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SVAZEK 26 (1981) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

RANKING AND SELECTION PROCEDURES 
FOR LOCATION PARAMETER CASE BASED 

ON L-EST1MATES 

JAROSLAV H U S T Y 

(Received December 21, 1979) 

1. GENERAL BACKGROUND 

There are many kinds of ranking and selection problems. Generally speaking, 
the goal is to select some "good" populations from given k populations ni9 ..., nk. 
In this paper we will consider two problems: (a) selecting t "best " populations 
regardless of their order and (b) selecting t "best" populations with regard to their 
order (1 ^ t S k — \). (The complete ranking of all k populations is of course 
included in (b), namely for t -= k — 1.) We will deal only with the special case 
of the location parameter and continuous distribution functions. This means, we shall 
assume that the population 7r£ has a distribution function Ff(x) = F(pc — 0t), 
i = 1, ..., k, F{x) is continuous and the "bestness" of a population ni is characterized 
by its location parameter 0b the best population being the one with the largest 
location parameter, etc. 

Given k random samples, XlU . . . , Xin from ni (i = 1, . . . , k), all of the same 
sample size n, a selection procedure is usually based on some statistics Yt = 
= Yt(Xiu ...,Xin) with a distribution depending on 0,-. We call a selection correct 
(CS), if the selected populations are really the best ones, respectively with the right 
order. We seek for such a procedure that the probability of correct selection exceeds 
a preassigned value P* < 1 when 0 = (0 l5 ..., 0k) lies in a certain subset D of the 
parameter space Q = {0}, called the preference zone. Or, more specially, we demand 

(1) inf P{CS} = P* 
OeD 

and from this equation we determine the sample size n. The parameter vector 0 e D 
for which P{CS) attains its infimum on D is dalled the least favorable configuration 
(LFC) (if it exists). Then (1) can be written in the form 

(2) PLFC{CS} = P* . 

Let us denote by 0 n ] ^ 0[2] ^ . . . ^ 0W the ordered parameter values 0V ..., 0k, 
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by 7itl], 7i[2], ..., 7i[fc] the respective populations, by Y(1), Y(2), ..., Y(fc) the respective 
statistics Y_,..., Yfc and by Ym ___ Y[2] ^ ... rg Y[fc] the ordered values of these 
statistics. (Of course, we do not know the correspondence between nl. ...,nk and 
TT[1], ..., 7i[fc].) For problem (a), it is usual to put 

(3) D = {0eQ:0lk.tl = 0lk-l+ll-5*}, 

where S* > 0 is to be chosen in advance, and for problem (b), 

(4) D = {0 e Q : _,,_., 5_ 0in - 3* , i = k - t + 1 , . . . , k) . 

Various nonsequential techniques for ranking and selection of populations were 
developed during the last 25 years. For F normal, there are Bechhofer procedures 

n 

based on sample means Yt = n~l _>_X._- ( s e e W o r [^D- The LfC ' s f° r them are 
i = i 

the so called slippage configurations: 

(5) ew = ... = eik_tl = %_r+1] - 5* = ... = em - s* 

for problem (a) and 

s* 

(6) 
0 [ . - i ] = ^[n - * * , / = fe - l + 1, . . . , k 

for problem (b). For F continuous, procedures based on ranks of X f /s among 
X__, . . . ,X l n , X21, ...,Xfcn (i.e., procedures based on the so called R-estimates) 
were also studied (among others). The authors of the paper [10] came to the conclu­
sion that these "nonparametric" procedures were more robust in terms of the asymp­
totic relative efficiency (ARE) than the corresponding "parametric" procedures, 
the ARE of two proceduras being defined as the limiting ratio of the sample sizes requi­
red to ensure (1). However, the ARE's (both for (a) and (b)) were derived under 
the restrictive assumption 0[fc] — 0 t l ] = 0(n~1/2); in this case slippage configura­
tions are LFCs at least asymptotically. Later it was shown (see [11]) that gene­
rally slippage configurations need not be LFCs for procedures based on ranks, 
even asymptotically. It follows that for these procedures the ARE's are generally 
not known and the infimum of P{CS] over D is not controlled even asymptotically. 

2. L-ESTIMATES 

For the above-mentioned reasons, attempts to find robust procedures of other 
types have been made. One of many possibilities is to take linear functions of order 
statistics (the so called L-estimates) for Y/s, i.e. to put 

y. ___ 5. ___ \~ XjXiin , i - 1, ..., fe 
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where X i [ n ^ ^.[2] = ••• = -^.[n] a r c t n e ordered values Xfl, ..., Kin and 

/I}, ..., ^ are some suitably chosen coefficients. We shall suppose that these coeffi­

cients are generated by a weight function J(u) §: 0, u e (0, 1), such that J(u) dw = 1; 

namely, •* ° 

^-V-frr). ! = ^-.»• 
w \H + 1/ 

We put A = X{n) = £ A7- and denote by G(y; 6t) the distribution function of Sr 
j=i 

Then we have the following result: 

Theorem 1. The system of distribution functions G(y; 0) is stochastically increas­

ing, i.e. 

0 < 0f => G(y; 0) ^ G(y; 0') for all y . 

Further, G(y; 0) is continuous both in y and in 0. 

Proof. Using the notation x^-, :g x [2 ] :g . . . ^ x^ for ordered values x1? ..., xn 

and r = (rl, ..., rn) for any permutation of numbers 1, ..., n, we get 

G(y, •;0.)-= f . . . j d F ( x 1 - 6 l ) . . . d F ( x n - 0 , ) = I J . . . [ d F ( x 1 ) . . . d F ( x „ ) 

x r i ^ . . . ^ x - n 
I XjXui=y I/.jXr ,-^.y — AQI 

7 = 1 7 

and after the transformations xrj. = xj, j = 1, ..., n (for each r), 

G(>; 0,.) = G(y - A0.), 

where 

(7) G O 0 = n ! j . . . j d F ( x 1 ) . . . d F ( x „ ) . 

X i S ... ^ x n 

The first statement of the theorem follows from the fact that k > 0 and the rest 
immediately from the identity 

n ! Ј . . . ľ d F ( x 1 ) . . . d F ( x „ ) = 0 , 
X, ^...^xn 

SÀjXj = y 

which holds for every y. 

Remark 1. As to the choice of the weight function J(u), the condition 

(8) n(J, F) = J(u) F~ '(«) du = 0 
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ensures the asymptotical unbiasedness of the estimates, since according to Theorem 3 
of [12] (under some conditions) 

lim ES; - n(J, Ff) = 0t + fi(J, F) . 
n-> oo 

But (8) is not necessary for our purposes, because the bias //(J, F) is the same for all 
Sl9 ..., Sk. If F(x) has the density f(x), then the choice 

Ąu) = ^f(F-Қu)) 
áu 

].ë^Л'-(.»*]". 
where 

, < „ , , - ) , _ _ _ _ _ _ > , 

yields an asymptotically efficient estimate (in the sense of Cramer) (see [8]). But 

this weight function is nonnegative only if the density f(x) is strongly unimodah 

Of special interest from the point of view of robustness is the a-trimmed mean corres­

ponding to the weight function 

(9) J(u) = — - — for u e <a, 1 - a> 
1 — 2a 

= 0 otherwise , 

since it limits the influence of outlying observations. In the concluding section, we 

give some numerical examples of ARE of procedure based on a-trimmed means 

relative to the Bechhofer procedure based on sample means. 

3. PROBLEM (a) 

We suggest a selection procedure for problem (a) based on L-estimates consisting 

in selecting the t populations associated with the t largest values S[fc_,+ 1 ], ..., S[&] 

of S l 5 ..., Sk. Then 

(10) P{CS} = P{max ( S ( 1 ) , . . . , S(fe_f)) < min (S ( f c_, + 1 ), ..., S(k))} . 

Searching for infimum P{CS} on D (and for LFC), we can apply the theorem of [1] 

saying that (10) is a nonincreasing function of fl[1]? ..., fl^-*] and a nondecreasing 

function of fl[/c_, + 1 ] , ..., 0m. (The assumptions of the theorem are fulfilled by Theo­

rem 1.) So we have (see [1]) 

inf P{CS} = infQ(fl), 
OeD 0 

where 

Q(e) = P{CS/0U] = ... = 0[t_fl = e, %_ r + 1 ] = ... = em = o + 5*} = 

= *P° <?-'(y + M*)[l - Giy)?-1^) 
J — oo 
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in fact does not depend on 0. Hence LFC is the slippage configuration (5) and, 
given 3* > 0, the sample size is determined from the equation 

(11) PLFC {CS} = t Gk-'(y + X(n)ó*) [1 - G(y)]'-ldG(y) = P* . 

(One must keep in mind the dependence of G on n.) 
Further, we shall prove a theorem analogous to Lemmas 4AT and 4B.1 in [10], 

which gives a large sample solution of the sample size problem and enables us to find 
ARE of the investigated procedure relative to the Bechhofer procedure. To this 
end, we shall impose some of the following conditions on the functions J(u) and 
F(x), which guarantee the applicability of the results of [12]. 

(A) J(u) is bounded on (0,1). 

(B) J(u) is continuous a.e. F_1. 

(C) J(u) satisfies the Holder condition with /? > \ except possibly at a finite number 
of points of F~1 measure zero. 

(D) J(u) = 0 for u e (0, a) and u e (1 — a, 1), where 0 < a < \. 

(E) J x2dF(x)<oo. 
J - o o 

(F) lim xy[\ - F(x) + F ( - x ) ] = 0 for some y > 0 . 
JC-+00 

Let US now consider the k-sample problem described in Section 1 with an increasing 
value of the sample size n. P* being fixed, write 3{n) for S* and 

(\0\ 0(n) — — 0{n) — 0(n) — <S(n) - — 0(n) — r)(n) 

( l Z j Ctri-j — . . . — tf[fc_r] — t / [ f c _ f + 1 ] 0 — . . . — t7[fc] 0 

for the respective L F C We first prove a lemma. 

Lemma 1. For P*fixed, let S{n) be such that (11) holds with S* = S{n);n = i, 2, .... 
Let the conditions (A), (B), (E) or the conditions (A), (B), (D), (F) be fulfilled. 
Then lim 6(n) = 0. 

n->oo 

Proof. Suppose the assertion of the lemma is not true. Then there exist a number 
e > 0 and a subsequence {mn}, mn ^ «, so that 5{mn) ^ s for all n. Let us put Sj = 

n 

= X AjXij9 where Xu = Xu - Bf\ Random variables Xu (i = 1, ..., k; j = 1, . . . , n) 
1=i 

are i.i.d. with the distribution function F(x) and also Su ..., Sk are i.i.d. From (11), 
(10) and the fact that LFC is the slippage configuration (5) we get 

P* = P{ max (S (0 - ES(0) ^ min (S (0 - ES(0) + 3{n)A{n)} ^ 

^ P{|Š; - Eš ( | ^ i5(n)Á(n\ i = 1 , . . . . k} ^ 

381 



and passing to the subsequence {m„}, 

(13) F* g 4 mn Var S/ 

for all n. But lim A(Wn) - J(u) du = 1 and 

n->oo JO 
lim m„ Var S^ = K(J, F), 

mn-*oo 

where 
Too /*oo 

(14) K(J, F) = y[E(x)] j[E(j>)] [r(min (x, >>)) - E(x) F(y)] dx dy 
J ~ 00 J — 00 

is finite: first, if the second moment of F is finite, then according to Lemma 2 of [9] 

Too /*oo 

o2(F) = Var Xu = [E(min (x, y)) - F(x) F(yj] dx dy < oo 
J — oo J - 00 

and it remains to use the boundedness of J(u); second, if J(u) trims the extremes, then 
in (14) we integrate only over the bounded area 

<F~1(a), F_1(1 - a)> x <F~1(a), F_1(1 - a)> . 

Thus 

l i m r 1 _ i . . " . y " ; g . T , 1 

n^l mn (sX^fj 
and (13) leads to a contradiction with the assumption P* < 1. 

Theorem 2. FOr P*fixed, let 3{n) be such that (11) holds with b* -= S(n); n -= 1, 2 , . . . . 
Let the conditions (A), (C), (E) or (A), (C), (D), (F) be fulfilled. Then as n ~> oo, 

(15) S(n) = S[K(J, F)]1/2 n~1/2 + o{n~1'2), 

where K(J, F) is given by (14), 3 is determined by the condition 

(16) P* = tQ^^dl-112, . . . ^ 2 - 1 / 2 , 0 , ...,Q) 

(k — t) times (t — 1) times 

and Qk-i is the distribution function of a normally distributed vector (Ul9 ...t Uk__t, 
Wk_t+1,...,Wk_1)with 

_Ut = EWt = 0 , Cov (U„ Uu) = i(du> + 1), 

Cov (Wh W„) = 1(6,,, + 1), Cov (U„ ^,) = - | - , 

i, i" = 1, ..., k - t, I, /' = k - t + 1, ..., k - 1 

(tijj, « /he Kronecker symbol). 
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Proof. Similarly as in the proof of Lemma 1, we introduce the variables Xtj and 
St and we start from (11) and (10): 

p * = I PLFC{S(O ~ S(r) £ 0 , i = l , . . . , f e - r ; 
r=fc-f+l 

s., Jíг) 5 ( 0 ^ 0 , / = fc - ř + 1,..., fe; / * r) = 

= X P{n 1 "[2K(J, E)]-1/2 (S ( i ) - ES(I, - S(r) + ES ( r )) g 
r = fc - f + 1 

^ c5("U(n) n1 / 2[2K(J, F)]"1/2, i = 1,..., fe - t; 

n1/2[2K(J, F)]-1/2 (5 ( r ) - ES ( r ) - S ( / ) + ES(I)) = 0 , 

/ = fe - r + 1,..., fe ; / + r} . 

This equality holds for every n. According to Theorems 1 and 2 (or Theorem 5) 
of [12], the random variables n1 / 2[2K(J, F)]~1/2 (St - ES,), i = 1, ..., fe, are for 
n -> oo asymptotically normally distributed N(0, £). If we further use a well-known 
result concerning the limiting distribution if a linear transformation of random 
variables and the fact that convergence to a continuous distribution function is 
uniform in argument, we obtain 

P* = t lim efc-i(^(n)A(n) n1/2[2K(J, F)]-1/2, ..., S{n)X{n) n1/2[2K(J, F)]"1/2 , 

(k — t( times 

0, . . . ,0 ) . 

(t — 1) times 

Consequently, (16) is equivalent to 

(17) \imS{n)?{n) n1,2d-l[K(J, F)]~1/2 = 1 . 
n-> oo 

Let us now examine the asymptotic behaviour of X{n). Suppose first that J(u) satisfies 
the Holder condition on (0, 1), i.e. 

(18) |J(tt) - J(u')\ ^ C\u - uf , 0 > i , 

for all u, u' e (0, 1). Then 

n1!2\X{n) 1 = « 1/2 J 
n fijln 

Z J 

1=iЈ(y-D/пL Vn + j 

n Ґj/n 

J(u) du 

£ n 1 / 2 C X I n~Uu = Cnl,2-p. 
j=i J o ' - D / « 

An analogous inequality may be proved in the general case: if (18) is satisfied on some 
m subintervals (ut-u wf) of (0, 1) (/ = 1, .. . , m; t/0 = 0, um = 1), then we have 
just n + m summands, each of them being bounded by n~1/2 sup J(w), so that 

uє(0Л) 

n , / 2 | ; . ( B ) - li < c n 1 / 2 - " + -1/2 шp J(w) 
uє(OД) 
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In any case we get lim n1/2\X(n) — l| = 0. As a consequence of Lemma 1, the sequence 
f t - * 00 

{5(n)} is bounded. It follows that (17) is equivalent to 

l im5 ( B ) / i 1 / 25- 1 [2_(J ,F)]- 1 / 2 = 1 
n-+ oo 

which gives (15). 

Let us now assume that we are given a value S*. Then <5(n) is set equal to 5* and, 
from the above theorem, a large sample solution of (11) is given by 

(19) nL = (^J K(J, F) . 

If we further equate (4A.7) of [10] to (15), we obtain the following theorem. 

Theorem 3. Let the conditions (A), (C), (E) be satisfied. Then the asymptotic 
efficiency of the procedure based on L-estimates relative to the Bechhofer procedure 
is 

where o2(F) is the variance of F. 

Remark 2. Since sample means are special cases of L-estimates, procedures 
based on L-estimates are in fact generalizations of the Bechhofer procedure. So 
Theorem 2 also is a generalization of Lemma 4A.1 of [10]. 

Notice that (20) coincides with the ARE of the L-estimate of location with the weight 
function J with respect to the sample mean. 

4. PROBLEM (b) 

The procedure for selection of t best populations with regard to order (from the 
best one to the t-th best one) is to select populations associated with S[k], ..., S[fc_t + 1] 

in this order. Then obviously 

(21) PfCS} = P{max(S(1), . . . ,S ( k_ f )) < S(fc_r + 1) < ... < S{k)} . 

As far as I know, there is no general analogue of the theorem of [ l ] for problem (b). 
So the search for infimum P{CS} on D (given by (4)) is a little more complicated. 
Nevertheless, as in the previous case, P{CS} is a nonincreasing function of 9llv ... 
..., #rfc-r] ar*d cannot be increased by setting 0 t l ] = #r..-ri

 = fy/c-r + i] "" <5*- So with 
help of (21), 

k-t r<x> k-t r°o Tyk ryk-t + 2 

p(CS} = E [ 1 % - ™m) ... dG(yk-t+l - 1%_(+1])... 
r=iJ-ooi=i Jy Jy Jy 

. . . dG(yk.l - A^_ 1 3 ) dG(yk - A0W) dG(y - „%,) ^ 

384 



Too pco ryh Cyk - 1 + 2 

_ ( * - 0 G*- '-1^- .119-,- ,+ !, + .15*) .. . d G ( ^ _ , + l -
J-co Jy Jy J y 

~ A9Dk_ f+1])...dG(yJk.1 - A ^ - i ^ d G ^ - A0[fc])dG(>> - Ac7[ft_r+1] + A<5*). 

After a transformation of variables given by z = y — A0[fe_,+1], z{ — y{ — A0[rj, 
i = k — t + 1, ..., k, it turns out that the last expression is a nondecreasing function 
of the differences 0[fe_, + 2] — 0[fc_r + 1], ..., r?[fc] — % _ 1 ] . Thus that expression attains 
its infimum on D for 0[rj — fyi-i] = <5*, i = k — t + 2, ..., k, and this is also 
the infimum of P{CS} on D. It follows that the sample size n is obtained by solving 
the equation 

Joo Too Pyfc + A<")<5* 

G*—'O) 
- o o J y - f A < » ) < 5 * J y - ( r - l ) A < » ) < 5 * 

f y k - t + 2 + A<n)<5* 

•Í dG(yfc_,+ 1 ) . . . dG (^ - 1 )dG (^ )dG ( , . ) = P* 
y-A<")*5 

and LFC is clearly the slippage configuration (6). 

Lemma 2. For P* fixed, let 3{n) be such that (22) holds with <5* = 3(n); n = 1, 2 , . . . . 
Let the conditions (A), (B), (E) Or (A), (B), (D), (F) be fulfilled. Then lim <5(r,) = 0. 

n-+oo 

Proof. The proof of Lemma 1 can be repeated literally with the only difference 
that we have (21) instead of (10). 

The proof of the following theorem, which is an analogue of the proof of Theorem 2, 
is also omitted. 

Theorem 4. For P* fixed, let 3{n) be such that (22) holds with 3* = <5(n); n = 1, 2,. . . . 
Let the conditions (A), (C), (E) or (A), (C), (D), (F) be satisfied. Then as n -> oo, 

(23) <5("} = <5[K(J, F)]1/2 n~1 / 2 + O(n~1/2), 

where K(J, F) is given by (14), 3 is determined by the condition 

(24) P* = (k - 0 <2k_.(0.....0, 5 2 - ^ , . . . , , 5 2- 1 / 2) 

(k — t — 1) times t times 

and Qk-i is the distribution function of a normally distributed vector (Ui, ..., Uk_f_l5 

Wk_f, ..., Wk-^such that 

EU. = EW< = 0 , Cov (Ui9 Ur) = x(<5a, + 1), 

Cov (Wh Wv) = 1 for / = V , Cov (U., W,) = - \ for / = k - t, 

= - i for |/ - /'| = 1 , = 0 for / > k - t , 

= 0 for \l - l'\> 1, 

i, i' = 1, . . . , k - t - 1 , /, /' = k - t, ..., k - 1 . 
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From (23) it is clear that the large sample solution of (22) is again given by (19) 
(where S is of course determined by (24)). Finally, with help of Lemma 5A.1 of [10] 
(or Theorem 4 for J(u) == 1) we obtain that the asymptotic efficiency of the procedure 
based on L-estimates relative to the Bechhofer procedure is equal to (20). 

5. CONCLUDING REMARKS, EXAMPLES 

From the practical point of view, the feasibility of the procedures suggested is 
of great importance. Let us at least have a look at the case of a-trimmed means 
and the large sample solution of the sample size problem given by (19). To be able 
to use this formula, we must know K(J, F) and o. Using the idea of the proof of Lem­
ma 2 of [9], we can derive for (14), where J(u) is given by (9) and the distribution F 
is symmetric about zero (F( —x) = 1 — F(x)), 

, p ^ F - i ( l - a ) 

(25) X ( j , F ) - - • - + - -
(1 - 2a)2 

л F - Ҷ l - a ) -I 

x2dF(x) + 2a(F-Ҷl - a))2 . 
Ј-Ғ-Ҷl-a) Ј 

(This formula was obtained directly for a~trimmed mean in [3].) With help of (25), 
we may easily evaluate K(J, F) for various symmetric distributions; e.g. for the 
standard normal distribution (F = <I>) 

/ 2 \ 1 / 2 - ( ^ " H i - g ) ) 2 

2a(0>-1(l - a))2 - - J 0 ) " 1 ( l - a ) e 2 + K(J,F) = -
1 ( l - 2 a ) 2 L 

for the uniform distribution (F(x) = x + i , — \ S x <. i ) 

K(J, F) =f2(l+ 4a), 

for the double exponential distribution (F(x) = \cx for x < 0, F(x) = 1 — 
for x ^ 0) 

K(J, F) = 1 (2a log 2a + 1 - 2a) , 
V } (1 - 2a)2 V ' 

for the logistic distribution (F(x) = 1/(1 + e~x)) 

K(J, F) = - -4• - r i 0 g i ^ log (1 - a) + ^ - £ ( - I f - 1 (-«—)" 
(1 — 2a) L a 12 m=i m \1 — a/ 

(With general known scale parameter er, we make use of the identity K(J, F(xjo)) = 
= a2 K(J, F(x)).) In the table below, we present some numerical examples of these 
values for various a's. Interesting studies and discussions on a-trimmed mean may be 
found e.g. in [3], [5] and [7]. 
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It remains to find the value of S. For problem (a) we have to solve the equation (16). 
With regard to the form of the covariance matrix of Qk-U we can make use of formula 
(1.3) of [6]; after easy calculations (16) reduces to 

P* = t &-'(y + á)[ i - <j>oo;r' d<j>uo. 
The value 3 as a solution of this equation was tabulated in [2] for various values 
of k, t and P*. When solving equation (24) (problem (b)) we should notice that the 
right-hand side of (24) coincides with the ritht-hand side of (21) where S(i) has the 
distribution function <J>(y — 0r/]) and 0 has the form (6) with <5* = 3. In [4] a quick 
algorithm is given for an approximate evaluation of the latter expression so that P* 
can be easily tabulated (for given k and t) as a function of 8. For the case of complete 
ranking, there is a table of P* in [4] for 8 = 0,0 (0,1) 4,2 and k = 2(1) 7. 

In the table below, for each distribution, in the left column we give the values 
of K(J, F) and in the right column those of eL{J)B. 

Table 

\ ғ 

* \ 
NOГÌ mal Unifo: rm 

Double 
exponential Logistic 

0-01 1004 0-996 0-087 0-962 1-878 1065 3191 1031 
0-05 1-026 0-974 0-100 0-833 1-654 1-209 3-059 1075 
0-10 1-060 0-943 0-117 0-714 l-494 1-339 3017 1-090 
0-15 1-100 0-909 0-133 0-625 1-383 1-446 3-031 1085 
0-20 1-145 0-874 0-150 0-556 1-297 1-542 3-080 1-068 
0-25 1-195 0-837 0-167 0-500 1-227 1-629 3-158 1-042 

In addition, the algorithm described in [4] enables us to solve the sample size 
problem for small samples: we can evaluate (10) or (21) under LFC as a function 
of n and <5 provided we know G(y) (see (7)) or have it tabulated with sufficient accuracy. 

Acknowledgement. I gratefully acknowledge the inspiring help given me in this 
study by Dr. Zbynek Sidak, DrSc. 
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Souhrn 

PROCEDURY USPOŘÁDÁVÁNÍ A SELEKCE 
PRO PŘÍPAD PARAMETRU POLOHY ZALOŽENÉ NA L-ODHADECH 

V článku jsou studovány vlastnosti některých procedur uspořádávání a selekce 
populací založených na robustních L-odhadech parametru polohy. Je nalezena 
nejméně příznivá konfigurace parametrů a asymptotická relativní eficience vzhledem 
k procedurám založeným na výběrových průměrech. 
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