Aplikace matematiky

Jaroslav Haslinger
Mixed formulation of elliptic variational inequalities and its approximation
Aplikace matematiky, Vol. 26 (1981), No. 6, 462-475

Persistent URL: http://dml.cz/dmlcz/103936

Terms of use:

© Institute of Mathematics AS CR, 1981

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/103936
http://dml.cz

SVAZEK 26 (1981) APLIKACE MATEMATIKY CisLo 6

MIXED FORMULATION OF ELLIPTIC VARIATIONAL
INEQUALITIES AND ITS APPROXIMATION

JAROSLAV HASLINGER

(Received February 26, 1980)

INTRODUCTION

A dualization technique is frequently employed to obtain an approximation of
variational inequalities (see [4]). A properly chosen Lagrangian ¢ cnables us to
transform the original minimization problem into a problem of finding its saddle-
point on a certain convex set K x A. This approach has some advantages:

— it avoides the complex construction of convex sets of admissible functions;

— it offers algorithms for numerical computations.

Last but not least, it makes it possible to approximate the Lagrange multipliers
associated with the problem. Since these multipliers have usually a good physical
meaning (for example outward fluxes, normal or friction forces), their knowledge is
welcome.

In the present paper, conditions sufficient for the convergence of saddle-points
{uy, Ay} of £ on K, x Ay (approximation of K x A) to the saddle-point {u, 1} of &
on K x A are studicd. Applications to the unilateral problem and to problems with
friction are presented.

1. MIXED FORMULATION OF VARIATIONAL INEQUALITIES

Let V, L be two real Hilbert spaces, with the norms || ], I ], respectively, and let
V', L be their dual spaces. On V, a quadratic functional Z will be given

j(p) = % a(u, U) - <f, U> >

where a is a continuous, symmetric and V-elliptic bilinear form, fe V' and {, )
denotes the duality pairing between V' and V.

Let & :V x L— R, be a functional of the form
(1) Lo, 1) = #(v) + blo, 1) — [g, 1],
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where b :V x L R, is a continuous bilinear form, g € L and [g, 1] denotes the
value of g at p. Finally, let K € V, A < L be non-empty, closed convex subsets.
We make the following assumptions, concerning K and A:

A is either

(CC) a convex cone with its vertex at O (zero element of L)y and K =V

or
(BC) a bounded convex subset of L.

We shall consider the following problem:

() to find an element {u, /".} € K x A such that
’ Llu,p) < P(u,2) £ L(v,2) VoeK, Vue A.

{u, 2} will be called a saddle-point of & on K x A.
Remark 1 {u, 1} € Kx 4 is a saddle-point of & on K x A if and only if

(2) L(u, 2} = min sup #(v, p) = max inf L(v, p)
g A K

K A
(see [2], [3])- Let us denote j(v) = sup {b(v, 1t) — [4g, p]}. It is easy to sce that j
A

is a lower semicontinuous convex function. With regard to (2) and {#) we see that
u € K solves the following problem:

(3) J(u) + j(u) = min { #(v) + j(v)} .
K
An equivalent formulation of (#) is the following {[3]):
to find {u, A} e Kx A such that
(Y a(u,v — u) + blv —u, A) 2 {f,v —uy YoekK
bluypp — 2) £ [g. 0 — 7} Ve A
We present two typical examples, leading to the problem (2).
Example | (Dualization of constraints). Let u € K be such that
\ (2)) J) £ #v) YeekK.
We shall suppose that the following characterization of K holds:
K={veV|blv, ) =g, 1] Ve A},

where b, g have the above mentioned properties and A is a convex cone with the vertex
at ©. Then (2,) leads to the search of a saddle-point {u, 2} of & on Vx A (see [2])
and j is the indicator function of K. In this case (CC) is satisfied.

Example 2. Let K be a closed, convex subset of the Sobolev space H'(Q) and
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Q < R, a bounded domain with a continuous boundary Q. We look for ue K,
satisfying

(2,) S(u) £ S(v) YveKkK,

where &(v) = #(v) + a0 |v|ds is a non-differentiable functional. Then (2,)
leads to the search of a saddle-point {u, A} of L(v, 1) = #(v) + [, uvds on K x 4,
where

A= {Ael}0Q) || £1 ae. on 0Q}.

In this case, j(v) = [a0 ]vl ds and (BC) is satisfied. We see, that introducing the new
variable p e A,we obtain a differentiable functional #(v, i), which is more suitable
for numerical calculations in many cases.

The formulation (2) (or (2)') will be called a mixed formulation of (3).

Remark 2 (2) is meaningful for a general continuous, V-elliptic bilinear form a
(not necessarily symmetric). In such a case, (2)’ is a mixed formulation of the fol-

lowing problem:
@) to find u e K such that
a(u, v — u) + j(v) — j(u) = {fiv —uy VYoek.
Let us mention briefly some well-known results on the existence and uniqueness
of solutions of ().

Let b : Vx L— R, satisfy Babuska-Brezzi’s condition

(5) 3B = const. > 0 :sup b{v, ) = plu| VpelL.
| 4

ol

Theorem 1. Let (5) and (CC) be satisfied. Then there exists a unique solution
of (2).
For the proof, see [1].

If (BC) is satisfied, the situation is much simpler.

Theorem 2. Let (BC) be satisfied. Then (?) has a solution, the first component of
which is uniquely determined.

Proof. The existence of a solution follows from the V-elipticity of a and the
boundedness of A, the uniqueness of the first component from the V-elipticity of a

(see [3]).
Approximation of (2)
Let h, He(O, 1) be two parameters, tending to O+. To every couple h, H we

associate finite dimensional subspaces V, = V and Ly < L, respectively. Let K,
and Ay be closed, convex subsets of V, and L, respectively.
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Similarly as in the continuous case we make the following assumptions:
Ay, is either

(CC)a convex cone with vertex at @ and K, =V,

or

(BCy) a convex subset of Ly, bounded uniformly in L, i.e. there exists a positive
number ¢ > 0 such that

|| £ ¢ VuyeA, YHe(0,1).

By the approximation of () we mean the problem of finding a saddle-point
{up, Ay} € Kyx Ay of £ on Kyx Ay:

(f?hll) y(“m ) = Ly, 2y) £ y(”m i) Vo, eKy, Vpge Ay,
or equivalently
to find {uy, 2y} € Kyx Ay such that
(Pwm) a(uy, vy — uy) + b(o, — uy, Ay) = {Syvy — uyy Vo, €K,
b(”m ty = 7)) = 195t — Ii] Vi€ Ay
Let us not that K, & K and A, & A, in general.

Interpretation of (7,,)
If we set ju(v,) = sup {b(vy, 1) — [9. 1]}, the first component u, € K, minimi-
A

H
zes the functional #(v,) + j,{v,) over K,.

As far as the existence and uniqueness of (2,,) is concerned, results similar to
those from Theorems 1, 2 hold. To this end let us suppose that there exists a positive
number f, independent of i, H and such that

b(v,, R
(6) sup "’(*Lu"’)’ = ﬂ,l‘u[ Vi €Ly .
h v

Theorem 3. Let (CCy,) and (6) be satisfied. Then there exists a unique solution
of (?J}hH)'

Theorem 4. Let (BC;) be satisfied. Then there exists a solution of (2,y), the first
component of which is uniquely determined.
The most difficult task is the verification of (6) in particular examples.

Example 3. Let us consider the problem (2,) with

F(0) = 3|o] i, = (fi0)o, felX(Q),

and
K = {UEH](Q)l v =0 on EQ} s
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where (, ), denotes the I2(Q)-scalar product. The corresponding mixed formulation is
to find {u, 2} e H'(Q) x H-"*(2Q) such that
(grad u, grad v), + (u, v)o + <v, Ay = (f, v), Vve H'(Q)
Quypp — Ay <0 Yue HZV?(0Q),

where H_'/?(3Q) denotes the convex cone of non-positive linear functionals over the
space H'/2(0Q) and {, ) is the corresponding duality pairing. It is easy to see ([2])
that 2 = —du/on. One can prove ([6]) that Babuska-Brezzi's condition (5) holds
with = 1.

Let {7,} be a regular family of triangulations of Q, whose nodes lying on 02,
form an equidistant partition of 0Q. Let us denote them by ay, ..., a,, a,+, = a;.
Now we set

Vi = {0ne C(Q)| vly, € P(T) ¥T;e 7}

Ly = L, = {p, € X(Q)| ePylaa;y), i=1,...,m}

Ay =4, = {.“he th py =0 on EQ} s
where P(T;) and Py(a;a;.,) are the spaces of linear polynomials on T, and of
constant functions on a,a;,;, respectively. Then the problem (2,,) = (#,) has

a solution {u,, 4,} with a uniquely determined u,, (see [2]). Next we analyze the con-
dition (6). Let g, € L, be such that

6y J‘ vty ds = 0 Vo, € V,,¢>J oy ds =0 j=1,...,m,
o0 o0

where ¢; € V;, ¢,(a;) = 8;;and ¢; = 0 at the internal nodes of 77, (6) is equivalent
to the following system of linear algebraic equations:

e+ =0

Uy + p3 =0

/“tl + .u'm = 0 :ui = H‘\n,au—; .

If the number m of a;a;, is even, the system has also a non-trivial solution. Con-
sequently, the condition (6) cannot be satisfied and the second component 7, is not
uniquely determined, in general. In order to obtain (6), we use two systems of parti-
tions {7,}, {74} of @ and 0Q, respectively. Let h = maxdiam T;,, H =
= max length a;a,, ,, a; nodes of 7 . We define V, in the same way as above and
Ly = {p € 2(09Q)| tyjaws,, € Polaia;sy), i = 1,..., m}
Ay = {pye Ly py <0 on 0Q} .
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If the ratio h/H is sufficiently small, then

p S = Bl s
Vi “U;,lul(!))

with f independent of h, H (see [6]).

2. ERROR ESTIMATES

Our aim is to establish relations between u,, u and iy, A. To this end we give
another, equivalent form of (2}
Let # = V x Lbe a Hilbert space, equipped with the norm:

Ve = Lol + e} v = (v p)exr,
o T H x A — R, a bilinear form
(U, V)= a(u, v) + b(v, 2) — b(u, ), U= (u,A)eH
V=(v,u)eH
and & : A — R, a linear functional
(T, Vy=Lf,v)—[g.u], V=_(vopeX.
The definition of &/ immediately implies
(7 AV, V)= a(v,v) YV =(v,pn)eA;
®) IM = const. > 0:|/(U, V)| £ M|U| |V]» YU. Ve .
It is readily scen that (2) is equivalent to

() {Ioﬁml U= {u A} e =KxA such that
AUV - U)2Z(F,V—-Uy VWe.
Next, let Ay = K, x Ay be a closed, convex subset of #'; Ay & A7, in general.
The problem
(Pun) {mﬁnd U = {u, Ay} € & such that
N (U, B — W)= <(F, 8- U VBe Ay
represents an approximation of (P), equivalent to (Z,)' (or (Zun))-

First we prove an auxiliary lemma.
Lemma 1. Let {u, 2} and {uy, 2y} be solutions of (#) and (P4y)', respectively.
Then
9) clu = u,)?* < e {u = v)* + |2 — wal?} + Ay(vy) +
+ Ay(0) + {b(u, 2y — p) = [95 Ay — 1]} +
+ {b(u, 2 = py) = [9. 2 — ]} + e2]h — Iul?
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holds for every v, e K,, ve K, uy € Ay, e A, where
Ay(v) = a(u, v, — u) + b(v, — u, 2) + {f,u — v,
Ay(v) = alu, v — u,) + b(v — uy, 2) + {fyuy — )
and ¢, ¢, ¢, are positive constants independent of h, H.
Proof. By virtue of (7) and the definitions of (P) and (P,,), we get — using the
definitions of &7 and &
(10) allu — | £ (U -N, U- W)= LU, U)— AN, U) -
— AU + QLN) < (F, U~V + (U, V) +
+ (U = By + (N, B) — AU, U) — (U, ) =
=(F,U=-B> +(F,U=V)+ AUV~ 1[) +
+ AU = U, B — U)+ U B = U)= 4,(v,) + As(v) +
FAb(u, Ay — 1) = [g, g — 1]} + {b(u, 2 — ) —
=g, 2% — uy]} + alu, — u, v, — u) + blv, — u, Ay — A) —
= bluy — u, py — 2.

The boundedness of a, b together with the inequality 2if < 1fe h* + ef ? yields
(11) ol — uy> < A(v) + As(0) + {(blu. dy — p) — [9. 7 — 1]} +
+ {b(u, 2 — ) = {9, 4 — pul} + Myglu — u,|? +
+ M, [ellu — v,? + Myfellv, — u||® + Mye|dy — 2> +
+ Moelu — u,||> + Myfe|2 — gl
For ¢ > 0 sufficiently small, we arrive at (9).
As a direct consequence of Lemma 1, we obtain

Theorem 5. Let (CC), (CCy) and (6) be satisfied. Let there exist a solution {u, 1}
of (2)'. Then

(12) cllu = w[? < effu = ol® + |2 = wal’y +
+ {b(u> )'ll - #) - [ga ;VII - .u]} + {b(u’ )' - IJII) - [ga )*' - .“H]} )
(13) |4 = 2u| £ clflu — wi| + |2 = pal}

hold for any v, €V}, we A, uy € Ay with positive constants c, c,.

Proof. Since (CC) and (CCy,) are satisfied, K = V, K, = V,, i.e. K and K, are
linear sets. Therefore, in (#), and (2,y), the sign of equality can be written, so that

(14) A(v) =0 Vu,eV,.
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As K = Vand V, = VVhe(0, 1), we can choose v = u, in (9). Hence
(15) Ay(v) = 0.
Let jty € Ay be arbitrary. From (6) we obtain
a1 b{v,, -
(16) B2 — 1yl < sup- (o0 s ”).
W

Using (2,5 and (2)}, we may write

b(l’hs Ry — )bn) = b(vh’ l’u) - b(vhs )vll) = b(”/n .“u) +

+ a(“ha Uh) - Sy = b(vln ﬂu) + a(“h’ Uh) - a(u, l’/:) -

— b, 2) = b, g — 2) + a(u, — u,0,) = flpg — A + [u, — uf} [[o]] -
This identity together with (16) implies

lﬂu - }wi = C{”“ - “h” + l/l - .“11'} Viy € Ay .
Using the triangle inequality
'A - ln' = IZ - .“nl + l/‘u - lu’ Vi € Ay,

we obtain (13). Finally, replacing the term Mza]l,, — 2] on the right hand side of (11)
by (13) and making use of (14) and (15), we obtain (12) for ¢ > 0 sufficiently small.

Remark 3. If A, = A for VH € (0, 1), we can insert u = 7, into (12). Therefore,
(12) takes the following simpler form:

(12) clu = wl]* = e fflu — v )* + |2 — ]} +

+ {b(u, A — py) — [9. 2 — g} VYo,eVi, ppedy.

Theorem 6. Let (BC) and (BCy,) be satisfied. Then

P = Ai(o) + A0) + enfu =l L - )+

(17) cllu — u,
+eoflu = ol + {blu Ay — 1) = [g. 2w — n]} +
+ {b(u, A — py) — [g, 2 — 1]}
holds for any v,eK,, veK, pe A, jyeAy,.
(18)  Moreover if K =V, K, =V, and (6) is satisfied, then (12) and (13) hold.
Proof. We have to prove (17) only. As A, A,; are bounded in L,
|boy — u, 2q — )| £ ¢|o, — u| Vv, eK,.
Hence (17) follows by virtue of (10).
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Remark 4. If K, = K, Ay = A Vh, He(0, 1) then setting v = uy, u = Ay, we
obtain A,(v) = 0, b(u, Ay — p) — [g, 2y — 1] = 0.
Next, let us suppose that the pair of real parameters /i, H satisfies

h—-0+<H->0+.

Relations (12), (13) and (17) can be used to estimate the rate of convergence of u,
to u and Ay to A, provided the exact solution is smooth enough. Other application are
given by the following convergence theorems.

Theorem 7. Let (BC), (BCy) be satisfied and, moreover let

(19) YweK 3Jv, €K, :v, = v in V;

(20) VueAd 3Ipye Ay iy — i in L;

(21) v, €K,, v, —=v (weakly)in Vimplies vekK;
(22) Ug €Ay, py—p in Limplies peA;

(23) Ir >0 3v}, v,eK, suchthat |v,| <r Vhe(0,1).

Let the solution {u, 2} € Kx A of (?)' be unique. Then
u,—>uinV, Ag—21in L.

Proof. First, {u,}, {44} are bounded. For {1} this follows from (BCy), for {u,}
from (23) and (2,y);. Hence, there exists a subsequence {u, Ay} = {u;, Ay} and
{u*, 2*} € V x Lsuch that

(24) u, —u*in V, Ay — 2% in L.

By virtue of (21), (22), u* € K, A* € A. Let us show that {u*, 2*} is a solution of (2)".
Let {v, u} e Kx A be an arbitrarily chosen element. From (19), (20) we conclude
that there exist v, € K,,, iy € Ay such that

(25) vy, > vin V, py—puin L.

Since {uy, Ay} is a solution of (#,.,), it satisfies

(26) a(uy, uy — vy) + bluy — vy Ay) £ Sty — vy} Vo, €K

(27) b(uy, g — An) 2[4, - — Ay] Vg € Ay .

Passing to the limit for h’, H' — 0+ in (26), together with (24), (25) implies that
(28)  a(u*, u* —v) + limﬂi’nf b(uy, Ay) — b(v, 2*) £ {f,u* —v) VoeK.

IIA

The same procedure is applicable to (27):
(29) b(u*, p) — [g, p — A*] < liminf b(uy, Ay) VpeAd.
h’,H’
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Setting u = A* in (29), we obtain
(30) b(u*, 2*) < liminf b(uy, Ay.) .

h' H’

Substitution of (30) into (28) yields:
a(u*, u* — o) + b(u* — v, 2*) < {f,u* —v) YeekK.
The choice v = u* in (28) implies:

lim inf b(uy, 2y) < b(u*, 1*) .
h',H’
From this and (29), we have
b(u*, p — 2*) < [g.u — A*] Yued.

Thus {u*, 2*} is a solution of (#)". By virtue of its uniqueness, the whole sequences
{uy}, {4y} tend weakly to u, A. Let us show that u, — u strongly in V. Let {5,},
0, € Ky, {fiy}, iy € Ay be such that
Op—> U, fy—> A

Applying (17) with v = u, u = A, v, = ¥y, ity = Hy and using the weak convergence
u, = u, Ay — 4, we obtain u, —» u in V.

Remark 5. If K, = K and Ay < A, the conditions (21) and (22) respectively, are
satisfied.

Theorem 8. Let (CC), (CCy) and (6) be satisfied. Let {u, 2} be the unique solution
of (2). Moreover, let us suppose that

(31) YoeV dv, €V, :v, v inV;
(32) VueAd 3Jugedy:pug—pin L;
(33) g€ Ay, pg— gt inLimplies ped;

(34) there exist a real number d, a positive number ¢ and a bounded sequence
{04}, Oy V, such that jy(v,) = d Vo, eV, YVh, He(0,1), ju(t,) £ ¢ Vh, He
€ (0, 1).

Then u, = u, Ay — A.

Proof. We shall prove the boundedness of {u,} and {14} only. The rest of the
proof is analogous to that of Theorem 7. The convergence of 1y to A follows from

(13).

According to the interpretation of (2,y)', u, € V, satisfies

a(u,,, Uy — “n) + jH(Uh) - jll(“h) = Lf,o—uy VeV,
Hence
a(“h, uy) + jH(uh) < a(uh: o) + fu(f’h) — Sy 0y = uy) .
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This and (34) implies the boundedness of {u,} and by virtue of (13) we deduce the
boundedness of {4,}.

Remark 6. If A, = A VH (0, 1), (33) is automatically satisfied.

Condition (6), guaranteeing the convergence of 4, to 2 is very restrictive. That
is why we shall be interested in the convergence u, to u only if (CC) and (CCy)
hold. To this end let us suppose that the functions

j(v) = sup {b(v, 1) = [, ]}
A

ju(“h) = sup {b(vln ,“H) - [g» #u]}
A

H
take their values from the set {0, + oo}. We shall denote by
A = {veV| j(v) = 0}
H oy = {Dh € Vh| .iu(”h) = 0} s

i.e. j and j, are the indicator functions of the closed convex sets " and A, respec-
tively. Let {u, A} € V x 4 and {u,, 14} € V;, x Ay be solutions of (#) and (2,;),
respectively. From the interpretation of these problems we see that u e % and
u, € A,y are solutions of the minimizing problems:

JW) £ #v) Yo ex

and

j(uh) é f(l)h) VUh € ‘%hH s
respectively.

As far as the convergence of u;, to u is concerned, we have

Theorem 9. Let (CC), (CCy) be satisfied and there exist solutions {u, A} and
{un, 2} of () and (P,y), respectively, the first components of which are uniquely
determined. Let

(35) Yoe X Fv,eHpyiv,—vin V;
(36) V€ A s Uy — v in V implies ve A .
Then u, - u in V.

Proof is a direct consequence of Th. 0.6 from [2].

3. APPLICATIONS

Example A. Let us consider the unilateral boundary value problem introduced
in Example 3, with the same definitions of V,, L;; and A,,. First, we consider the case,
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when i1 = H, i.e. the partition of dQ is generated by the triangulation 7, of Q.
In that case
A = K= {v,e V| va;s,,) 20, i=1..,m},

where a;,,,, is the midpoint of a;a;,,. It means that ', contains all piecewise
linear functions, the mean values of which are non-negative on a;a;, ;. The function

j,,(v,,) = sup vy, 1, is the indicator function of .
An

Now, let us suppose that h/H is sufficiently small. Then the condition (6) holds
and one can use Theorem 5 for estimating the rate of convergence of u, to u and
/y to 2 under some additional assumptions. We can prove the following result:

Theorem 10. Let
(i) ue K n H¥(Q);
(i) ue H""(aja;4), i = 1,..., m;
(iii) the set of points where u changes from u > 0 to u = 0 is finite.
Then
u = wp|mio < c(u) (h + H)

12 = 2ullu-1200) < c(u, 2) (h + H)
12 = Znli2@ay < c(u, 2) h™'2(h + H).
For the proof see [6].
Example B. Let us define the following problem:
to find ue H'(Q) such that
F(u) £ P(v) Yoe H'(Q),
where F(v) = 3|v|fnq) + 9 Joo || ds — (f,v)o With ge Ry, g > 0, fe (Q). The
corresponding Lagrangian of this problem is
200) = Wl + 9 [ jwas = (700,
o0
(v, 1) e H'(Q) x A and
A= {pel?(0Q)| |u] =1 ae. on 0Q}.

It is casy to see that there exists a unique saddle-point {u, 2} of & on H'(Q)x A
and cu/on = —Jg.

We define V, as in the example A, K, = V, and

AH = Ah = {NIIELZ(GQ)' :ul;la € PO(aiai+1)’ l.”h| _S_ I on (AQ} .

It is easy to verify that the conditions (19)—(23) are satisfied. Hence u), — u in H'(Q),
Ay — A in I2(0Q).

If the ratio h/H is sufficiently small, then Babuska-Brezzi's condition (6) is fulfilled
and a result, similar to Theorem 10 can be obtained .
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Example C. (Signorini problem with friction.) Let Q = R, be a bounded, poly-
gonal domain, the boundary of which is decomposed as follows: 0Q = I', U I,
where I',, Iy are non-empty and open subsets of 0Q. Let

V={ve(H'(Q)] v=0o0nT,}

uj o
K={veV|v,£0o0n Iy},
where v, = v . nis the normal component of v. We shall consider the problem

to find ue K such that
L(u) < F(v) VYoek,

where P(v) =} [0 1(v) e,(v) dx + g [on o] ds — [o fiv; dx, &(v) = Hov,/ox; +
+ 0v;[/0x;) and r,-j(v) are components of the strain and stress tensor, respectively,
corresponding to the displacement v and mutually coupled by the linear Hooke’s
law. Finally, let f = (f,, f,) € (I*(?))*>, 9 € R;, g > O and v, = v . t be the tangential
component of v. The corresponding Lagrangian is defined on Kx A, where

A= {pel(Iy)| |u] £1 ae. on Iy},

as follows
Lo, 1) = %j 7,4(v) £;;(v) dx + gJ. v, ds — J\ fiwidx.
I I Q

It is readily seen that there exists a unique saddle-point {u, 2} of £ on Kx A and
T(u) = — g2, where T,(u) denotes the tangential traction component on I'x. Applica-
tion of this formulation will be discussed in [7].

Example D. (Signorini problem with friction.) We shall consider the problem
from Example C. Let A = A; x A, be a closed convex subset of (H™'/*(I'k))?
(dual space to (H'/*(I'g))?), where

Ay = {;tl € H‘”Z(I"K), Iy = 0}
Ay = {pu, e I(Iy), |uy] £ g ae. on I'}.

Moreover, we suppose that I'g is a straight segment. Let

L(v, uy, 1) = %j

Q2

Tij(”) gij(v) dx + {py, 0,0 + {0 — j Sw;dx
o

be the Lagrangian, defined on Vx A; x A,. It can be proved that % has a unique
saddle-point {u, ,, A,} on Vx A, x A, and A, = —T(u), A, = —T(u), where
T,(u) denotes the normal traction component on I'y. Analysis of this above formula-
tion will be discussed in [5] Let us mention, that although the theory, presented
here is not directly, applicable to this formulation, a slight modification will do.
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Souhrn

SMISENA FORMULACE ELIPTICKYCH VARIACNICH NEROVNOSTI
A JEJI APROXIMACE

JAROSLAV HASLINGER

V této prdaci se studuje aproximace smiSené formulace eliptickych variacnich
nerovnic. Smisend formulace je definovdna jako problém nalezeni sedlového bodu
Lagrangeovy funkce .# na kartézském soucinu konvexnich mnozin K x A. Jeji apro-
ximace je pak definovdna jako uloha nalezeni sedlového bodu . na K, x Ay, kde
K,, A4 jsou kone¢né-dimensiondlni aproximace K, A. Jsou vysloveny postacujici
podminky k tomu, aby takto nalezené aproximace na K, x A, konvergovaly k sedlo-
vému bodu ¥ na K x A. Obecné vysledky jsou pak aplikovdny na konkrétni pfiklady.

Author’s address: dr. Jaroslav Haslinger, CSc., KAM MFF UK, Malostranské 2/25, 118 00
Praha 1.
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