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1. GENERAL BACKGROUND

There are many kinds of ranking and selection problems. Generally speaking,
the goal is to select some ‘““good” populations from given k& populations n, ..., 7.
In this paper we will consider two problems: (a) selecting ¢ “best ” populations
regardless of their order and (b) selecting ¢ “‘best” populations with regard to their
order (1 <1<k — 1). (The complete ranking of all k populations is of course
included in (b), namely for ¢+ = k — 1.) We will deal only with the special case
of the location parameter and continuous distribution functions. This means, we shall
assume that the population 7; has a distribution function F(x) = F(x — 0)),
i=1,..., k, F(x)is continuous and the “‘bestness” of a population =, is characterized
by its location parameter 0, the best population being the one with the largest
location parameter, etc.

Given k random samples, X, ..., X;, from n; (i = 1,..., k), all of the same
sample size n, a selection procedure is usually based on some statistics Y; =
= Y{(Xi, ..., X;,) with a distribution depending on 0;. We call a selection correct
(CS), if the selected populations are really the best ones, respectively with the right
order. We seek for such a procedure that the probability of correct selection exceeds
~ a preassigned value P* < | when 0 = (0, ..., 0,) lies in a certain subset D of the
\ parameter space Q = {0}, called the preference zone. Or, more specially, we demand
(1) inf P{CS} = P*

0eD
and from this equation we determine the sample size n. The parameter vector 8 € D
for which P{CS} attains its infimum on D is called the least favorable configuration
(LFC) (if it exists). Then (1) can be written in the form

@) PLrc{CS} = P*.

Let us denote by 0;y; < 057 < ... = 0O the ordered parameter values 0. ..., 0y,
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by 713, Moy - -0 Ty the respective populations, by Yy, Y5, ..., Y, the respective
statistics Yy, ..., Y, and by Yy £ Y53 £ ... £ Yy the ordered values of these
statistics. (Of course, we do not know the correspondence between n,. ..., m, and
M1} - Apg-) For problem (a), it is usual to put

(3) D = {OE Q:0p—ry S Oppmgsry — 6*} ,
where 0% > 0 is to be chosen in advance, and for problem (b),
(4) D = {0652:0[,-_1] SOhn—=0%, i=k—=1t+1,.., /c} .

Various nonsequential techniques for ranking and selection of populations were
developed during the last 25 years. For F normal, there are Bechhofer procedures

based on sample means Y; = n~ 'Y X;; (see [2] or [10]). The LFC’s for them are
i=

the so called slippage configurations:

(5) Oy = = Opeiy = Opyy1y — 0% = ... = Opq — O*

for problem (a) and

(6)

Oy = ... = Op—y»
Oy = Oy — 0%, i=k—t+1,...k

for problem (b). For F continuous, procedures based on ranks of X;’s among
Xty Xip Xoy, .. Xy, (ie., procedures based on the so called R-estimates)
were also studied (among others). The authors of the paper [10] came to the conclu-
sion that these “nonparametric” procedures were more robust in terms of the asymp-
totic relative efficiency (ARE) than the corresponding ‘‘parametric” procedures,
the ARE of two proceduras being defined as the limiting ratio of the sample sizes requi-
red to ensure (1). However, the ARE’s (both for (a) and (b)) were derived under
the restrictive assumption 0y — 0y; = O(n~'/?); in this case slippage configura-
tions are LFC’s at least asymptotically. Later it was shown (see [11]) that gene-
rally slippage configurations need not be LFC’s for procedures based on ranks,
even asymptotically. It follows that for these procedures the ARE’s are generally
not known and the infimum of P{CS} over D is not controlled even asymptotically.

2. L-ESTIMATES
For the above-mentioned reasons, attempts to find robust procedures of other

types have been made. One of many possibilities is to take linear functions of order
statistics (the so called L-estimates) for Y¥;s, i.c. to put

Yi:S[:Z/{in[j]’ i:‘l,...,k,
ji=1
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where Xy £ X5y £ ... £ Xy,; arc the ordered values X, ..., X;, and
A4y ... A, are some suitably chosen coefficients. We shall suppose that these coeffi-

1
cients are generated by a weight function J(u) = 0, u € (0, 1), such thatJ~ J(u)du =1,
namely, 0

We put A = A" Zi and denote by G(y; 0;) the distribution function of S..
Jji=1
Then we have the following result:

Theorem 1. The system of distribution functions G(y; 0) is stochastically increas-

ing, i.e.
0 <0 =G(y;0) = G(y; 0) forall y.

Further, G(y; 0) is continuous both in y and in 0.

n

Proof. Using the notation x;y; £ X7 £ ... £ X, for ordered values x, ..., x
and r = (ry, ..., r,) for any permutation of numbers 1, ..., n, we get

j de ~0,) ... dF(x, —Ui):;J...de(xl)...dF(xn)

2 ),r[”<v )./,x,. <y--A0;
i=1

and after the transformations x,, = x;,j = 1,..., n (for cach r),

G(y; 0;) = G(y — 40)) ,

where
@ G(y) = n! ...de(xl)...dF(x").

The first statement of the theorem follows from the fact that A > 0 and the rest
immediately from the identity

which holds for every y.

Remark 1. As to the choice of the weight function J(u), the condition

(3) u(J, F) = 'rJ(u) F '(u)du =0

0
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ensures the asymptotical unbiasedness of the estimates, since according to Theorem 3
of [12] (under some conditions)
limES; = p(J, F)) = 6; + p(J, F).
But (8) is not necessary for our purposes, because the bias y(J, F) is the same for all
.» S If F(x) has the density f(x), then the choice

do(v !
o0 = S0 [ [ 49D o ae]

)

where
1
u
(p(u,f) — ]( ))

f (F (W)’
yields an asymptotically efficient estimate (in the sense of Cramér) (see [8]). But
this weight function is nonnegative only if the density f(x) is strongly unimodal.

Of special interest from the point of view of robustness is the a-trimmed mean corres-
ponding to the weight function

) J(u) = 1 for e, 1 —a)
1 = 2a

= 0 otherwise ,

since it limits the influence of outlying observations. In the concluding section, we
give some numerical examples of ARE of procedure based on «-trimmed means
relative to the Bechhofer procedure based on sample means.

3. PROBLEM (a)

We suggest a selection procedure for problem (a) based on L-estimates consisting
in selecting the t populations associated with the t largest values Sp_ 443, ... Syg
of Sy, ..., Si. Then

(10) P{CS} = P{max (S, .-, S=r) < Min (S r41) --» Sy)} -

Searching for infimum P{CS} on D (and for LFC), we can apply the theorem of [1]
saying that (10) is a nonincreasing function of 6y, ..., 0 —,; and a nondecreasing
function of O, 413, ..., 0. (The assumptions of the theorem are fulfilled by Theo-
rem 1.) So we have (see [1])
inf P{CS} = inf Q(6),

0

0D
where

Q) = P{CS/01y = . = Oy = 0, Opgs1y = ... = Opgg = 0 + 0%} =

- ,f Gy + 26%) [1 = G(»)]"'dG(»)
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in fact does not depend on 0. Hence LFC is the slippage configuration (5) and,
given 6* > 0, the sample size is determined from the equation

(1) PucfCs) = ff Gy + A% [1 ~ G()]' ™ dG(y) = P*

(One must keep in mind the dependence of G on n.)

Further, we shall prove a theorem analogous to Lemmas 4A.1 and 4B.1 in [10],
which gives a large sample solution of the sample size problem and enables us to find
ARE of the investigated procedure relative to the Bechhofer procedure. To this
end, we shall impose some of the following conditions on the functions J(u) and
F(x), which guarantee the applicability of the results of [12].

(A) J(u) is bounded on (0,1).
(B)  J(u)is continuous a.e. F~ 1.

(C)  J(u) satisfies the Holder condition with 8 > 4 except possibly at a finite number
of points of F~! measure zero.

(D) J(u)=0for ue(0,a)and ue(l — o, 1), where 0 < a < 4.

(E) J.:Oxz dF(x) < oo.
(F) limx'[1 — F(x) + F(=x)] =0 forsome y> 0.

X 00

Let us now consider the k-sample problem described in Section 1 with an increasing
value of the sample size n. P* being fixed, write " for 6* and

(12) 6 = ... =00, =00y — 0" = ... =0 — o™
for the respective LFC. We first prove a lemma.

Lemma 1. For P* fixed, let 3™ be such that (11) holds with §* = 6™;n = 1,2, ....
Let the conditions (A), (B), (E) or the conditions (A), (B), (D), (F) be fulfilled.
Then lim 6™ = 0.

n— oo
Proof. Suppose the assertion of the lemma is not true. Then there exist a number
¢ > 0 and a subsequence {m,}, m, = n, so that 3" = ¢ for all n. Let us put §; =

=Y 4;X;;, where X;; = X;; — 0{". Random variables X;; (i = 1,...,k;j = 1,...,n)
=1

are i.i.d. with the distribution function F(x) and also Sy, ..., Sy are i.i.d. From (11),
(10) and the fact that LFC is the slippage configuration (5) we get

P* = P{ max (S - ES,) < min (S, — ESq) + 6"A"} 2
k

1<igk—t k—t+151g

2 P{|S, - E§| £ 46™A", i =1,..., k} =

N k
>11-4 A\{flfsﬁl
= (5('-)/1("))2
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and passing to the subsequence {m,},

4 m,Var §,

(13) P* > [1 o :r

1
for all n. But lim At =f J(u)du = 1 and

n—+ oo [

lim m, Var §; = K(J, F),

mp—

where
09 k.5 = [ [ ST SR TrGmin 5, ) = £ T ax ay

is finite: first, if the second moment of F is finite, then according to Lemma 2 of [9]

-

o*(F) = Var X ; =.r r [F(min (x, y)) — F(x) F(y)] dxdy < o

and it remains to use the boundedness ofJ(u); second, if J(u) trims the extremes, then
in (14) we integrate only over the bounded area
CF~Ma), F7I(1 — o)) x <F 7o), F7Y(1 = o)) .

Thus
4 m,Var §,

k
lim|1 — — =1
n— l: m, (81('”"))2 ]

and (13) leads to a contradiction with the assumption P* < 1.

Theorem 2. For P* fixed, let 5 be such that (11) holds with 6* = 6™;n = 1,2, . ...
Let the conditions (A), (C), (E) or (A), (C), (D), (F) be fulfilled. Then as n — o,

(15) 8™ = §[K(J, F)]"*n= + o(n~'/?),

where K(J, F) is given by (14), § is determined by the condition

(16) P* =10, (52712, ..,52712,0,...,0)
(k — 1) times (r — 1) times

and Q,_, is the distribution function of a normally distributed vector (U, ..., U,_,,
VVk—H— 100 m—l) with
EU, = EW, =0, Cov (Uis Ui/) = ‘5‘(5;';'/ + 1),
Cov (W, W,,) = 4(éy, + 1), Cov (U, W) = —14,
i'=1,..,k—1t, LIl=k—t+1,..,k—1

Li =

(61, is the Kronecker symbol).
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Proof. Similarly as in the proof of Lemma 1, we introduce the variables Xu and
S, and we start from (11) and (10):

k
Pr= Y Puc{Sy —Sp <0, i=1..,k—1t;

r=k—t+1
Sy =Sy =0, I=k—t+1,..,k l+r}=
k
= Y P(nY[2K(J, F)]"¥2 (8, — ES;y — S, + ES,) £

r=k—t+1

S 6MAM 22K, F)TYE, i=1 Lk =t
n'2[2K(J, F)] 2 (S, — ES,, — Sy + ES) £ 0,
—k—t+1,. . k; 1},

This equality holds for every n. According to Theorems 1 and 2 (or Theorem 5)
of [12], the random variables n'/?[2K(J, F)]~ /2 (S8, — ES)), i = 1, ..., k, are for
n — oo asymptotically normally distributed N(0, 4). If we further use a well-known
result concerning the limiting distribution if a linear transformation of random
variables and the fact that convergence to a continuous distribution function is
uniform in argument, we obtain

P* = tlim Q,_,(0™i"™ n'2[2K(J, F)] /2, ..., 0™ n'2[2K(J, F)]"1/2,

n-—+oo

(k — 1) times

0,...,0).
—_———
(r — 1) times

Consequently, (16) is equivalent to

(17) lim §™A™ n' 25" [K(J, F)] "> = 1.

Let us now examine the asymptotic behaviour of 1. Suppose first that J(u) satisfies
the Holder condition on (0, 1), i.c.

(18) () = J(u)| £ Clu —w|f, B>},

for all u, u" e (0, 1). Then
n j/n :
J
J(—1-) - J(u)] du
J; J'(J'—l)/n[ (” + 1>

n'22M — 1| = n'2
n j/n
=n'2CYy n~fdu = Cn'?F,

j=1J—1)/n

<

An analogous inequality may be proved in the general case: if (18) is satisfied on some
m subintervals (u;_,, u;) of (0,1) (i =1,....,m; uy =0, u, = 1), then we have

just n + m summands, cach of them being bounded by n~ 172 sup J(u , SO that
J g y
ue(0,1)

nt i — 1l < cn'?P 4+ mn Y2 sup J(u).
= P
4€(0,1)
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In any case we get lim n

n—+oo

{6} is bounded. It follows that (17) is equivalent to

lim 6"n'2 67K (J, F)]"1/2 = 1

n— o

”2|A"“ - 1] = 0. As a consequence of Lemma 1, the sequence

which gives (15).

Let us now assume that we are given a value 6*. Then 6™ is set equal to 6* and,
from the above theorem, a large sample solution of (11) is given by

(19) ny = <§>2 K(J, F) .

If we further equate (4A.7) of [10] to (15), we obtain the following theorem.

Theorem 3. Let the conditions (A), (C), (E) be satisfied. Then the asymptotic
efficiency of the procedure based on L-estimates relative to the Bechhofer procedure
is

(20) erw,s(F) =

where o*(F) is the variance of F.

o*(F)
K(J.F)’

Remark 2. Since sample means are special cases of L-estimates, procedures
based on L-estimates are in fact generalizations of the Bechhofer procedure. So
Theorem 2 also is a generalization of Lemma 4A.l of [10].

Notice that (20) coincides with the ARE of the L-estimate of location with the weight
function J with respect to the sample mean.

4. PROBLEM (b)

The procedure for selection of t best populations with regard to order (from the
best one to the #-th best one) is to select populations associated with Sy, ..., S+ 13
in this order. Then obviously

(21) P{CS} = P{max (S(1), --» S=n) < Sk=r+1) < --- < Sy}

As far as I know, there is no general analogue of the theorem of [1] for problem (b).
So the search for infimum P{CS} on D (given by (4)) is a little more complicated.
Nevertheless, as in the previous case, P{CS} is a nonincreasing function of 6, ...
..+ O~ and cannot be increased by setting 013 = O —yg = Oy—,4+ 17 — 0*. So with

help of (21),
k—t -t o (*yi Yk—t+2
P{CS} =Y G(y - w[,.])'[ .[ J dG(Vi—ra1 = Mp—rs17) -+
r=1,J-—wi=1 yJYy y
i*r

o dG(y-y — }-O[k—l]) dG()’k - Aby,) dG(y = 0, =

ok
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o 0 ("Y1 Yk—t+2
g (k" t)f Gk_‘_l(y _lg[k—H-” + ié*)j‘ J‘y J‘y dG(yk_,+1 -
Y y

- 19[,‘_”1]) e dG(yk—l - Ae[k_n) dG(yk - }’g[k]) dG(y - },0[’(_,+ 1] + )u(s*) .

After a transformation of variables given by z = y — AOp_,4qy, 2; = y; — A0py,
i=k—t+1,...,k, it turns out that the last expression is a nondecreasing function
of the differences Op_ 427 — Op—r+13 -+ Oy — Opx— 13- Thus that expression attains
its infimum on D for Oy — Oy = 0%, i=k —t+2,..,k, and this is also
the infimum of P{CS} on D. It follows that the sample size n is obtained by solving
the equation

] I ] N I

y—tamos y—(l—l)l(")é‘“.
Vi — ¢ +2+ A(M)5* .
T a6 hewin) - 46001 a6 860 =
y—- n)*

and LFC is clearly the slippage configuration (6).

Lemma 2. For P* fixed, let 8 be such that (22) holds with 6* = §™;n = 1,2, ....
Let the conditions (A), (B), (E) or (A), (B), (D), (F) be fulfilled. Then lim 6" = 0.

Proof. The proof of Lemma 1 can be repeated literally with the only difference
that we have (21) instead of (10).

The proof of the following theorem, which is an analogue of the proof of Theorem 2,
is also omitted.

Theorem 4. For P* fixed, let 5™ be such that (22) holds with 6* = §™;n = 1,2, ....
Let the conditions (A), (C), (E) or (A), (C), (D), (F) be satisfied. Then as n - o,

(23) o™ = S[K(J, F)]"* n™ "% + o(n™"/?),

where K(J, F) is given by (14), § is determined by the condition

(24) P* = (k — 1) Qk_I&;&§ 271202717
(k — t — 1) times t times

and Q,._, is the distribution function of a normally distributed vector (Uy, ..., Uy_,_y,
Wi s « s Wi—y) such that

EUi =EW, = 0, Cov (Ui, Uz) = %(511 + 1) >
Cov(W,W,)=1 for I=1, Cov (U, W)= —1% for I=k—t,
= -1 for |I-1|=1, =0 for I>k-—t,

0 for |I-1]>1,
Li'=1.,k—t—1, LI=k—t.,k—1.
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From (23) it is clear that the large sample solution of (22) is again given by (19)
(where 6 is of course determined by (24)). Finally, with help of Lemma 5A.1 of [10]
(or Theorem 4 for J(u) = 1) we obtain that the asymptotic efficiency of the procedure
based on L-estimates relative to the Bechhofer procedure is equal to (20).

5. CONCLUDING REMARKS, EXAMPLES

From the practical point of view, the feasibility of the procedures suggested is
of great importance. Let us at least have a look at the case of a-trimmed means
and the large sample solution of the sample size problem given by (19). To be able
to use this formula, we must know K(.I, F) and . Using the idea of the proof of Lem-

ma 2 of [9], we can derive for (14), where J(u) is given by (9) and the distribution F
is symmetric about zero (F(—x) = 1 — F(x)),

F~1(1—0a)

(25)  K(J,F) = ﬁz[j ang+mwlu-m1.
(1 - 2(1) —F-1(1-a)

(This formula was obtained directly for a-trimmed mean in [3].) With help of (25),

we may easily evaluate K(J, F) for various symmetric distributions; e.g. for the
standard normal distribution (F = ®)

1

) , A _ (@ l(1-a)?
(1~ 2 [20(((1) (1 - a)? - <n> O (1 —a)e 2 +

K(J, F) =

for the uniform distribution (F(x) = x + 1, —+<x <)
K(J, F) =5 (1 + 4oc)
for the double exponential distribution (F(x *for x <0, F(x)=1— te™~
for x = 0)
K@ﬂzojz(MMM+l—m

for the logistic distribution (F(x) = 1/(1 + ™))

K. P) = _42&)2 [log ~]~;W log (1 — ) + »{; = Z (—1y ! <fi“__>]

= 1 —a

(With general known scale parameter o, we make use of the identity K(J, F(x/o)) =
= 62 K(J, F(x)).) In the table below, we present some numerical examples of these

values for various os. Interesting studies and discussions on a-trimmed mean may be
found e.g. in [3], [5] and [7].
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1t remains to find the value of §. For problem (a) we have to solve the equation (16).
With regard to the form of the covariance matrix of Q, _,, we can make use of formula
(1.3) of [6]; after easy calculations (16) reduces to

pr - ;J Oy + 5) [1 — O()] ' dO(y) .
The value § as a solution of this equation was tabulated in [2] for various values
of k, t and P*. When solving equation (24) (problem (b)) we should notice that the
right-hand side of (24) coincides with the ritht-hand side of (21) where S;, has the
distribution function ®(y — ;) and @ has the form (6) with 6* = 4. In [4] a quick
algorithm is given for an approximate evaluation of the latter expression so that P*
can be easily tabulated (for given k and t) as a function of 8. For the case of complete
ranking, there is a table of P* in [4] for § = 0,0 (0,1) 4,2 and k = 2(1) 7.

In the table below, for each distribution, in the left column we give the values
of K(J, F) and in the right column those of e, .

Table
N F N | o Double .

« \ orma Uniform exponential Logistic
0-01 1-004 0-996 0-087 0-962 1-878 1-:065 3-191 1-031
0-05 1-026 0-974 0-100 0-833 1-654 1-209 3-059 1-075
0-10 1-060 0-943 G117 0-714 1-494 1-339 3-017 1-:090
0-15 1-100 0-909 0-133 0-625 1-383 1-446 3-031 1-085
0-20 1-145 0874 0-150 0-556 1-297 1-542 3-080 1-068
0-25 1-195 0-837 0-167 0-500 1-227 1-629 3-158 1-042

In addition, the algorithm described in [4] enables us to solve the sample size
problem for small samples: we can evaluate (10) or (21) under LFC as a function
of nand ¢ provided we know G(y)(see (7)) or have it tabulated with sufficient accuracy.

Acknowledgement. 1 gratefully acknowledge the inspiring help given me in this
study by Dr. Zbyné&k Siddk, DrSc.
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Souhrn

PROCEDURY USPORADAVANI A SELEKCE
PRO PRiPAD PARAMETRU POLOHY ZALOZENE NA L-ODHADECH

V ¢ldnku jsou studovdny vlastnosti nékterych procedur uspofdddvéni a selekce
populaci zaloZenych na robustnich L-odhadech parametru polohy. Je nalezena
nejméné priznivd konfigurace parametri a asymptotickd relativni eficience vzhledem
k procedurdm zaloZenym na vybérovych primérech.
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