
Aplikace matematiky

Jaroslav Haslinger
Mixed formulation of elliptic variational inequalities and its approximation

Aplikace matematiky, Vol. 26 (1981), No. 6, 462–475

Persistent URL: http://dml.cz/dmlcz/103936

Terms of use:
© Institute of Mathematics AS CR, 1981

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/103936
http://dml.cz


SVAZEK 26 (1981) A P L I K A C E M A T E M A T I K Y ČÍSLO 6 

MIXED FORMULATION OF ELLIPTIC VARIATIONAL 
INEQUALITIES AND ITS APPROXIMATION 

JAROSLAV HASLINGER 

(Received February 26, 1980) 

INTRODUCTION 

A dualization technique is frequently employed to obtain an approximation of 
variational inequalities (see [4]). A properly chosen Lagrangian S£ enables us to 
transform the original minimization problem into a problem of finding its saddle-
point on a certain convex set Kx A. This approach has some advantages: 
— it avoides the complex construction of convex sets of admissible functions; 
— it offers algorithms for numerical computations. 
Last but not least, it makes it possible to approximate the Lagrange multipliers 
associated with the problem. Since these multipliers have usually a good physical 
meaning (for example outward fluxes, normal or friction forces), their knowledge is 
welcome. 

In the present paper, conditions sufficient for the convergence of saddle-points 
{uh, AH] of S£ on Kh x AH (approximation of Kx A) to the saddle-point {u, X) of S£ 
on KxA are studied. Applications to the unilateral problem and to problems with 
friction are presented. 

l. MIXED FORMULATION OF VARIATIONAL INEQUALITIES 

Let V, L be two real Hilbert spaces, with the norms || ||, | |, respectively, and let 
V', L be their dual spaces. On V, a quadratic functional / will be given 

/(v) = $ a(v, v) - </, v> , 

where a is a continuous, symmetric and V-elliptic bilinear form, fe V and < , > 
denotes the duality pairing between V and V 

Let S£ : V x L-» Rx be a functional of the form 

(1) i£(v, n) = / ( » ) + b(v, n) - [g, ti] , 

462 



where b : V x L-> R1 is a continuous bilinear form, g ell and [g,/<'] denotes the 
value of g at //. Finally, let K £= V. A £ L be non-empty, closed convex subsets. 
We make the following assumptions, concerning K and A: 

A is either 

(CC) a convex cone with its vertex at 0 (zero element of L) and K — V 

or 

(BC) a bounded convex subset of L. 

We shall consider the following problem: 

to find an element {u, A} e K x A such that 
Se{u, n) S &(u, X) ^ S£(v, A) Vv e K, V/i e A. 

{u, A} will be called a saddle-point of j£f o n X x / 1 

R e m a r k 1 {u, A} e K x A is a saddle-point of i f on K x A if and only if 

(2) 5£(ii, X) = min sup 5£(v, fi) = max inf if(v, /*) 
K A .4 K 

(see [2], [3]). Let us denote j(v) = sup {b(v, //,) — \_g, //]}. It is easy to see that j 
A 

is a lower semicontinuous convex function. With regard to (2) and (&) we see that 
ueK solves the following problem: 

(3) / (« ) + j(«) = min {/(») + ;(»)} . 
K 

An equivalent formulation of (^) is the following ([3]): 

{
to find {u, A} e K x A such that 

a(u, v - u) + b(v - u, A) ^ </, v - u) Vv e K 

b(w, /L — A) ^ [g, ft — A] V/i e A. 

We present two typical examples, leading to the problem (0). 

Example 1 (Dualization of constraints). Let u e K be such that 

(^l) / (U) g / ( v ) Vv 6 K . 

We shall suppose that the following characterization of K holds: 

K = {v e V| b(v, fi) g [g, if] V/t e A} , 

where 5, # have the above mentioned properties and A is a convex cone with the vertex 
at 0. Then (l3P^) leads to the search of a saddle-point {u, A} of $£ on Vx A (see [2]) 
and j is the indicator function of K. In this case (CC) is satisfied. 

Example 2. Let K be a closed, convex subset of the Sobolev space H1^) and 
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Q cz R2 a bounded domain with a continuous boundary dQ. We look for u e K, 
satisfying 

(0>2) Se(u) g ^ (v ) Vv e K , 

where ^(v) = ,/(v) + JaQ |v| ds is a non-differentiable functional. Then (^2) 
leads to the search of a saddle-point [u, X] of J£?(v, /x) = f(v) + j a o /xv ds on K x A, 
where 

A = {XeL2(dQ)\ |A| ^ 1 a.e. on 30} . 

In this case, j(v) = Jen |v| ds and (BC) is satisfied. We see, that introducing the new 
variable \x e A,we obtain a differentiable functional 5£(v, /i), which is more suitable 
for numerical calculations in many cases. 

The formulation (0) (or (0)') will be called a mixed formulation O/(3). 

R e m a r k 2 (0)' is meaningful for a general continuous, V-elliptic bilinear form a 
(not necessarily symmetric). In such a case, (&)' is a mixed formulation of the fol­
lowing problem: 

, x Uofind ueK such that 
^ > \a(u, v - u) + j(v) - j(u) ^ </, v - w> Vv e K . 

Let us mention briefly some well-known results on the existence and uniqueness 
of solutions of (0). 

Let b : VxL-» Rl satisfy Babuska-Brezzfs condition 

(5) 3/3 = const. > 0 : sup ^ ^ - ^ /?|//| V/x e L. 
V llvl 

Theorem 1. Let (5) and (CC) be satisfied. Then there exists a unique solution 
of(0>). 

For the proof, see [ l ] . 

If (BC) is satisfied, the situation is much simpler. 

Theorem 2. Let (BC) be satisfied. Then (0) has a solution, the first component of 
which is uniquely determined. 

Proof. The existence of a solution follows from the V-elipticity of a and the 
boundedness of A, the uniqueness of the first component from the V-elipticity of a 
(see [3]). 

Approximation of (0) 

Let h,He(0, \) be two parameters, tending to 0-f. To every couple h, H we 
associate finite dimensional subspaces Vh a V and LH cz L, respectively. Let Kh 

and AH be closed, convex subsets of Vh and LH, respectively. 
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Similarly as in the continuous case we make the following assumptions: 

Au is either 

(CCH)a convex cone with vertex at 0 and Kh = Vh 

or 

(BC;/) a convex subset of LH, bounded uniformly in L, i.e. there exists a positive 
number c > 0 such that 

\/iH\ S c V/iHeAH VII e (0 ,1) . 

By the approximation of (&) we mean the problem of finding a saddle-point 
{uh, XH] e Khx AH of J£? on Kh x AH: 

(0>hH) &(uh9 fiH) £ S£(uh, kH) S &(vh9 XH) Vv, e Kh, V/iH e AH , 

or equivalently 

{ to find {uh, XH) e Khx AH such that 

a(uh, vh - uh) + b(vh - MA, XH) ^ </, v^ - uh) Vv/? e Kfc 

KM*' ILH ~ X») = [#> A*fl ~ ^»] V ^ H e ^H-

Let us not that Kh 4- K and AH cj: A, in general. 

Interpretation of (^/;W) 

If we set jH(vh) ~ SUP {M1^' MH) ~~ [g> /%]}> t n e n r s t component uh e Kh minimi-

zes the functional f(vh) + JH(VII) o v e r - ^ 
As far as the existence and uniqueness of (&hH) is concerned, results similar to 

those from Theorems 1, 2 hold. To this end let us suppose that there exists a positive 
number ft, independent of h, H and such that 

(6) sup % £ - ) ;> /%„! V,D„eL / f. 

.̂ IK|| 
Theorem 3. Le1/ (CCi7) and (6) be satisfied. Then there exists a unique solution 

of (&„„)• 

Theorem 4. Let (BCZ/) be satisfied. Then there exists a solution of (&hH), the first 
component of which is uniquely determined. 

The most difficult task is the verification of (6) in particular examples. 

Examp le 3. Let us consider the problem (^x) with 

/ ( » ) = ilMlsko) - CA °)o . / e L 2 ( f i ) , 
and 

K - {veH\Q)\ v ^ 0 on 8Q} , 
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where ( , )0 denotes the L2(£>)-scalar product. The corresponding mixed formulation is 

(tofind {u,X}eHl(Q) x HZi/2(dQ) such that 

J(grad u, grad v)0 + (u, v)0 + <v, X} = (/, v)0 Vv e Hl(Q) 

l(u9fi - X) S 0 V/LeH : 1 / 2(^2) , 

where HZi/2(dQ) denotes the convex cone of non-positive linear functionals over the 
space Hi/2(dQ) and < , > is the corresponding duality pairing. It is easy to see ([2]) 
that X = —du/dn. One can prove ([6]) that Babuska-Brezzi's condition (5) holds 
with ft = 1. 

Let {$~h} be a regular family of triangulations of Q, whose nodes lying on dQ9 

form an equidistant partition of dQ. Let us denote them by al9 ..., am, am+l = a{. 
Now we set 

Vh = {vh e C(Q)\ v\Ti e P^) VTf- e <Th} 

LH = L„ = {fih e L2(dQ)\ iih\aiai + l e P0(aiai+1), i = 1, ..., m} 

AH = A = {/*A e L,| /j, ^ 0 on G.Q} , 

where Px(Tt) and P0(
flifli+i) a r e t n e spaces of linear polynomials on Tt and of 

constant functions on aiai+1, respectively. Then the problem (&hH) = ( ^ ) has 
a solution {u ,̂ 2/,} with a uniquely determined u,, (see [2]). Next we analyze the con­
dition (6). Let //,, e Lh be such that 

vhfih ds = 0 VvA e V,, <=> <?,• 
J 5Í2 J dfi 

(6 ) ' vhfih ds = 0 Vv, e Vh <=> ^ . ^ ds = 0 j = 1, . . . , m , 
J e« J a« 

where <Pj e Vft, <P/(a/) = ^ and <py = 0 at the internal nodes of ZTh. (6)' is equivalent 
to the following system of linear algebraic equations: 

\LX + A-2 = 0 

<^2 + A*3 = 0 

/L! 4- jxm = 0 / i f = /r|ai.a[ + 1 . 

If the number m of atai+{ is even, the system has also a non-trivial solution. Con­
sequently, the condition (6) cannot be satisfied and the second component Xh is not 
uniquely determined, in general. In order to obtain (6), we use two systems of parti­
tions -vTh}, {^H} of Q and dQ, respectively. Let h = max diam Ti9 H = 
= max length aiai+l9 a( nodes of ?Tn. We define Vh in the same way as above and 

LH = {fiH e l3(dQ)\ nHlatai + 1 eP0(aiai+1), i = 1, ..., m} 

AH = {fiH E LH\ jiH ^ 0 on dQ} . 
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If the ratio hjH is sufficiently small, then 

supp^^^H\H^2(m, 
v* N I H - ( G ) 

with /J independent of h, H (see [6]). 

2. ERROR ESTIMATES 

Our aim is to establish relations between uh, u and AH, X. To this end we give 
another, equivalent form of (&*)'. 

Let 3tf = V x Lbe a Hilbert space, equipped with the norm: 

||V|U = {|H|2 + H2}1 / 2 , V=(v,p)e*>, 

$4 : 2/f x 3tf -> Rx a bilinear form 

sf(U, V) = a(u, v) + b(v, X) - b(u, fi)9 U = (u, X) e Jf7 

V = (v, fi) e #e 
and J^ : J f -> K! a linear functional 

<#-, V> = </, v> - 0 , /L], V = (v, $ e tf . 

The definition of s& immediately implies 

(7) sf( V, V) = a(v, v) V V = (v, ja) e 2tf ; 

(8) 3M = const. > 0 : \sf(U, V)\ S M||U|U II V\U VU, Ve J f . 

It is readily seen that (&)' is equivalent to 

,px (tofind U = {u, A} E JT = KxA such that 

[s/(U9 V - U) = <#", V - U> VVe JT. 

Next, let Jf /lH = K,, x AH be a closed, convex subset of Jf7; J f AH cf: JT, in general 
The problem 

, x (to find 11 = {uh, AH} e JT such that 
( " ^ (j./(H, 33 - H) ^ <J^, » - U> V» e jrfcfl 

represents an approximation of (P), equivalent to (^hH)' (or (^hH)). 

First we prove an auxiliary lemma. 

Lemma L Let {u, X} and {uh, AH} be solutions of (&>)' and (^hH)', respectively. 
Then 

(9) c\\u - uhf <, cA{\\u - vh\\
2 + \X - fi„\2} + At(v„) + 

+ A2(v) + {b(u, X„ - n) ~ [g, XH - ti]} + 

+ {b(u, X - nH) - [g, X - /.„]} + c2\X - XH\2 
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holds for every vh e KA, v e K, fiH e AH, /L e A, where 

Ax(vh) = a(u, vh - M) + b(vh - M, A) + <f, M - vA> 

A2(v) == M(M, v - M;J) + b(v - uh9 X) + if, uh - v> 

and c, cl5 c2 arc positive constants independent of h, H. 

Proof. By virtue of (7) and the definitions of (?) and (PhH)9 we get — using the 
definitions of s4 and SF 

(10) a||M - MA||2 S s4(U - U, U - it) = s/(U, U) - sJ(U9 U) -

- s4(U9 It) + s4(\\9 it) g <J% J7 - V> + ^(U , V) + 

+ <#-, u - wy + ^(u,«) - $/(u, u) - j/(U, it) -
= <#', U - iB> + <J^, It - V> + ^(U , V - It) + 

+ st(VL - U, <B - U) + •*/(£/, 33 - U) = A,(v/Z) + A2(v) + 

+ {b(u, AH - /i) - [O, AH - fi]} + {b(M,A - fiH) -

- [g, A - /%]} + a(MA - M, vA - M) + b(vA - M, A/f - X) -

- b(Mft - U, flH - A) . 

The boundedness of a, b together with the inequality 2hf rg lje h2 + ef2 yields 

(11) <x||u - wA||2 g A,(vh) + A2(v) + {b(u, XH - fi) - [g, XH - ft]} + 

+ {b(u, X - fiH) - [g, X - /%]} + M ^ M - M/Z|!2 + 

+ Mj/eHu - v;i||
2 + M2js\\vh - u\\2 + M2e|AH - A|2 + 

+ M2S||M - uh\\
2 + M2je\X - fiH\2 . 

For G > 0 sufficiently small, we arrive at (9). 

As a direct consequence of Lemma 1, we obtain 

Theorem 5. Let (CC), (CCW) and (6) be satisfied. Let there exist a solution {u9 X} 

of(3>y. Then 

(12) c\u - uh\\
2 g CI{||M - v/7||

2 + |A - MH |2} + 

+ {b(u, XH - p) - [a, AH - /i]} + {b(M, A - fiH) - [g, A - /%]} , 

(13) |A - XH\ S c{\\u - uh\\ + \X - fiH\} 

hold for any vh e Vh, /i e A, \xH e AH with positive constants c, c{. 

Proof. Since (CC) and (CC7/) are satisfied, K = V, Kh = Vh9 i.e. K and Kh are 
linear sets. Therefore, in (^)'2 and (^AH)'2 the sign of equality can be written, so that 

(14) -4i(t>*) = 0 VvAeVA. 
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As K = Vand Vh <= V Vh e (0, 1), we can choose v = uh in (9). Hence 

(15) A2(v) = 0 . 

Let /% e A7/ be arbitrary. From (6) we obtain 

(16) fiixH-ra\£Sup«Z*£uzl«). 
Vh \\Vh\\ 

Using (^hH)2 and (^) 2 , we may write 

Kvh> fhi - *H) = Hvh> VH) ~ Kvh> *H) = b(vh9 fiH) + 

+ a(uh9 vh) - < / vh) = b(v^, u^) + a(uh9 vh) - a(u9 vh) -

- b(vh, ^ = b(vh9 iiH - X) + u(u;j - u, v,,) g c{\fiH - X\ + ||uh - u||} llv^l . 

This identity together with (16) implies 

\P>H - AHj ^ C{||M - uh\\ + \X - fiH\} \ffiH e AH . 

Using the triangle inequality 

\X - XH\ ^ \X - fiH\ + \fiH - XH\ V/% e AH , 

we obtain (13). Finally, replacing the term M2s\XH — X\ on the right hand side of (11) 
by (13) and making use of (14) and (15), we obtain (12) for s > 0 sufficiently small. 

R e m a r k 3. If AH a A for VH e (0, 1), we can insert /i = XH into (12). Therefore, 
(12) takes the following simpler form: 

(12') c\\u - uh\\2 ^ cx{\\u ~ vh\\2 + \X - fiH\2} + 

+ (b(u, X - fiH) - [g, X - /%]} Mvh e Vh , fiH e AH . 

Theorem 6. Let (BC) and (BCH) be satisfied. Then 

(17) c||u - uh\\
2 S Ax(vh) + A2(v) + c,{||w - v„||2 + \X - fiH\2} + 

+ c2||u - v,,|| + {b(u, XH - u) - [O, XH - ft]} + 

+ {b(u, X - ftH) - [g9 X - /;„]} 

holds for any vh e Kh9 v e K, /z e A, //H e AH . 

(18) Moreover if K = V, K,, = V/; urul (6) is satisfied, then (12) uud (13) bOld. 

Proof. We have to prove (17) only. As A, AH are bounded in L, 

|b(vA - u, /i7/ - A)| ^ c||v;/ - u|| Vv/7 e Kh. 

Hence (17) follows by virtue of (10). 
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R e m a r k 4. If Kh a K, AH cz A Vh, f / e (0 , 1) then setting v = u/p /j = AH, we 
obtain A2(v) = 0, b(u, XH — ft) — [g, Aw — /*] = 0. 

Next, let US suppose that the pair of real parameters /?, H satisfies 

h - • 0 + <=>H ~>0+ . 

Relations (12), (13) and (17) can be used to estimate the rate of convergence of uh 

to u and XH to A, provided the exact solution is smooth enough. Other application are 
given by the following convergence theorems. 

Theorem 7. Let (BC), (BCH) be satisfied and, moreover let 

(19) Vv e K 3vh e Kh : vh -> v in V; 

(20) V/t e A 3/t^ e AH : fiH -> /x w L ; 

(21) v;, G KA, v,, --- v (weakly) in V implies v e K ; 

(22) /% G AH , fiH —- /i in L implies /* e A ; 

(23) 3r > 0 3{vJ , v;, G Kh such that \\vh\\ = r Vh e (0, 1) . 

Let the solution {u, X} e Kx A of (0*)' be unique. Then 

uh -> u in V, XH —v A in L. 

Proof. First, { u j , {AH} are bounded. For {AH} this follows from (BC/f), for {uh} 
from (23) and ( ^ 2 . Hence, there exists a subsequence [uh>, XH>} cz [uh, XH} and 
{u*, A*} G V x L such that 

(24) uh> -- u* in V, V - A* in L. 

By virtue of (21), (22), u* G K, A* e A. Let us show that {u*, A*} is a solution of (^) ' . 
Let {v, fi}eKxA be an arbitrarily chosen element. From (19), (20) we conclude 
that there exist vh e Kh, \iH e AH such that 

(25) vh -> v in V, fiH -> /t in L. 

Since {u,,,, XH>} is a solution of (&h>u)\ it satisfies 

(26) a (u r , uh> - vA,) + b(uft, - vh>, XH) = </, uh. - v^} Vvh>eKh, 

(27) b(uft,, /%, - Afl,) ^ [g, \iH. - Aw,] V/%, G A W . 

Passing to the limit for h', H' -> 0 + in (26), together with (24), (25) implies that 

(28) a(u*9 u* - v) + l iminfb(u r ,AH0 - b(v, A*) ^ </, u* - v> VvGK . 
fc'.H' 

The same procedure is applicable to (27): 

(29) b(u*9 11) - [g, fM - A*] ^ lim inf % „ , , AH,) V / t e / 1 . 
/ j - , H ' 
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Setting fi = X* in (29), we obtain 

(30) b(u*, /*) S Um inf b(uh,, XH) . 
h',H' 

Substitution of (30) into (28) yields: 

a(u*, u* - v) + b(u* - v, A*) ^ </, u* - v) Vi; e K. 

The choice v = u* in (28) implies: 

l immfb (u r , AH,) ^ b(u*, A*). 
/ j - , H ' 

From this and (29), we have 

b(u*, fi - ?*) ^ [g, A- - A*] V/t e A . 

Thus {u*, X*} is a solution of (^) ' . By virtue of its uniqueness, the whole sequences 
{uh}, {XH} tend weakly to u, X. Let us show that uh -> u strongly in V. Let {v^}, 
vh e Kh, {/%}, &H E AH be such that 

vh~+u > P>H~+ A-

Applying (17) with v = u, \i — X, vh = v/,, /*/f = /% and using the weak convergence 
uh -* u, XH -* X, we obtain uh -> u in V. 

R e m a r k 5. If Kh c= K and AH c= A, the conditions (21) and (22) respectively, are 
satisfied. 

Theorem 8. Let (CC), (CC#) and (6) be satisfied. Let {u, X} be the unique solution 
oj (&)'. Moreover, let us suppose that 

(31) Vve V 3 ^ eVh : vh - v in V; 

(32) V/t e A 3u.H e AH : \in -» /j iu L; 

(33) /% e Afl , /j,H -* [i in L implies \ie A ; 

(34) there exist a real number d, a positive number c and a bounded sequence 
{vh}9 vh e Vh such that jH(vh) ^ d \fvhe Vh, Vh, H e (0, l), jH(vh) = c Vh, H e 
6(0,1). 

Then uh -» u, AH —> A. 

Proof. We shall prove the boundedness of {u,,} and {XH} only. The rest of the 
proof is analogous to that of Theorem 7. The convergence of XH to X follows from 
(13). 

According to the interpretation of (^hH)\ uh e Vh satisfies 

a(uh, vh - uh) + jH(vh) - jH(uh) = </, vh - uh) Mvh e Vh . 
Hence 

a(uh, uh) + jH(uh) = a(uh, vh) + jH(vh) - </, vh - u„> . 
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This and (34) implies the boundedness of {uh} and by virtue of (13) we deduce the 
boundedness of {XH}. 

R e m a r k 6. If AH c A VH e (0, 1), (33) is automatically satisfied. 

Condition (6), guaranteeing the convergence of XH to X is very restrictive. That 
is why we shall be interested in the convergence uh to u only if (CC) and (CCM) 
hold. To this end let us suppose that the functions 

j(v) = sup {b(v, fi) - [g, ft]} 
A 

Jn(vh) = sup {b(vh, fiH) - [g, /jH]} 
AH 

take their values from the set {0, + GO}. We shall denote by 

Jf = {veV | j (v ) = 0} 

^hH = {vh£ Vh\ Jn{vh) = 0} , 

i.e. j andjH are the indicator functions of the closed convex sets X and JT/lH, respec­
tively. Let {u, X} e V x A and {uh, XH} e Vh x AH be solutions of (0>) and (^hH), 
respectively. From the interpretation of these problems we see that u e Jf and 
uh e Jf hH are solutions of the minimizing problems: 

f(u) = / ( v ) Vv e JT 

and 

f(uh)^f(vh) VvheXhH, 

respectively. 

As far as the convergence of uh to u is concerned, we have 

Theorem 9. Let (CC), (CC7/) be satisfied and there exist solutions {u, X} and 
{uh, XH} of (&) and (&hH), respectively, the first components of which are uniquely 
determined. Let 

(35) Vv e J f 3vh e JfhH : vh -> v in V; 

(36) v;i e JTftH , vh -^ v in V implies v e JT . 

T/7e/z i/ft -> u in V. 

Proof is a direct consequence of Th. 0.6 from [2]. 

3. APPLICATIONS 

Examp le A. Let us consider the unilateral boundary value problem introduced 
in Example 3, with the same definitions of Vh, LH and AH. First, we consider the case, 
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when h = H, i.e. the partition of dQ is generated by the triangulation 3 h of Q. 

In that case 

JfhH = ^h = {»*G **| vh(ai+1/2) = 0, i = 1, ..., m} , 

where aI+1/2 is the midpoint of aiai+1. It means that JfA contains all piecewise 

linear functions, the mean values of which are non-negative on atai+1. The function 

jh(vh) = sup <vA, ph} is the indicator function of JTA. 

Now, let us suppose that h\H is sufficiently small. Then the condition (6) holds 

and one can use Theorem 5 for estimating the rate of convergence of uA to u and 

AH to A under some additional assumptions. We can prove the following result: 

Theorem 10. Let 

(i) ueK n H2(Q); 

(ii) w e H 1 ' 0 0 ( a i a i + 1 ) , / = 1, ..., m; 

(iii) t/?c set of points where u changes from u > 0 to u = 0 is finite. 

Then 

|| w " ^IHi(fi) -S c(u)(h + H) 

||A - Atfllfl-i,^) ^ c(u, A) (ft + H) 

| | ^ - ^ H | | L 2 ( ^ ) ^ c ( u , A ) / z - 1 / 2 ( h + H). 

For the p r o o f see [6]. 

E x a m p l e B. Let us define the following problem: 

\tofind ueHl(Q) such that 

\Sf(u) = Sf(v) VveHx(Q), 

where Sf(v) = \\vfHKQ) + g J a o |v | ds - (/, v)0 with g e Ru g > 0, feL2(Q). The 

corresponding Lagrangian of this problem is 

/vv ds - (f, v)0 , 
aд 

^ ( ^ / 0 = i IN #*(*-) + 
(v, fi)eHl(Q) x A and 

A = {n e L2(dQ)\ \n\ ^ 1 a.e. on GiQ} . 

It is easy to see that there exists a unique saddle-point {u, A} of i f on Hx(.Q)xA 

and cujdn = — Ag. 

We define VA as in the example A, Kh = VA and 

^H = -4* - {;UAeL2(a.Q)| /£fc|fl,a. + 1 6Po(fljfli+i)5 N ^ J ° n ^ } • 

It is easy to verify that the conditions (19) —(23) are satisfied. Hence uh -> u in Hl(Q), 

AA - A in L2((?0). 

If the ratio h/H is sufficiently small, then Babuska-Brezzfs condition (6) is fulfilled 
and a result, similar to Theorem 10 can be obtained . 
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E x a m p l e C. (Signorini problem with friction.) Let Q a R2 be a bounded, poly­
gonal domain, the boundary of which is decomposed as follows: dQ = Fu u FK9 

where Fu, FK are non-empty and open subsets of dQ. Let 

V = {v e ( H 1 ^ ) ) 2 ! v = 0 on FJ , 

K = {v e V\ v„ = 0 on TK] , 

where vn = v . n is the normal component of v. We shall consider the problem 

to find u e K such that 

Sf(u)^Sr(v) V v e K , 

where Sf(v) = i \dQ TU(V) eu(v) dx + g \dQ \vt\ ds - \Qfivi dx, su(v) = i(dvt\dxj + 
+ dVj/dXi) and TU(V) are components of the strain and stress tensor, respectively, 
corresponding to the displacement v and mutually coupled by the linear Hooke's 
law. Finally, let f = (fuf2) e (l}(Q))2, g e Ru g > 0 and vt -= v . t be the tangential 
component of v. The corresponding Lagrangian is defined on Kx A, where 

A = {pieL2(TK)\ H = 1 a .e.on FK} , 

as follows 

^(tf, lO = i Tf/i?) el7(v) dx + a /Lvř ds 
Jí? JTk 

fvf dx . 

It is readily seen that there exists a unique saddle-point {u, X) of 3? on KxAand 
Tt(u) = —gX, where Tt(u) denotes the tangential traction component on FK. Applica­
tion of this formulation will be discussed in [7]. 

E x a m p l e D. (Signorini problem with friction?) We shall consider the problem 
from Example C Let A = Av x A2 be a closed convex subset of (H'1/2(TK))2 

(dual space to (H 1 / 2(F*))2), where 

A, = {nieH~l/2(rK), fit ^ 0 } 

A2 = {n2 e L2(TK), \n2\ ^ g a.e. on TK} . 

Moreover, we suppose that TK is a straight segment. Let 

S£(v, џu џ2) = i тu(v) su(v) dx + (џu vn} + </І 2, vt) fiVi dx 

be the Lagrangian, defined on Vx Ax x A2. It can be proved that S£ has a unique 
saddle-point {u, X1, X2) on Vx At x A2 and Xl = —Tn(u), X2 = —Tt(u), where 
Tn(u) denotes the normal traction component on TK. Analysis of this above formula­
tion will be discussed in [5]. Let us mention, that although the theory, presented 
here is not directly, applicable to this formulation, a slight modification will do. 
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S o u h r n 

SMÍŠENÁ FORMULACE ELIPTICKÝCH VARIAČNÍCH NEROVNOSTÍ 
A JEJÍ APROXIMACE 

JAROSLAV HASLINGER 

V této práci se studuje aproximace smíšené formulace eliptických variačních 
nerovnic. Smíšená formulace je definována jako problém nalezení sedlového bodu 
Lagrangeovy funkce ž£ na kartézském součinu konvexních množin K x A. Její apro­
ximace je pak definována jako úloha nalezení sedlového bodu i? na Kh x AH, kde 
/̂.> AH jsou konečně-dimensionáiní aproximace K, A. Jsou vysloveny postačující 

podmínky k tomu, aby takto nalezené aproximace na Khx AH konvergovaly k sedlo­
vému bodu if na K x A. Obecné výsledky jsou pak aplikovány na konkrétní příklady. 

Authoťs address: dr. Jaroslav Haslinger, CSc, KAM MFF UK, Malostranské 2/25, 118 00 
Praha 1. 
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