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SVAZEK 26 (1981) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

MATHEMATICAL STUDY OF ROTATIONAL 
INCOMPRESSIBLE NON-VISCOUS FLOWS 

THROUGH MULTIPLY CONNECTED DOMAINS 

MlLOSLAV FEISTAUER 

(Received October 30, 1979) 

1. INTRODUCTION 

In this paper we shall deal with the solvability of boundary value problems describ­
ing steady, generally rotational, plane or three-dimensional axially symmetric stream 
fields of an ideal (i.e. non-viscous) incompressible fluid. The rotational incompressible 
flows in simply connected domains were studied e.g. in [1, 4, 5, 6, 8, 9, 14]. The paper 
[6] was devoted to the existence and uniqueness of stream fields even in multiply con­
nected domains, under the assumption that the mass flows per second of the fluid 
between the individual components of the boundary were given. 

However, in many cases these mass flows are not known a priori. As an example 
we can use the plane flow round a group of profiles inserted into a bounded domain. 
On the basis of experiments and physical considerations we can conclude that of all 
mathematically possible stream fields, which differ from one another in the mass 
flows as mentioned above, only those are physically admissible that fulfil that co-called 
trailing conditions. It means that on every (plane, smooth, fixed and impermeable) 
profile a trailing point is given, at which the velocity of the fluid is zero. 

This problem was solved in [7] for the class of models describing stream fields 
by means of a linear equation for the stream function. Among others, irrotational 
plane and axially symmetric flows belong to this class. 

In this paper the results of [7] will be generalized to the case of rotational flows 
where the equation for the stream function is not linear any more. 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

By the symbol Ek let us denote the Euclidean k-dimensional space. The distance 
of two points a, a' e Ek will be denoted by \a - a'\. As a rule, we shall use the nota­
tion x = (xu x2) for points of the space E2. 

Let Q a E2 be an (r + 1)-multiply connected (r ^ 1), bounded domain. We 
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assume that the boundary Oil of the domain Q has r + 1 components C0, Ct ..., Cr 

which are geometric images of Jordan curves. Let Ct cz Int C0 for i = 1, ...,r(See 
Fig. 1.) The closure of the domain Q will be denoted by Q. 

We shall consider the following boundary value problem: 

(2.1) 

(2.2) 

(2.3) 

Lu = f(x, u, Vw) in Q , 

u C0 = ф0 , 
u C, - фi = qi9 i = 1, ..., r 

Here L denotes a uniformly elliptic second-order partial differential operator, Vu 

Fig. 1. 

= (uXl, uX2) = (dujdxu dujdx2);f = f(x, £0, £u f2) : Q x E3 -> Ex and ^ : Cf -> EL 

(i = 0, ..., r) are given functions, ql5 ..., qr are constants. 
In studying the flow round a group of profiles given by the curves Cl9 ..., Cr 

we face the problem connected with the determination of the constants ql9 ..., qr, 
which are not known in advance. They must be determined so that the solution u 

of the problem (2.1) — (2.3) satisfies the so-called trailing conditions (cf. [7]) 

(2.4) 
ôu , 

T ('' 
ÕП 

i = 1, ..., r 

The given points zt e Ct (i = 1, ..., r) are called the trailing points, vt are given real 

constants, djdn denotes the derivative in the direction of the outer normal to <9Q. 

In the following, we shall introduce assumptions under which the solvability of our 

problem will be investigated. 

(i) a 6 (0,1), d Q e C 2 ' a . 

(ii) au e CUa(U) , ai9 ae Ca(Q), a ^ 0 in Q , 

(2.5) Lu = Y, T - (aijuxj) + Z aiu

Xi - a»> • 
i , / = l CXi i = l 
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(iii) There exist constants M, p., v > 0 such that 

da i 
(2.6) 

(2.7) 

|л l 7 | , \at\, \a\, 
дx. 

й M in Q , i,j,k = 1,2, 

/iT2 ^ £ O0-(x) TtTj = VT2 VX 6 Q , 
* , J = I 

VT = ( T l 5 T 2 ) G E 2 (T2 = T2 + T 2 ) . 

(iv) ^ e C 2 ^ , . ) , i = 0 , . . . , r . 

(v) fe Ca(Q x E3), which means that the function f is continuous in Q x E3 and 

(2-8) l l / lknxi . , , = |/l|c(nx-3) + </>[?*-, : = 

:= sup | / | + sup \f(o) - f(G')| |o- - ď\ * < + oo . 
-QXL3 ťT,<T'eí2x £ 3 

<x4=<r' 

Let |f| = M. 
The definitions of classes and spaces Ck, Ca, Ck,a, etc., can be found e.g. in [2] 

or [11]. 
If u G C2(Q), then the expression Lu can be written in the form 

2 2 

(2.9) Lu = Y aijuXiXj + £ bjUXj - au , 
U = l 

where 

and 

(2.10) 

1=1 

č 2u 

дxßxj 

t>; = «; + I +- • 
i = l OX, 

If the assumption (ii) is satisfied, then bj e Ca(Q). 

In view of [11], there exist functions <pi e C2,a(Q) such that 

(2.11) (Po\Ci = ^ , i = 0 , . . . , r , 

Wt I CJ = S u > ' = l > • • •> r ' 7 = 0, ..., r . 

((5,,= l,<5o. = 0, if / 4=7.) 

At the end of this section, we introduce the definition of the classical solution 
of our problem. 

P r o b l e m (P). Let the assumptions (i) — (v) be satisfied and let a vector v = 

= (vi, ..., vr) e Er be given. Then a function u e C2'a(Q) and a vector q = (qt, ..., qr)e 
e Er will be called a solution of the problem (P) if they satisfy the equation (2.1) and 

the conditions (2.2) —(2.4). 
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3. ESTIMATES OF SOLUTIONS OF ELLIPTIC EQUATIONS 

The solvability of the problem (P) will be proved on the basis of appropriate 
a priori estimates of its solutions. For this purpose the following known results 
will be used: 

Theorem 3.1. (the Schauder a priori estimate of a solution of a linear elliptic 
equation). Let the assumptions (i) —(iii) be satisfied and let g e Ca(Q). Then there 
exists a constant kt that depends on the domain Q, the constants \i, v, a and the 
norms of the coefficients au, bh a in the space Ca(Q) (i.e. kx = kt(Q, \i, v, a, \aih 

bh a||c*(?i))) sucb that for an arbitrary solution u e C2'a(Q) Of the equation 

(3.1) Lu = g in Q 

the following estimate holds: 

(3-2) Nlc^os) ^ fci[N|c«(Si) + N|c- .<W1 • 

Proof. See [2], § 5.6 or [11], § 2 from Ch. III. 

Theorem 3.2. Let the assumptions (i) —(iii) be satisfied, g e C(Q), \g\ _ M, 
\J/ e C2(Q). Let u e C2(Q) be a solution of the equation (3.1) with the boundary value 
condition 

(3.3) u(x) = $(x) Vx e 3Q . 

Then 

(3.4) Nlc-.«(n) ^ ki(v> v, a, M, ||#||c-(n)> ^-) , 

P roo f follows from Theorem 15.1 from Ch. Ill in the monograph [11]. 

Theorem 3.3. (the strong maximum principle). Let a ^ e C ^ Q ) , bh a e C(Q), 
a = 0 in Q and let the assumptions (i) and (iii) be satisfied. Further, let u e C2(Q) 
be a solution of the equation Lu = 0 in Q. Then: 

1) Ifu has its positive maximum or negative minimum in Q, then u is constant in Q. 

2) Let us assume that & e dQ and that u is not constant in Q. If u(x) = max u(x) > 0 
or u(x) = min u(x) < 0, then xeU 

xeU 

(3.5) — (x) > 0 Or — (x) < 0 , respectively, 
dn dn 

Proof. See [2], § 2.2. 

Theorem 3.4. (on the solvability of a linear elliptic equation). Let the assumptions 
(i) —(iii) be satisfied, $ e C2,a(dQ), g e Ca(Q). Then there exists a unique solution 
u e C2'a(Q) Of the problem (3.1), (3.3). 

Proof. See [11], Theorem 1.3 from Ch. Ill or [2], § 5.7. 
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4. SOLUTION OF THE PROBLEM (P) 

First, we shall deal with the case when the function f depends on x e Q only, 
so that f(x, £0, £l5 £2) = g(x)- Hence, the equation (2.1) is a linear equation of the 
form (3.1): 

Lu = g . 

We shall thus speak about the linear problem (P). 
In the following ,we shall assume that the assumptions (i) — (iv) are satisfied, 

y e (0, a) and g e Cy{Q). Let us denote by uh i = 0, ..., r, solutions of the following 
problems: 

(4.1) Lu0 = g in Q , u0\dQ = cp0\dQ , 

Liii = 0 in Q , iii \dQ = (pt | dQ , i = 1, ..., r . 

(cpt are the functions satisfying the conditions (2A1).) 

Theorem 4.1. The problems (4.1) have unique solutions u0,.,.,ur. There exists 
a constant c1 which depends on \i, v, y, Q and on the norms of the coefficients a-tp bp a 
in the space Cy(Q) i.e. c1 = c^/i, v, y, Q, \\a(p bp ajjorn))) su°h that 

(4-2) i|w0||c2,y(n) = ci[||g[[cv(n) + |i^o||c-.v(<?n)] , 

\\ui ||c-.v(n) = ci 9 i = V ..., r . 

Moreover, if fl e (0, a> and \g\ S M, then there exist constants c2 = c2(fi, v, /i, M, 

l^ollc2^)? £-) and c3 = c3(/i, v, /?, M, Q) suc/i that 

(4-3) ||wo||ci.^) _ c2 > 

||"»||ci./»(fi) - C3 > i = h -. , r . 

Proof follows immediately from Theorems 3.1, 3.2 and 3.4. 
We shall seek a solution of the linear problem (P) in the form 

r 

(4.4) u = M0 + E qMi , 
i=l 

where q1? ..., qn are unknown constants. If we choose q = (qu ..., qr), then it is 
evident that the function (4.4) is a unique solution of the problem (3.1), (2.2), (2.3). 
We want to determine the vector q so that the function u satisfies the conditions (2.4). 
By substituting (4.4) into (2.4), we get a system of linear equations for the unknown 
values qt of the form 

(4.5) Aq = h , 

where 

(4-6) 4 - y , , . , , « y - - ^ ( - i ) , 
on 

* - . ( * . , . . . , / . , ) , / . . ^ . - ^ ( z , ) . 
On 
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It is evident that the solution of the linear problem (P) is equivalent to the solution 
of the system (4.5). 

Theorem 4.2. The matrix A, defined in (4.6), is regular. 

Proof. It is sufficient to prove the implication "Aq = 0 => q = 0". The system 
(4.5) is homogeneous if g = 0, I/'; = 0 for i = 0 , . . . , r (so that u0 = 0) and v = 0. 
Let the system Aq = 0 have a non-zero solution q*. Then there exists a function 
u* G C2a(U) which is not identically equal to zero in Q, solves the equation Lu = 0 
and fulfils the conditions (2.2) —(2.4) with i/yf = 0, i = 0, ..., r, q = q* and v = 0. 
The function u* is not constant in Q and has a positive maximum or a negative 
minimum on a certain curve Cf (i = 1, ..., r). Since u* | C, is constant, then, in view 
of Theorem 3.3, (du*jdn) (zt) > 0 or < 0, which is a contradiction to (2.4). 

Let us introduce the following notation: For v = (vlf ..., vr) e Er the symbol 
r 

llvlx denotes the norm of the vector v, defined by the relation ||t;|| x = £ |v,|. If B 
i = i 

is a square matrix of the type r x r, then the symbol \\B\\l denotes the norm of the 
matrix B induced by the norm ||...|| l5 defined in Er. The inequality \\Bv\\t g. | |^||i • 
. Hvllj ho lds . 

As a consequence of the preceding theorems we get 

Theorem 4.3. For a given function g e Cy(Q) (y e (0, a>) and a given vector 
v e Er, the linear problem (P) has a unique solutionu e C2'y(lQ), q e Er. The function 
u satisfies the estimate 

(4-7) Hc2»v(n) ^ c4[||g||cnn) + |ko||c-.v(<,.o)] + c5 |k||i 

with c4 = cj[l + r ^ i | | ^ _ 1 | | i ] and c5 = Cj ||/-̂ ""1 j| x . 

Further, if [1 e (0, a) and \g\ ^ M, then 

(4-8) lkl|c-./»(n) S c6 + c^lvlji , 

where c6 = c2[l + r c31|/̂ \~~11|x] and c7 = c3||A~1||1. (c1; c2, c3 arc t/ze constants 
from Theorem 4.L) 

Proof. It is evident that the linear problem (P) has a unique solution. It is given 
by the formula (4.4), where q = (qx, ..., qr) solves the system (4.5). 

We denote either |u | | = ||u||C2,v(n) o r |kll — |k||c-./*(n)- Then 

r r 

(4.9) Hull - ||uo + X aiui\\ = ||"o|| + Z k t | lk.-|| ^ ||w0|| + Ik||i m a x Ik»|| • 
i = l i = l i = l , . . . , r 

We have q = A ~1 h and 

(4-10) Nli-. IKI iNIi -

350 



Moreover, 

Hli = Hli + I 
i = l 

Ou 

дn Џы 
If we use Theorem 4.1, we get the estimates 

\du0 

õn 
(-.) = C i [ | |g | | cv(n) + ||<Po||c-.v(éK2)L 

dun 

õn 
°~ (*,) 

and hence, 

(4.11) |!h||i S ||i?||i + ^^i[||g||o'(n) + ||^o||c-.v(efl)], 

||^l|i .= ||v||i + r c2 . 

Now, let us substitute (4.2), (4.3), (4.10) and (4.11) into (4.9). We get the inequalities 

Hlc^v(Q) S Ci[||g||cv(Q) + ||9o||c-.v(an)] + ^i I!-̂ "̂ ^ II i • 

• (|k|li + ^^i[||g||cv(n) + |ko||c-.v(«n>]} » 

H|c-.'(n) = ci + c 3 | |^ _ 1 | | i [ H i + rc2], 

which already give the estimates (4.7) and (4.8). 

The following part of this section is devoted to the study of the nonlinear problem 

(P). We shall use the well-known Schauder theorem on a fixed point of a completely 

continuous mapping (see e.g. [12], Ch. IV, § 3): 

Theorem 4.4. Let M be a Banach space and let F : J* -> & be a completely conti­

nuous mapping. If Jf c $ is a nonempty, closed, bounded, convex set such that 

F(Jr) c JV, then there exists at least one fixed point u e Jr of the mapping F; 
i.e., u = F(w). 

Let the assumptions ( i)-(v) be satisfied. We put here $ = C1,P(Q) with ft e (0, a>. 
If u e C1,/7(iQ), then the function f(., u, Vw) is an element of the space Cy(Q), where 

y = (xfl. 

Let us consider the problem 

(4.12) Lw(x) = f(x, u(x), Vu(x)), xeQ, 

w | Co = *Ao > 

w I Ct — \\Ji = qt = const. , i = 1, . . . , r , 

dw 

OП 
' ( Z i ) = ^ i ' í = 1, . . . , r . 
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On the basis of Theorem 4.3 we can assert that to an arbitrary u e C1,/7(0) there 
exists a unique solution wue C2,y(Q) of the problem (4.12). (The vector v is given 
and fixed.) In this way the mapping "u e Cl'(*(Q) -> <P(u) = wu e C2,>'(0) , , is defined. 
If we take into account that C2,y(Q) c C1,/J(iO), we can also define the mapping F: 
C1 ,/7(Q)-> C1,/J(Q), F=Jo^. where J is the embedding operator of C2,y(Q) 
into C1 ,P(U). 

Lemma. The operator F is completely continuous. 

Proof, a) We shall prove that if M cz C1,/?(iQ) is an arbitrary bounded set, then 
the set F(J{) is compact.1) Let u e C1,/J(rQ). Then 

(4.13) | | /(. f ii, Vu)||cv(n> ^ ||/||c(axE3) + </>[?.xE3(||Hlc^(n) + 1) , 

where x > 0 is a constant depending only on the domain Q. This inequality is a con­
sequence of the assumption (v) and the fact that if dQ. e C2,a, then there exists a con­
stant K > 0 depending on CI only and such that every function u e C^H) satisfies 

\u(x) — u(y)\ g K max |Vu| | x — y| V x j e d . 
n 

(See [3], Ch. IV, § 9.) From the inequality (4.13) and Theorem 4.3 we get an estimate 
of the solution w = <f>(u) of the problem (4A2): 

||#(w)||c-.v(n) = c s H i + c4[||/||c(nxE3) + 

+ ^</>nxE3(||w||ci./3(n) + 1) + ||^o||c-.v(an)j • 

Hence, if M c C1,P(U) is a bounded set, then the set <&(,£) is bounded in C2,y(Q). The 
compactness of the embedding J of the space C2y(:Q) into C1,P(U) (see [11]) implies 
that the set J($(Jt)) = F(Jl) is compact in C1,/7(Q). 

b) Let us show that the mapping F is continuous. Let y e (0, y). Since C2,y(Q) c 
c C2'y(Q), the relation "u e C1,(J(Q) -> w", where w is a solution of the problem 
(4.12), defines also a mapping $ : C1,/?(Q) -> C2y(Q). Evidently, F = J o $, where 
J1 is an embedding of the space C2'y(Q) into C1,/7(Q). Since the mapping 3 is conti­
nuous, it is sufficient to prove the continuity of $. 

Let une C1 ,/?(Q), w„ = #(u„), n = 0, 1, .... Then co„ = wn — w0 is a solution 
of the linear problem (P) with the right hand side equal to the function 

f(x, un(x), Vun(x)) - f(x, u0(x), Vuo(x)) • 

We now have i/̂  = 0 in the boundary conditions (2.2) and (2.3) and vt = 0 in (2.4). 
From the estimate (4.7) we get 

(4.14) W|c2.J>(B) ^ ^ | | / ( - 5 un, Vun) - / ( . , u0, Vu0)j|c? (n). 

x) We mean, of course, relative compactness. 
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We need to prove that the assumption un -> u0 in Cup(Q) (for n -> +oo) implies 
that the right hand side in (4A4) tends to zero. 

If x e Q and n = 0,1, ..., we denote £n(x) = (un(x), Vu,,(x)). For arbitrary x, y e 
e Q, x 4= y, we have 

(4.15) gn(x, y) : = |/(x, £„(x)) - / (x , c0(x)) - f(y, £n(y)) + 

+ f(y, £o(y))\ \x - y|"f S. min {||/||c,(ilx£3) [|^(x) -

- ^ w i a + iay)"^(y)ia]|x-y |- f , 

«||/||c«(nx£3) [||"«||c-./»(n) + ||"o||ci./»(n) + 2 ] |* ~ y|v~*} 

with K = x(Q). Let u,, —> n0 in CJ ,/?(Q). Then there exists a constant k such that 

||u„||ci./*(n) ^ k for n = 0, 1, .... Further, £n ~> £0 uniformly in Q and thus/(• , £,.) -> 

-> / ( • , £0) in C(O). With respect to the definition of the norm in the space C9(Q), 

we want to prove that 

lim [sup gn(x, y)] = 0 . 
n-* + oo x,yeU, 

x*y 

Let £ > 0; we find S > 0 and n0 such that 

(4.16) 2 x | | / | | c „ ( n x £ 3 ) ( / c + l ) ^ - J ^ e , 

2\\f\\c.(UxEi)\^(x)-^(xfd-^S Vxefi, V«>.« 0 . 

Now, on the basis of (4.15) and (4.16), we easily find out that 

sup gn(x, y) ^ e Vn > n0 . 
x,yeil 
x^y 

This fact and (4A4) imply that con -> 0 in C2,\Q), which completes the proof. 

Now, we shall prove the existence of a solution of the problem (P). 

Theorem 4.5. Let the assumptions (i) —(v) be satisfied. Then for an arbitrary 
given vector v e Er there exists at least one solution u e C2'a(Q), q e Er of the problem 

(?)• 

Proof. Let v e Er. From the estimate (4.8) it follows that 

\\F(u)\\ci,HU) = c8 = c6 + c 7 H -

for an arbitrary u e C1,P(Q). The constant c8 does not depend on u. Let us denote 
Jr = [u e C1,P(Q); j|ujjci./<(n) S c8). It is evident that Jf is a nonempty, closed, 
bounded, convex subset of the space lM = C1,/?(iQ). The above considerations to­
gether with the Schauder theorem 4.4 yield the existence of ueC1,p(Q) which is 
a solution of the equation u = F(t/). This solution is simultaneously an element 
of the space C2'y(Q). We can consider u as a solution of the linear problem (P)with 
the equation Lu = g, where the right hand side g = / ( • , u, Vw) belongs to the class 
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Ca(Q). Putting y = a in Theorem 4.3, we obtain immediately that u e C2a(Q). 
The following theorem is devoted to the uniqueness of the solution of the problem 

(p)-

Theorem 4.6. Let the assumptions (i) —(v) be satisfied, let the function 
f(x, c0, c1? C2) have continuous first order derivatives with respect to £i9 i = 0,1, 2, 
in Q x E3 and let 

(4.17) a(x) + ~f (x, Co, Cl5 C2) ^ 0 V(x, c0, £x, £2) e Q x E3 . 
<%0 

Then the problem (P) /?as exactly one solution u e C2?a(Q), q e Er. 

Proof. It is sufficient to prove the uniqueness of the solution. Let ul9 u2 e C2a(Q) 
be two solutions of the problem (P). Then the function w = u1 — u2 satisfies the 
conditions 

w | C0 = 0 , 

w\ C; = const, , i = 1, . . . , r , 

^ ( z , ) = 0 , , = , , . . . , , 
Or? 

and is a solution of the equation 
2 

Lw = Lw + £ dfWx. — d0w = 0 , 

where 

df(x) 
Г1 Я 

— (x, t u^(x) + (1 - t) u2(x), t Vu^x) + (1 - t) Vu2(x)) d t , 
o дít 

i = 0, 1,2. 

It follows from the assumption (4A7) that a(x) + d0(x) ^ 0 in Q so that the operator 
Lsatisfies the assumptions of Theorem 3.3, which implies that w = 0 in Q. 

5. APPLICATIONS IN HYDRODYNAMICS 

5.1. Three-dimensional axially symmetric flows. Let us suppose that the closure 
of the domain Q, defined in Section 2, lies in the upper half-plane x2 > 0, i.e. 

(5.1) x2 > 0 Vx = (x1? x2) e Q . 

By rotating the domain Q round the axis xx we get a three-dimensional axially 
symmetric domain Q3 . The closure of Q3 and the axis xt of symmetry are disjoint. 
The boundary of the domain Q3 consists of an outer part, given by the rotation 
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of the curve C0, and from axially symmetric rings, obtained by the rotation of the 
curves Cl9 ..., Cr. 

We shall consider the steady three-dimensional axially symmetric stream fields 
of an incompressible fluid in the domain Q3. This problem can be solved, in view 
of the axial symmetry, in the plane domain Q. Let us denote by v = (vl9v29 v3) 
the velocity vector of the fluid with the components in the cylindrical coordinates 
xl9 x2, s, and by H the total energy (called also the generalized enthalpy-see [6]). 

The system of the continuity equation and the Euler equations of motion can be 
written in the form 

(5.2) £j-(^) = 0, 
i=l OXi 

_ dv2 dvx 

dxt dx2 

dH 1 d(x2v3)
2 

dxx 2x\ dxA 

dH 1 GYx2v3)
2 

-covl = -A_^-1L_ 9 

dx2 2x2 dx2 

0 = v fe^) + -.„ d(X2»*) ^ 
dxx dx2 

To these equations we shall add the boundary value condition 

(5.5) x2 . (v1? v2) . n | dQ = cp . 

Here n denotes the unit vector of the outer normal to dQ and cp : dQ -» Ex is a given 
function which satisfies the relations 

(5.3) 

(5.4) cov2 

(5.6) [ cp dS = 0 , cp \Ct = 0 , i = 1, . . . , r . 
Go 

The condition (5.5) defines the flow through the boundary, the assumptions (5.6) 
mean that the total flow through the component of the boundary given by the curve 
C0 is zero and that the rings defined by Cl9 ..., Cr are impermeable. Further, let us 
assume that an arc FX cz C0 is given. We shall call it the inlet. Let 

(5.7) (p | r1 S a0 < 0 (a0 = const.), 

We assume that the total energy H and the angular velocity component v3 are given 
at the inlet: 

(5.8) H | F, = h , x2v3 | F, = w . 
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Finally, we shall consider the trailing conditions on the curves Cl9 ..., Cr. Let zi e Ci9 

i = 1, ..., r, be the trailing points, at which 

(5.9) °i(zi)=-v2(zM) = 0, i = \,...,r. 

We shall prove the following theorem on the existence of the flow round the rings 
given by the curves C1? ,.., Cr and inserted in the domain obtained by rotating the 
curve C0 round the axis xx. 

Theorem 5.1. Let us assume that 

1) « e ( 0 , 1), dQ e C 2 a , 

2) F, c C0 is a closed arc, 

3) <peCl'*(dn)9 h,weCu«(Fx). 

Further, let (5A), (5.6) and (5.7) hold. Then there exist functions v1,v2,v3, He 
e C1,a(Q) which solve the equations (5.2) —(5.4) in Q and satisfy the conditions 
(5.5), (5.8) and (5.9) on the boundary dQ. 

Proof. We shall prove this theorem on the basis of results contained in the pre­
ceding sections and in the paper [6]. After introducing the stream function, we shall 
transform our problem to the problem (P). By integrating the function <p from 
(5.5) along the curves Ch we get the functions \jj -t that appear in the boundary value 
conditions (2.2) and (2.3). Therefore, \j/0 e C2,7(C0) and ij/i = 0 for / = 1, ..., r. 
It follows from (5.5) that \j/0 | F1 is a one-to-one mapping of the arc Fx onto a closed 
interval <Q1? Q2) (Qt < Q2). We denote the inverse function to \j/0 | Ft by (\j/0 | Fx)„ t 

and define the functions A, B: (Q{, Q2) -> Ex by the relations 

A = fco^olTi).!, 

B = Wo(, /y 0 | F1)_1 . 

It is evident that A, B e Cl,cc((Ql9 Q2>). We can easily extend the functions A and B 
to the whole interval E! so that A',BB' e Ca(Ex) (it means that ||A'||c«(£:i) := sup \A'\ + 

Ei 

+ sup \A'(t) — A'(t*)| |t — t*|~a < +oo, similarly for BB'; A' denotes the deriv-
.V*eEi 
t*t* 

ative of A). 

Let us now consider the partial differential equation 

(5.10) i~(a(x)uXi)^f(x,u) in Q 
i=\ OX: 

with 
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and the boundary value conditions 

(5.11) u | C0 = \j/0 , 

(5.12) M | Cj = q,-, / = 1, ..., r , 

(5.13) ? ( * . ) = 0 , i - J r, 
On 

for an unknown stream function u and unknown constants qt. This problem is a spe­
cial case of the problem (P). We obviously have a e C°°(Q) and feCa(.Q x Ex) 
(see (5.1)). Theorem 4.5 immediately implies the existence of a solution u e C2,a(iQ), 
q = (g., ..., gr)eEr of the problem (5.10) —(5.13). In [6] it was proved that the 
functions 

1 du \ du 

x2 dx2 x2 Ox j 

H — A o u , v3 = — Bow 

form a solution of the equations (5.2) —(5.4) and satisfy the conditions (5.5) and 
(5.8). It is evident that the trailing conditions (5.9) are also satisfied. Moreover, 
vl9v29v3i H e C U G t ( U ) . 

5.2. Rotational flow through cascades of profiles. The mathematical theory of pla­
ne cascades of profiles is a basis for the theoretical investigation of the flow through 
blade rows of turbomachines, compressors and other stream machines. Up to now, 
the irrotational incompressible flow has been studied in detail. We can mention 
e.g. the papers [10, 13, 15]. We shall propose here a mathematical formulation and 
prove the existence of rotational, incompressible, non-viscous stream fields through 
plane cascades. 

Let us denote the set of all integer numbers by St'. We define a plane cascade of pro­
files with a pitch s > 0 as a set L a E2 that consists of infinitely many disjoint 
geometric images of Jordan curves K{"\ n = 0, ± 1 , + 2, ... (i.e. , n e St), which will 
be called profiles. Each profile K(/,) c L is obtained by translating the fundamental 
profile K(0) by the distance ns in the direction x2, so that K(n) = [(x1 x2 + ns)' 
(x. ,x2) eK<0>}. 

Let us consider r — 1 (r _ 2) mutually disjoint plane cascades Li9 i = 1, . r — 1 
with a pitch s > 0 that consist of profiles K^}, i = 1, . . . , r — 1, ne St2). Let us 
suppose that all cascadesLu ..., L r _ 1 lie in a (sufficiently wide) strip P = Ux x ); 

r~l 

— oo < a1 < xx < o2 < +00, x2 e Ex} and let us denote Qc =- P ~ \J u (f[{n>\\ 
U Int K-n)). (Uc denotes the closure of the domain Qc.)

 i=1 » ^ 

2) We assume that (Kfm) (J Int K\m)) f| ( ^ j n ) U Int Kjn)) = 0 Vi, j ^ 1,..., r _ { y w > 

n E 5T, I =t= j. 
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On each profile K-n) we consider the point Z|"} obtained by translating a given 
point Z- 0 ) eK - 0 ) by the distance ns in the direction x2 . On the line xt = ®1 we 
consider the points Zr

n) = (<7l5 x2
0) + ns), n e l We shall denote the lines xt = o\ 

and xt = a2 by Kr and K0, respectively. 

The set Qc is periodic in the direction x2 with the period s, which means that 

(xl9 x2) eQco (xl9 x2 + s) G Q c . 

We shall say that a function / : Qc -> E1 is periodic in the direction x2 with the 
period s, if 

f(xl9 x2 + s) = f(xl9 x2) V(x1? x2) e Q c . 

Let a e (0, 1). We define C*/*2(QC) as the space of all functions defined in Qc which 
are periodic in the direction x2 with the period s, and have the first-order derivatives 
satisfying the Holder condition with the exponent a in Qc. Similarly, C* £2(QC) is the 
space of all functions which are periodic in the direction x2 with fhe period s in Qc 

and their second-order derivatives satisfy the Holder condition with the exponent a 
in Qc. Finally, we denote by the symbol CQ*^^ (Q > 0) the space of all functions 
periodic in Et with the periodic Q, the first-order derivative of which satisfies the 
Holder condition with the exponent a in Ev 

Now, let us direct our attention to the mathematical formulation of the plane 
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flow of an ideal incompressible fluid in the domain Qc round the cascades Lh i = 
= 1, ..., r — 1. The lines Kr and K0 represent the inlet and the exit of the cascades, 
respectively. We suppose that all profiles are smooth enough, fixed and impermeable. 
We consider the points Z\n\ ne 3£9 i — 1, ..., r — 1, as the trailing points, which 
means that the velocity vector V, with the components vi9 v2 in the direction of the 
Cartesian coordinates xl9 xl9 is zero at these points. At the inlet Kr and exit K0 the 
velocity component vx is given. Moreover, at Kr the distribution of the total energy H 
is given, which determines the vorticity of the stream field. At the periodically spaced 
points Z{"\ n e &9 let both velocity components vl9 v2 be given. We shall suppose 
that the velocity components and the total energy are periodic functions in the 
direction x2 with the period s. 

P r o b l e m (C). Let us consider the following assumptions: 

1) a e (0, 1), 

2) i ( | n ) e C 2 ' a , i = 1, . . . , r - 1 , «e_2T, 

3) cp0, <pr9 h e C^'a(Fi) are given functions, 

(pr = <P > 0 > <P = const., 

\X2+S<p0{$) d,9 = \<pj{9) d!) = Q Vx2 G Ex . 

4) The constant v e Et is given. 

We shall say that functions vl9 v2, H e Cl'*2(Qc) are a solution of the problem (C), 
if they satisfiy the following equations and conditions: 

(5.14) ^ - + ^ = 0 in Qc 
дx^ дx 

(continuity equation), 

(5-15) 

vJ
dJl ___!) = ___ 
\dxt dx2J dxt 

(dv2 dvt\ ÔH . n 
- t ' i : - ) = m Q.c 

\dx1 dx2) dx2 

(Euler equations), 

(5.16) a) Vl(au x2) = cpr(x2) b) vx(a2, x2) = <p0(x2), x2 e £ . , 

(5A7) / / (* . , x2) = fc(x2), x2eEl 

(inlet and exit conditions), 

(5A8) F.n|K<"> = 0 , n e ^ , i = l , . . . , r - l 
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(condition of the flow round the profiles), 

(5.19) v2(Z
{
r
n)) = v, ne& 

(supplementary condition to (5.16) a) for the determination of the inlet velocity), 

(5.20) vt(Z
(
i
n)) = 0, « e J , i = l , . . . , r - 1 

(trailing conditions). 

Here n denotes the unit vector of the outer normal to dQc, vt is the tangential 
velocity component to dQc. 

We shall prove the following existence theorem: 

Theorem 5.2. Let the assumptions l) — 4) Of Paragraph 5.2 be satisfied. Then 
there exists at least one solution vl9 v2, H e Cl;X2(Q.c) of the problem (C). 

Proof. We shall transform the problem (C) with the use of the stream function, 
i.e., the function \jj : Qc -> E1 that satisfies the relations y/X2 = v1, \j/Xl = —v2 in Qc. 
Let us denote 

(5.21) <P0(x2) = rVo(S) <& , «Pr(x2)= [ \ ( 9 ) d 9 , x2 6 £ , . 

The assumption 3) implies that the functions ^Q and Wr are continuous and their 
first-order derivatives satisfy W'Q, W'r e C] 'a(Fi). Further, 

(5.22) Wj(x2 + s) = ^ ( x 2 ) + Q Vx2 e Et , j = 0, r . 

The function Wr is increasing and maps E1 onto E1. By the symbol (Wr)„1 we denote 
the inverse function to Wr and define the function A : Ex —> Ex by the relation 

(5.23) A = / i o ( ^ r ) _ 1 . 

This function is periodic with the period 0: 

A(< + Q) = h((<Pr)_. (< + Q)) = h((fr)_. (<) + s) = 

= &((•?.)_, (<)) = A(<) V < e £ . . 

From the properties of the functions h, cpr and !Pr it follows that A e C1
Q;a(E1). 

Let us consider the following boundary value problem for the stream function: 

P r o b l e m (C^): We seek a function \jj : Uc -> Ex and constants ql9 ..., qr such that 

(5.24) xj,Xx,^X2eC];«2(Uc), 

(5.25) a) A»A = -4'(*A) in Qc (A is the Laplace operator) , 

b) iA | K0 = WQ , i^\Kr=Wr + qr, 

c ) i / / | K ^ = qt + nQ, ne%, i = 1, ..., r - 1 , 
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d)^(Z<">) = , , neZ, 
on 

^(Z(n)) = 09 ne% 9 i= V...,r- 1. 
dn 

Let us show that if the function \\J and the constants qi9 i = 1, ..., r, form a solution 
of the problem (C^), then the functions 

(5.26) v! = i//X2 , v2= -il/Xi, H = A o \jj 

represent a solution of the problem (C). 

First, it is evident that vl9 v2e Cl;X2(Qc). The properties of the function xji and 
(5.22) imply 

(5.27) xli(xl9 x2 + s) = $(xu x2) + Q V(xl9 x2) e Qc. 

In view of (5.27) and A e CQ'^E^, we can easily prove that H e C^2(?2C). From 
(5,25) b ) - d ) , it follows immediately that the conditions (5A6) and (5A8)-(5.20) 
are satisfied. Further, we have 

H(au x2) = A(4,(ou x2)) = A(Wr(x2)) = h^V,)^ (Tr(x2))) = h(x2) 

for all x2 e El9 which proves the validity of the condition (5A7). By substitution, 
similarly as in [6], we can verify that the continuity equation (5A4) and the Euler 
equations (5A5) are satisfied. 

Let us denote 

(5.28) $(xl9 x2) = Wr(x2) + ^ - ^ (V0(x2) - Tr(x2)). 
a2 - <J1 

It is easy to see that $Xl, \j/X2 e CX
S;X2{QC), $ \ K0 = W0, $ | Kr = x¥r and 

(5.29) $(xu x2 + s) = $(xu x2) + Q V(x1? x2) e ~QC. 

We shall seek a solution of the problem (C^) in the form \j/ = tft + \j/ and get thus 
a new problem, equivalent to the problem (C^), for an unknown function °U e C^;X2(QC) 
and constants ql9 ..., qr: 

(5.30) a) AW = J(x, * ) in :QC, 

b) W | K0 - 0 , <?/ | Kr = qr, 

c) W I Ki'0 = $\n) + qi9 ne% , i = 1, ..., r - 1 , 

d) — (Z<B)) = pi, . n e i T , i = l , . . . , r . 
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Here, 

j(x, t) = A'(t + \p(x)) - A#(x), x e Qc, t e £x , 

^ ( x ! , x2) = <P\0)(xl9 x2 - ns) = -$(xl9 x2) + nQ , (x l5 x2) e KJ , 

n e f , i = 1, ..., r — 1 , 

;, = -^ (zH, l-l , . . . ,r-l , ,r = , - f ( z n -
On On 

The function / is periodic in the direction x2 with the period s in Qc x El9 

fe C* (Qc x Et); $\n) e C2'a(K^) for n e JT and i = 1,..., r - 1. 

Finally, we shall transform the problem (5.30) into the problem (P) by means 
of the mapping 

F(Z) = F(xt + ix2) = exp (2/iZ/S) (i2 = - 1 ) . 

The image of the unbounded, infinitely multiply connected, periodic domain Qc 

is the set Q = F(£lc), which is bounded, (r -f- 1) - multiply connected. Its boundary 
is formed by r + 1 disjoint Jordan curves C0, ..., Cr, where Ct = F(K-n)), n e Jf, 
i = 1, ..., r — 1, C0 = F(K0), Cr = F(Kr). The curves C0 and Cr are concentric 
circumferences with the centre at the origin. The curves Cl9 . . . , Cr_t lie in the annu-
lus bounded by C0 and Cr. We denote z, = F(Z("}), n e iT, i = 1, . . . , r. 

If ^ e C2£2(-\) and g = (q1? ..., gr) form a solution of the problem (5.30), let us 
define the function u = °U°F-1\Q-*E1. Although the inverse F_ x to F is an infinitely 
valued analytic function, the properties of °U and F imply that the function u is 
single-valued. Since F locally has the property of a conformal mapping, we can easily 
transform the problem (5.30) into the equivalent problem in the domain Q for the 
unknown function u and unknown constants qt-: 

(5.31) a) Au = f ( - , u ) in Q , 

b) u | C0 = 0 , u | Cr = qr, 

c) u | Ci = ij/i + qt, i = 1, ..., r - 1 , 

d ) : r ( z . ) = vi> l = I ,-- . , r . 

On 

The functions f, t/t; and the constants v; are defined by the relations 

f(F(x),t)=f(x,t)|F'(x)|-2, x e Q c , teEl9 

^(F(x)) = ^ 0 ) ( x ) , x e K j 0 ) , Z = 1 , . . . , r - 1 , 

v^^lF^HI""1, *- 1 r. 
Moreover, 5Q e C2'a,fe Ca(Q x Ex), ^ e C2'a(Q) for / = 1, ..., r - V 
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We see that the solution of our original problem (C) has been transformed into the 
solution of the problem (5.31), which is a special case of the problem (P). Theorem 
4.5 guarantees the existence of at least one solution u e C2'a(£2), qx, ..., qre Ft 

of the problem (5.31). From this fact and from the above considerations, it immedia­
tely follows that there exists at least one solution vl9 v2, H e C*£2(QC) of the problem 
(C). 

R e m a r k 5.1. The problem (C) can be modified a little in such a way that the 
condition (5.17) is replaced by the given distribution of the vorticity co = dv2jdxl — 
— dv1jdx2 at the inlet Kr. If we assume that co(au x2) e C*(Ft), then we are able 
to define the first-order derivative of the function A by the formula 

A' =(co\Kr)o(yr)_x 

and to obtain A by integration. It is necessary to mention that in this case the ge­
neralized enthalpy H = A ° \\i need not be periodic in the direction x2. To satisfy 
this demand, we have to consider the additional condition 

rx2+s 
co(au 9) (pr(S) d$ = 0 Vx2 e Et . 

J x2 

We leave the detailed calculation to the reader. 

R e m a r k 5.2. In the same way as in this section, we can study the existence of the 
stream fields through cascades of profiles in a layer of variable thickness; the only 
difference is in the continuity equation, which has the form div (a V) = 0 in this 
case. The function o~, which is continuous, periodic in the direction x2 with the period 
s and bounded from below by a positive constant, characterizes the thickness of the 
layer of the fluid. Without any difficulty, we can also apply our approach to the 
solution of a rotational flow in radial plane cascades. 
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S o u h r n 

MATEMATICKÉ VYŠETŘOVÁNÍ ZAVÍŘENÉHO PROUDĚNÍ 
NESTLAČITELNÉ NEVAZKÉ TEKUTINY 

VE VÍCENÁSOBNĚ SOUVISLÝCH OBLASTECH 

MILOSLAV FEISTAUER 

V článku byla dokázána existence řešení okrajové úlohy pro eliptickou kvazi-
lineární parciální diferenciální rovnici druhého řádu v rovinné, vícenásobně souvislé, 
omezené oblasti za předpokladu, že dirichletovské okrajové podmínky jsou na jed­
notlivých komponentách hranice dány až na aditivní konstanty. Tyto konstanty je 
třeba najít spolu s řešením uvažované rovnice tak, aby byly splněné dodatečné, tzv. 
odtokové, podmínky. Výsledky mají bezprostřední aplikace při vyšetřování zavířené-
ho obtékání skupiny profilů a lopatkových mříží ideální nestlačitelnou tekutinou. 
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