 0o). where po € (m — 8, m), then
the set H, can be approximated at 0, by the cone

K = {(,"1) Do — ey, = 0}
ya

and according to Theorem 2,

(15) L[=21n L=, H /L") | Po,] - £[ inf [0 — =[*[N(0, 1)] .

where J = J(0o) and I is the unit matrix. Since J'> K = {z e R?; ¢’z < 0} where ¢

El

is a non-zero vector, making use of the mapping x - —x and the notation D =
= J'?K, g,(z) = ¢*(z. D) (cf. (13)), we obtain for every > 0

(16)  Plgs(z) = ¢[N(O.D] = 12 + (12) P[g:(z) < 1.2 ¢ D | N(0.1)] .
If we denote

(17) np(z) =z — c'zf¢| ? ¢,
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then mp(z) is the projection of z into D and making use of the relation
L mo(z) = =2 NO, D] = L[5 | NO. (e =" ey 1= )]
we sce that the right hand side in (16) is of the form
12+ (1)2) Fy(1).
But arctany + arctany” ' = n/2 implies
Fuo) =2+ (12)F (1) 20,

which means that (8) holds. Since the case i, € (m, m + §) can be treated similarly,

we assume that 0, = (m, d/c,). It is casy to see that H, can be approximated at (),
by the cone

. 2.
K = {reR* y elcy — ('4»\‘2>} >

and Theorem 2 implies that

L[=21In L™, H,)[L(x") | Py, ] = 2L[0*(z, J'?K) | N(0,1)]
where

J'PK = {xeR* x, S yxp, X5 £ —9xy), p = J(2)[es -

Hence to complete the proof of Theorem I, we have to prove

Lemma 1. If D = {yeR* v, < yr.yy < —yy,y with >0, then for every
teR

(18) Plo*(z. D) < t| N(0,1)] = F(1),
where the function F is defined by (9) with \/(2)[c, replaced by y.
Proof. Since N(0, I) is a symmetric distribution, we have

(19)  P[o*(z. D) £ 1| N(0,1)] = 2P[z, <0,

= = m2)]F < 1| N1

where 7p(z) is the projection of = on the convex set D.
Letz; <0, z, e (yzy, —y 'z;) (cf. Fig. 1). Then my(z) is the projection on the cone

C = {xeR*x=0},

where ¢ = (y, —1). Making use of the transformation
(J) _ (—3“21 - )
V2 721 T Iz

(20) Plz; <0,yzy <zp < =y 'z |z = mp(2)|* £ llN(O,I)] -
/) Py < 002 401+ 2) | N0, + 1] = (14) Fy(0)

we obtain
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® z,

NN
NN

AN
\ \\\\\\\ \ 7 21

Let z; <0, z; < yz,. Then ny(z) = = and the substitution
(21) Zy=rcosy, z,=rsiny
yields

(22) Pl[z; < 0,2, < yz4, ||z — mp(z)]* < IIN(O, )] = 1/4 — (1/2r) arctan y .

Finally, let z, < 0,z, > —y~'z,. Then n'D(z) = 0 and the substitution (21) yields
(23) Plzy <0,2, > —y7 'z [z = my(2)|* £ 1| N0, 1)] =
Jt
= (2m)" ' v [¥e(n)2,3r)2); tan oy < —p" ]| exp(—=r?2)rdr =
0

=271 [[1/2 ! arctan y‘l} Fy(1),
n

where v, is the Lebesgue measure on the line. Combining relations (19)—(23) we see
that (18) holds.

3. REMARKS AND TABLES.

If we denote for A€ (0,1)

. M ?
(9(xy,.cx,)=n (2 In Dy _ > + Z (e = ") ,
s

k=1 D;

where the quantities D, = D,(x,...,x,), M, = M, (xy, ..., x,) are defined by the
formulas (4)—(6), then the inequality (8) implies

sup lim PO = ] = 1 = F,(1),

O6elHg n—oo
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whenever 1 > 0. Obviously, if we find a suitable constant 1(4, o), then the tests

_reject H, o if 18(x,, ... x,) = 1(4, )
Vil %) = {accept H, if 9, ....x,) < (4, )

will have the asymptotic size «. The values of #(4, «) for various 4, x are given in the
following Table 1.

Table 1.

4 x 14, «)

0-05 4-11833
0-1 0-02 5-84051
0-01 7-16359
0-05 3-98800
0-05 0-02 5-69907

0-01 7-01569
0-05 3-91063
0-03 0-02 5-61418
0-01 6:92601
0-05 3-85830
0-02 0-:02 555679
0-01 6-86568
0-05 3-78258
0-01 0-:02 5-47337

0-01 677779

We remark that for every 1 > 0

inf lim P[P = 1] =1,
6c@—Hy n—>w
which means that the test ¥, not only have the asynptotic size a but are consistent
as well.
Acknowledgement. 1 would like to thank Dr. lvica MiSikova for computing the
values of 1(4, «) in Table 1.
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Stuhrn

O DVOJSTRANNEJ KONTROLE KVALITY

FRANTISEK RUBLIK

Nech ndhodnd premennd X md normdlne rozdelenie N(y, 6%). V &ldnku st od-
vodené explicitné formuly pre odhad maximdlnej vierohodnosti pre parametre p,o
za predpokladu platnosti hypotézy u + co < m + 6, u — co = m — 0, kde ¢, m, d
st hocijaké pevne zvolené Cisla. Tdto hypotéza je testovand pomocou pomeru viero-
hodnosti, uvddzame jeho asymptotické rozdelenie a niektoré jeho kvantily.

Author’s address: RNDr. Frantisek Rublik, CSc., Ustav merania a meracej techniky
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