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SVAZEK 26 (1981) APLIKACE MATEMATIKY ¢isLo s

MATHEMATICAL STUDY OF ROTATIONAL
INCOMPRESSIBLE NON-VISCOUS FLOWS
THROUGH MULTIPLY CONNECTED DOMAINS

MiLoSLAV FEISTAUER

(Received October 30, 1979)

1. INTRODUCTION

In this paper we shall deal with the solvability of boundary value problems describ-
ing steady, generally rotational, plane or three-dimensional axially symmetric stream
fields of an ideal (i.e. non-viscous) incompressible fluid. The rotational incompressible
flows in simply connected domains were studied e.g. in [1, 4,5,6,8,9, 14]. The paper
[6] was devoted to the existence and uniqueness of stream fields even in multiply con-
nected domains, under the assumption that the mass flows per second of the fluid
between the individual components of the boundary were given.

However, in many cases these mass flows are not known a priori. As an example
we can use the plane flow round a group of profiles inserted into a bounded domain.
On the basis of experiments and physical considerations we can conclude that of all
mathematically possible stream fields, which differ from one another in the mass
flows as mentioned above, only those are physically admissible that fulfil that co-called
trailing conditions. 1t means that on every (plane, smooth, fixed and impermeable)
profile a trailing point is given, at which the velocity of the fluid is zero.

This problem was solved in [7] for the class of models describing stream fields
by means of a linear equation for the stream function. Among others, irrotational
plane and axially symmetric flows belong to this class.

In this paper the results of [7] will be generalized to the case of rotational flows
where the equation for the stream function is not linear any more.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

By the symbol E; let us denote the Euclidean k-dimensional space. The distance
of two points o, ¢’ € E, will be denoted by |a — a’]. As a rule, we shall use the nota-
tion x = (x,, x,) for points of the space E,.

Let Q < E, be an (r + 1)-multiply connected (r = 1), bounded domain. We
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assume that the boundary 0Q of the domain Q has r 4+ 1 components Cy, C, ..., C,
which are geometric images of Jordan curves. Let C; < Int Cofori = 1,...,r(See
Fig. 1.) The closure of the domain Q will be denoted by Q.

We shall consider the following boundary value problem:

(2-1) Lu = f(x,u,Vu) in Q,
(2.2) u Co = ‘//() N
(2.3) ulC, — vy, =q,, i=1...,r.

Here L denotes a uniformly elliptic second-order partial differential operator, Vu =

Fig. 1.

= (uy,, uy,) = (0u/0xy, 0ulox,); f = f(x, &, €, &) : Q x E3 » Efand ; : C; - E,
(i=0,.., r) are given functions, ¢, ..., g, are constants.

In studying the flow round a group of profiles given by the curves C,, ..., C,
we face the problem connected with the determination of the constants q,, ..., q,,
which are not known in advance. They must be determined so that the solution u
of the problem (2.1)—(2.3) satisfies the so-called trailing conditions (cf. [7])

(2.4) %(zi)zv,-, i=1,...,r.
on
The given points z; € C; (i = 1,...,r)are called the trailing points, v; are given real
constants. 0/0n denotes the derivative in the direction of the outer normal to 0Q.
In the following, we shall introduce assumptions under which the solvability of our
problem will be investigated.

(i) 2e(0,1), dQeC>”.
(i) a; e Cl"’(ﬁ), a;, ae C“(ﬁ), a=0 in Q,
2 a 2
(2.5) ‘ Lu =Y —(aju,)+ ) au,, — au.
iji=1 0x; =Y
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(iii) There exist constants M, g, v > 0 such that

(2.6)

od:: . _
a,-|, !al, 7ﬂl =M in Q, ijk=1,2,
X

(2.7) pt? < i a(x)tr; £ vi? VxeQ,
ij=
Vi = (1, 1) € E, (17 =1] + 13).
(iv) y;eC*¥(C), i=0,..,r
(v) fe CYQ x E,), which means that the function f is continuous in @ x E; and
(9 Is

i= sup |f| +  sup If(a) —f(a’)} ‘a - a’|"" < +00.
QXE; a,a;ei):,EJ

( .
CHQXEy) = Hf”c*(ﬁxr;}) + <f>f§)><E3 =

Let [f| £ M.
The definitions of classes and spaces C*, C*, C** etc., can be found e.g. in [2]
or [11].
If u € C*(Q), then the expression Lu can be written in the form
2 2

(2.9) Lu =Y aju,. + 3 bu, — au,
ij=1 j=1
where
y B o%u
A 0x,0x;
and
2
oa: .
(2.10) by =a; + 3 i
i=1 0x

If the assumption (ii) is satisfied, then b; € C*(Q).
In view of [11], there exist functions ¢; € C**(Q) such that
(2.11) (/)O'Cizl//i, i=0,..r,
i | C; =0,
(O = 1,8, =0, if i %)

At the end of this section, we introduce the definition of the classical solution
of our problem. '

i=1,...

Problem (P). Let the assumptions (i) —(v) be satisfied and let a vector v =
= (vy, ..., v,) € E, be given. Then a function u € C**(Q) and a vectorq = (q,, ..., q,)€
€ E, will be called a solution of the problem (P) if they satisfy the equation (2.1) and
the conditions (2.2)—(2.4).
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3. ESTIMATES OF SOLUTIONS OF ELLIPTIC EQUATIONS

The solvability of the problem (P) will be proved on the basis of appropriate
a priori estimates of its solutions. For this purpose the following known results
will be used:

Theorem 3.1. (the Schauder a priori estimate of a solution of a linear elliptic
equation). Let the assumptions (i)—(iii) be satisfied and let g € C*(Q). Then there
exists a constant k, that depends on the domain Q, the constants p, v, o and the
norms of the coefficients a;j, b, a in the space CY(Q) (i.e. ky = ky(Q, p, v, o, |a;
bi, a|lc=@))) such that for an arbitrary solution u € C**(Q) of the equation

(3.1) Lu=g in Q

i’

the following estimate holds:

(3:2) lullczx@ = kalllgllcxa + [ullcnea] -
Proof. See [2], § 5.6 or [11], § 2 from Ch. 1L

Theorem 3.2. Let the assumptions (i)—(iii) be satisfied, ge C(Q), Igl <M,
W € C*(Q). Let u € CX(Q) be a solution of the equation (3.1) with the boundary value
condition

(3.3) u(x) = J(x) VxedQ.
Then
(34) luller oy = Ko v 2, M, [ ]c> 9)

Proof follows from Theorem 15.1 from Ch. 111 in the monograph [11].

Theorem 3.3. (the strong maximum principle). Let a;;e C'(Q), b;, ae C(Q),
a = 0in Q and let the assumptions (i) and (iii) be satisfied. Further, let u e C*(Q)
be a solution of the equation Lu = 0 in Q. Then:

]) If u has its positive maximum or negative minimum in Q, then u is constant in Q.

2) Let us assume that £ € 0Q and that u is not constant in Q. If u(£) = max u(x) > 0

or u(%) = min u(x) < 0, then xefl
xeQ
ou ,, u ,, .
(3.5) —(&)>0 or — (%) <0, respectively.
on on

Proof. See [2], § 2.2.

Theorem 3.4. (on the solvability of a linear elliptic equation). Let the assumptions
(i)—(iii) be satisfied, § € C**(6RQ), g € C*(Q). Then there exists a unique solution
u € C**(Q) of the problem (3.1), (3.3).

Proof. See [11], Theorem 1.3 from Ch. Il or [2], § 5.7.

348




4. SOLUTION OF THE PROBLEM (P)

First, we shall deal with the case when the function f depends on x € Q only,
so that f(x, &g, &1, &) = g(x). Hence, the equation (2.1) is a linear equation of the
form (3.1):

Lu=g.
We shall thus speak about the linear problem (P).

In the following ,we shall assume that the assumptions (i)—(iv) are satisfied,
7€ (0, «) and g e C'(Q). Let us denote by u;, i = 0, ..., r, solutions of the following
problems:

(4.1) Lug=g in Q, uy|dQ=g,|0Q,
Lu, =0 in Q, u; |6'Q = @; |6Q, i=1,...,r.
(¢, are the functions satisfying the conditions (2.11).)
Theorem 4.1. The problems (4.1) have unique solutions uy, ..., u,. There exists

a constant ¢, which depends on i, v, y, Q and on the norms of the coefficients a;;, b
in the space C'(Q) i.e. ¢; = ¢y(1t, v, v, Q, |ay;, b, allcra)) such that

(42) luollezo@ = eillg]lena + [@ollczrem]

||ui “Cz,y(m Sceq, i=1..,r.

j» O @

IA

Moreover, if fe(0,a) and |g} < M, then there exist constants ¢, = ¢,(u, v, §, M,
l9o]lc2@) @) and ¢3 = e5(u, v, B, M, Q) such that

(4.3) |

| .
||”i”C"ﬂ(§) Sey, i=1,..,r.

“o”clvﬁm) = 6,

Proof follows immediately from Theorems 3.1, 3.2 and 3.4.

We shall seek a solution of the linear problem (P) in the form
(4.4) u=uy+y qu;,

i=1

where ¢, ..., g, are unknown constants. If we choose g = (qy, ..., q,), then it is
evident that the function (4.4) is a unique solution of the problem (3.1), (2.2), (2.3).
We want to determine the vector g so that the function u satisfies the conditions (2.4).
By substituting (4.4) into (2.4), we get a system of linear equations for the unknown
values ¢; of the form

(4.5) Agq = h,
where
u;
(4'6) A= (aij);.j=l , oy =—1 (Zi) >
on
Bo= (oo )y =0 — 2102
én
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It is evident that the solution of the linear problem (P) is equivalent to the solution
of the system (4.5).

Theorem 4.2. The matirix A, defined in (4.6), is regular.

Proof. It is sufficient to prove the implication “Agq = 0 = q = 0”. The system
(4.5) is homogeneous if g = 0, y; = 0 for i = 0,..., r (so that uy = 0) and v = 0.
Let the system Ag = 0 have a non-zero solution g*. Then there exists a function
u* € C**(Q) which is not identically equal to zero in &, solves the equation Lu = 0
and fulfils the conditions (2.2)—(2.4) with ; =0, i =0,...,r, ¢ = g* and v = 0.
The function u* is not constant in Q and has a positive maximum or a negative
minimum on a certain curve C; (i =1,..., r). Since u* [ C, is constant, then, in view
of Theorem 3.3, (du*/dn) (z;) > 0 or < 0, which is a contradiction to (2.4).

Let us introduce the following notation: For v = (vy, ..., v,) € E, the symbol
r

[v], denotes the norm of the vector v, defined by the relation [[vf, = ¥ |v]. If B
i=1

is a square matrix of the type r x r, then the symbol | B[, denotes the norm of the
matrix B induced by the norm |...|,, defined in E,. The inequality |Bo|, < |B|, .
. |[o]l; holds.

As a consequence of the preceding theorems we get

Theorem 4.3. For a given function ge C'(Q) (ye(0,)) and a given vector
ve E,, the linear problem (P) has a unique solutionu e CZ'""(I—Z), q € E,. The function
u satisfies the estimate

(4.7) lullczo = cslllglera + lollcrnem] + esllo]s
with ¢ = ¢;[1 + reg A7 ] and ¢5 = ¢,|A™ Y],

Further, if e (0, «) and lgl < M, then
(4.8) lulernm = e + esollis

where ¢ = c;[1 + rci]|A7"| ] and ¢; = ¢;|A™"|,. (¢, ¢z, c5 are the constants
from Theorem 4.1.)

Proof. It is evident that the linear problem (P) has a unique solution. It is given
by the formula (4.4), where ¢ = (g, ..., g,) solves the system (4.5).

We denote either |u| = |uc2o@, or |u] = |u]cis,- Then
(49)  Jull = luo + X quail = Juol + X [ai] [uil] < o]l + [afls max ] -
We have ¢ == A~ 'h and
(4.10) lalls = 1A~ 18] -
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Moreover,

Il = ol + £ 20 @)

If we use Theorem 4.1, we get the estimates

ou
;’0‘ (z)| = eillg]leray + lPolczmea] s
n
d
PR
and hence,
(4.11) Ially = flolle + reilllgllow + [eolemeal

[l = ol + 7e..
Now, let us substitute (4.2), (4.3), (4.10) and (4.1} into (4.9). We get the inequalities
lulleman £ illlgllow + |@ollcren] + eA ), -
Aol + red]glena + [@olcrmea]) -
lulcro@ £ 2 + e A7 [olle + rea],

which already give the estimates (4.7) and (4.8).

The following part of this section is devoted to the study of the nonlinear problem
(P). We shall use the well-known Schauder theorem on a fixed point of a completely
continuous mapping (see e.g. [12], Ch. IV, § 3):

Theorem 4.4. Let % be a Banach space and let F : 3 — A be a completely conti-
nuous mapping. If /" < B is a nonempty, closed, bounded, convex set such that
F(A) = A, then there exists at least one fixed point ue A" of the mapping F;
ie., u= F(u).

Let the assumptions (i)—(v) be satisfied. We put here # = C'#(Q) with & (0, o).
If u e C'#(Q), then the function f(., u, Vu) is an element of the space C’(Q), where

y=af.
Let us consider the problem
(4.12) Liw(x) = f(x, u(x), Vu(x)), xeQ,
w ' Co =¥y,
w]Ci — Y, =¢q;=const., i=1,..,r,

ow )
(—~(z,~)=vi, i=1,..,r.
on
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On the basis of Theorem 4.3 we can assert that to an arbitrary u € C'#(Q) there
exists a unique solution w, € C*>*(Q) of the problem (4.12). (The vector v is given
and fixed.) In this way the mapping “u € C'#(Q) - &(u) = w, e C*(Q)” is defined.
If we take into account that C*7(Q) = C"#(Q), we can also define the mapping F:
C'(Q)—» C"HQ), F = Jo®. where J is the embedding operator of C2¥(Q)
into C*#(Q).

Lemma. The operator F is completely continuous.

Proof. a) We shall prove that if .# = C'/(Q) is an arbitrary bounded set, then
the set F(.#) is compact.') Let u € C*#(Q). Then

@13)  Cow Vu)lea = [flemer, +=Dake (e + 1),

where % > 0 is a constant depending only on the domain Q. This inequality is a con-
sequence of the assumption (v) and the fact that if 0Q e C*** then there exists a con-
stant K > 0 depending on Q only and such that every function u € C'(Q) satisfies

lu(x) — u(y)] < Kmax |Vu| | x — y| Vx,yeQ.
a

(See [3], Ch. IV, § 9.) From the inequality (4.13) and Theorem 4.3 we get an estimate
of the solution w = ®(u) of the problem (4.12):
o)z @) < esllofy + cal[f ey +
+ #(D&xe([ulén@m, + 1) + [@o]lczvea] -
Hence, if # = C'#(Q)is a bounded set, then the set #(.#) is bounded in C2*(Q). The

compactness of the embedding J of the space C*7(Q) into C*"#(Q) (see [11]) implies
that the set J(®(.#)) = F(.#) is compact in C*#(Q).

b) Let us show that the mapping F is continuous. Let € (0, y). Since C?(Q) =
< C*7(Q), the relation “ue C'#Q) > w”, where w is a solution of the problem
(4.12), defines also a mapping ® : C'"#(Q) —» C*'(Q). Evidently, F = J o &, where
J is an embedding of the space C*(Q) into C'/(Q). Since the mapping J is conti-
nuous, it is sufficient to prove the continuity of .

Let u,e C'*Q), w, = ®(u,), n =0,1,.... Then ®, =w, — w, is a solution
of the linear problem (P) with the right hand side equal to the function

F(x, un(x), Vu(x)) = f(x, uo(x), Vuo(x)) -

We now have ; = 0 in the boundary conditions (2.2) and (2.3) and v; = 0 in (2.4).
From the estimate (4.7) we get

(4.14) loallcr@y = 2l f(s, s Vi) = f (5, uo, Vato)crn -
1) We mean, of course, relative compactness.
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We need to prove that the assumption u, — uo in C'*(Q) (for n - +o0) implies
that the right hand side in (4.14) tends to zero.

If xeQ and n = 0,1, ..., we denote &,(x) = (u,(x), Vu,(x)). For arbitrary x, ye
eQ, x &+ y, we have

(4.15) gul(x, ¥) 1= [f(x Efx) = S(x, Eo(x)) = £(v, &u(y) +
+ S (3 &) |x = »|77 £ min {[f &(x) —

CHQxE3) [

— &(x) | + [&) = ST x = ¥ 77,
# flcs@nyy LlunlEnna + fuolerna + 21 [x = v~}
with » = %(Q). Let u, — u, in C""#(Q). Then there exists a constant k such that
[tnl|&s.p@y < kforn =0,1,.... Further, &, - &, uniformly in Q and thus f(+, &,) -

- f(+, &) in C(Q). With respect to the definition of the norm in the space C’(Q),
we want to prove that

lim [sup g,(x, )] =0.

n—+ o x,ye

xFy
Let ¢ > 0; we find 6 > 0 and n, such that
(4.16) 2| fllex@x ey (K + 13777 < e,

577 <e VxeQ, VYn>n,.

2Hf CHQXE ) Ién(x) - fo(x)
Now, on the basis of (4.15) and (4.16), we easily find out that

sup g,(x,y) =& Vn> n,.
x,yeQ
xXFy

This fact and (4.14) imply that », — 0 in C?¥(Q), which completes the proof.
Now, we shall prove the existence of a solution of the problem (P).

Theorem 4.5. Let the assumptions (i)—(v) be satisfied. Then for an arbitrary
given vector v € E, there exists at least one solution u € CZ”(K—!), q € E, of the problem

(P).
Proof. Let ve E,. From the estimate (4.8) it follows that

1)) = es = ¢o + ea]v]

for an arbitrary u € C'*(Q). The constant c¢g does not depend on u. Let us denote
N = {ue C"HQ); |[ucima = cs). It is evident that A" is a nonempty, closed,
bounded, convex subset of the space 2 = C'#(Q). The above considerations to-
gether with the Schauder theorem 4.4 yield the existence of u e C'*#(Q) which is
a solution of the equation u = F(u). This solution is simultaneously an element
of the space C*77(€2). We can consider u as a solution of the linear problem (P)with
the equation Lu = g, where the right hand side g = f(-, u, Vu) belongs to the class
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C*(Q). Putting y = o in Theorem 4.3, we obtain immediately that ue C**(Q).
The following theorem is devoted to the uniqueness of the solution of the problem

(P).

Theorem 4.6. Let the assumptions (i)—(v) be satisfied, let the function
J(x, &0y &1 52) have continuous first order derivatives with respect to &;, i = 0,1, 2,
in O x E; and let
of

o¢

(4.17) a(x) +

(.\’, éo, é], (:2) _2_ 0 V(x, éo. él’ sz)eﬁ X E3.
0

Then the problem (P) has exactly one solution u € C**(Q), g € E,.

Proof. It is sufficient to prove the uniqueness of the solution. Let u,, u, € C**(Q)
be two solutions of the problem (P). Then the function w = u, — u, satisfies the
conditions

w|C0=0,
wlC,»

Il
o
]
=
w
-
-

Il
—
\.\
.

5
%(z,-)=0, i=1,..,r

and is a solution of the equation
Lw=Lw + Y dw,, —dw =0,

i=1

where

dx) = J'l s—{(x, tuy(x) + (1 — 1) uy(x), t Vuy(x) + (1 — 1) Vuy(x)) dt,

0 0¢;
i=0,1,2.

1t follows from the assumption (4.17) that a(x) + do(x) Z 0 in Q so that the operator
Lsatisfies the assumptions of Theorem 3.3, which implies that w = 0 in Q.

5. APPLICATIONS IN HYDRODYNAMICS
5.1. Three-dimensional axially symmetric flows. Let us suppose that the closure
of the domain Q, defined in Section 2, lies in the upper half-plane x, > 0, i.e.
(5.1) x>0 Vx = (x,x,)eQ.

By rotating the domain Q round the axis x, we get a three-dimensional axially
symmetric domain Q3. The closure of Q3 and the axis x; of symmetry are disjoint.
The boundary of the domain Q> consists of an outer part, given by the rotation
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of the curve Cq, and from axially symmetric rings, obtained by the rotation of the
curves Cy, ..., C,.

We shall consider the steady three-dimensional axially symmetric stream fields
of an incompressible fluid in the domain Q>. This problem can be solved, in view
of the axial symmetry, in the plane domain Q. Let us denote by v = (vy, v, v3)
the velocity vector of the fluid with the components in the cylindrical coordinates
Xy, X3, ¢ and by H the total energy (called also the generalized enthalpy-see [6]).

The system of the continuity equation and the Euler equations of motion can be
written in the form

20
(5.2) Y —(x0,) =0,
i=1 0X;
(5.3) =202 _ 1
0x, 0x,
) 12 )2
64 oy = 1 il
ox, 2x; 0x,
—op, = JH L ox05)

ox,  2x% 0x,

0= 0, 3(x,03) e 6(x21)3)‘

0x,4 0x,
To these equations we shall add the boundary value condition
(5.5) xz.(ul,vl).ﬁ|6§2= Q.

Here n denotes the unit vector of the outer normal to dQ and ¢ : 8Q — E, is a given
function which satisfies the relations

(5.6) JcpdSzO, p|C;=0, i=1,...r.
Co

The condition (5.5) defines the flow through the boundary, the assumptions (5.6)
mean that the total flow through the component of the boundary given by the curve
C, is zero and that the rings defined by Cy, ..., C, are impermeable. Further, let us
assume that an arc I'y = C, is given. We shall call it the inlet. Let

(5.7) |y Sag <0 (x = const.).

We assume that the total energy H and the angular velocity component v; are given
at the inlet:

(5.8) H|I'y=h, xp,|Iy=w.
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Finally, we shall consider the trailing conditions on the curves Cy, ..., C,. Let z; € C;,
i =1,...,r, be the trailing points, at which

(5.9) vi(z)=0vy(z) =0, i=1,...r.

We shall prove the following theorem on the existence of the flow round the rings
given by the curves Cy, ..., C, and inserted in the domain obtained by rotating the
curve C, round the axis x;.

Theorem 5.1. Let us assume that
1) ae(0, 1), 0Qe C*7
2) I'y = Cy is a closed arc,
3) o e C'(0Q), h,we C'(Ty).

Further, let (5.1), (5.6) and (5.7) hold. Then there exist functions vy, vy, vy, He
€ C'(Q) which solve the equations (5.2)—(5.4) in Q and satisfy the conditions
(5.5), (5.8) and (5.9) on the boundary Q.

Proof. We shall prove this thcorem on the basis of results contained in the pre-
ceding sections and in the paper [6]. After introducing the stream function, we shall
transform our problem to the problem (P). By integrating the function ¢ from
(5.5) along the curves C;, we get the functions v, that appear in the boundary value
conditions (2.2) and (2.3). Therefore, e C**(C,) and ; =0 for i = 1,...,r.
1t follows from (5.5) that s, [ I'y is a one-to-one mapping of the arc I'; onto a closed
interval (Qy, 0, (Q; < Q,). We denote the inverse function to i I by (o l ),
and define the functions 4, B: {(Q,, Q,> — E, by the relations

h°(lﬁolr1)—1’
wo (o I I'y)_y.

It is evident that A, Be C"*({Q, Q,>). We can ecasily extend the functions 4 and B
to the whole interval E, so that A’,BB’ € C*(E,) (it means that | A’ || cxg,, := sup |A’I+
E;
+ sup |A'(t) — A(t%)| |t — ¢*
t,t*eEy

t¥ ¥

ative of A).

A

Il

B

Il

% < + oo, similarly for BB'; A" denotes the deriv-

Let us now consider the partial differential equation

(5.10) i a—% (a(x)uy) = f(x,u) in Q

with
a(x) = xz", f(x 1) = x;, A1) = (2x2)"" (B%) (1),
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and the boundary value conditions

(5.11) u|Co =,

(5.12) ul|Ci=q;, i=1,...r,

(5.13) Miy=0, i=1.r,
on

for an unknown stream function v and unknown constants q;. This problem is a spe-
cial case of the problem (P). We obviously have ae C*(Q) and fe C*(Q x E,)
(see (5.1)). Theorem 4.5 immediately implies the existence of a solution u € C**(Q),
g = (44 .- q,) € E, of the problem (5.10)—(5.13). In [6] it was proved that the
functions

1 ou 1 ou
Vy=——, U= =,
X5 0X, X, 0x,
1
H=Aocu, vy=—Bou
X2

form a solution of the equations (5.2)—(5.4) and satisfy the conditions (5.5) and
(5.8). It is evident that the trailing conditions (5.9) are also satisfied. Moreover,
vy, 0y, U3, He C7(Q).

5.2. Rotational flow through cascades of profiles. The mathematical theory of pla-
ne cascades of profiles is a basis for the theoretical investigation of the flow through
blade rows of turbomachines, compressors and other stream machines. Up to now,
the irrotational incompressible flow has been studied in detail. We can mention
c.g. the papers [10, 13, 15]. We shall propose here a mathematical formulation and
prove the existence of rotational, incompressible, non-viscous stream fields through
plane cascades.

Let us denote the set of all integer numbers by 2. We define a plane cascade of pro-
files with a pitch s > 0 as a set L = E, that consists of infinitely many disjoint
geometric images of Jordan curves K™, n = 0, +1, +2, ... (i.e., n € &), which will
be called profiles. Each profile K™ < L is obtained by translating the fundamental
profile K‘“ by the distance ns in the direction x,, so that K™ = {(x1, x5 + ns)
(x1, x,) e K.

Let us consider r — 1 (r Z 2) mutually disjoint plane cascades L, i = 1, ... r — 1,
with a pitch s > 0 that consist of profiles K\, i =1,...,r — 1, ne Z?). Let us
suppose that all cascades Ly, ..., L,_, lie in a (sufficiently wide) strip P = {(xy, X2);

r—1

B

— <0y <X; <0, <+, x;eE}and let us denote Q. =P - (KU
U Int K{"). (Q, denotes the closure of the domain Q,.) =1 ey

) We assume that (K™ {J Int k™) (KM U Int kM) = QVi, j= Lo r— 1.Ym
ne L, i+ .
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On each profile K™ we consider the point Z!™ obtained by translating a given
point Z{” € K{¥ by the distance ns in the direction x,. On the line x, = o, we
consider the points Z{" = (o, x¥ + ns), n € Z. We shall denote the lines x, = o,
and x, = 0, by K, and K|, respectively.

\

\

Z $
KI‘ inlet Z(,)

> o Ko | exit
4r

z A

)

R
%

>

\
)
§;

Fig. 2.

The set Q. is periodic in the direction x, with the period s, which means that
(%1, x2) € Q. < (x4, X, + 5)€Q, .

We shall say that a function f: Q. — E, is periodic in the direction x, with the
period s, if

flxg, xo + 5) = f(xq, x3) Vx4, x,) € Q..

Let a € (0, 1). We define C, 7 (Q,) as the space of all functions defined in Q, which
are periodic in the direction x, with the period s, and have the first-order derivatives
satisfying the Hélder condition with the exponent « in Q,. Similarly, Csz";z(ﬁc) is the
space of all functions which are periodic in the direction x, with the period s in Q,
and their second-order derivatives satisfy the Holder condition with the exponent «
in Q,. Finally, we denote by the symbol Cy*(E;) (Q > 0) the space of all functions
periodic in E; with the periodic Q, the first-order derivative of which satisfies the

Holder condition with the exponent « in E,.
Now, let us direct our attention to the mathematical formulation of the plane
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flow of an ideal incompressible fluid in the domain Q. round the cascades L,, i =
= 1,...,r — 1. The lines K, and K, represent the inlet and the exit of the cascades,
respectively. We suppose that all profiles are smooth enough, fixed and impermeable.
We consider the points ZE"), neZ,i=1,...r—1, as the trailing points, which
means that the velocity vector 17, with the components vy, v, in the direction of the
Cartesian ccordinates x,, X,, is zero at these points. At the inlet K, and exit K, the
velocity component v, is given. Moreover, at K, the distribution of the total energy H
is given, which determines the vorticity of the stream field. At the periodically spaced
points Z”, ne &, let both velocity components v,, v, be given. We shall suppose
that the velocity components and the total energy are periodic functions in the
direction x, with the period s.

Problem (C). Let us consider the following assumptions:
1) ae(0,1),
2) K"ecC**, i=1,..,r—1, ne,
3) @, @r, he C! *(E,) are given functions,

o, =@ >0, ¢ = const.,

X2 +s x2+s
J‘ @o(9) d9 =f 0/(9)d = Q Vx,€eE,.

X2 X2

4) The constant v € E, is given.

We shall say that functions v, v, H € C;(9Q,) are a solution of the problem (C),

§,X2

if they satisfiy the following equations and conditions:

(5.14) W1 %o
a.xl axZ

dv, dv,\  OH
(- —)=—,
0x;  0x, 0xy

—vl<gv~2——-a—l—)~l— =6£ in Q
Ox;  0x, 0x;

(continuity equation),

(5.15)

(Euler equations),

(516) a) 01(019 X2) = (Pr(xz) b) 01(0'2, x2) = (po(xz) , X, € El .
(517) H(O’l,xz) = h(x2)> x2EE1
(inlet and exit conditions),

(5.18) V.n|K"=0, neZ, i=1,..,r—1
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(condition of the flow round the profiles),

(5.19) 0 (ZM)=v, neZ

(supplementary condition to (5.16) a) for the determination of the inlet velocity),
(5.20) v(Z")=0, neZ, i=1,..,r—1

(trailing conditions).

Here n denotes the unit vector of the outer normal to 6Q,, v, is the tangential
velocity component to 0Q,.

We shall prove the following existence theorem:

Theorem 5.2. Let the assumptions 1)—4) of Paragraph 5.2 be satisfied. Then
there exists at least one solution vy, vy, H € C;7%(Q,) of the problem (C).

5.X2

Proof. We shall transform the problem (C) with the use of the stream function,

i.e., the function y : O, — E that satisfies the relations Y, = vy, Y, = —v, in Q..
Let us denote
(5.21) Yo(x,y) = L Po(9)dy, Y.(x,) = jo 0 (3)d%, x,€eE,.

The assumption 3) implies that the functions ¥, and ¥, are continuous and their
first-order derivatives satisfy ¥g, ¥, € C,"*(E,). Further,

(5.22) Yix,+s)=¥(x)+ Q Vx,eE;, j=0,r.

The function ¥, is increasing and maps E; onto E;. By the symbol (¥,)-, we denote
the inverse function to ¥, and define the function 4 : E, — E, by the relation

(5.23) A=ho(¥)-,.
This function is periodic with the period Q:
Al + Q) = h(¥)-1 (1 + Q) = h(#,)-s (1) + ) =
= h((¥,)-, (1)) = A(r) VteE,.
From the properties of the functions h, ¢, and ¥, it follows that 4 € Cé"’(El).
Let us consider the following boundary value problem for the stream function:
Problem (C,): We seek a function ¢ : @, — E, and constants ¢, ..., ¢, such that
(5.24) Vo Vs € Cit(Q)
(5.25) a) AY = A'(Y) in Q. (A is the Laplace operator),
b) v |Ko = ¥, VK, =¥ +q,,
c) l//lK(,-") =q,+nQ, neZ, i=1..,r—1,
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d)z—w(lﬁ"))=v, ne%,
n

ﬂl’(zﬁ"*):o, neZ, i=1,..,r—1.

on
Let us show that if the function  and the constants ¢;,i = 1, ..., r, form a solution
of the problem (C,), then the functions

(5.26) vy =Y., U= =Y., H=Ay

represent a solution of the problem (C).

1,

First, it is evident that v,, v, € C;5,(Q,). The properties of the function ¥ and

(5.22) imply
(5.27) Y(xg, x5 + 5) = Y(xy, %) + @ Vx4, x,)€ Q..
In view of (5.27) and A e Cy*(E,), we can easily prove that H e C;2,(Q,). From

(5.25) b)—d), it follows immediately that the conditions (5.16) and (5.18)—(5.20)
are satisfied. Further, we have

H(O'Ia xz) = A(‘/’(Un xz)) = A(']/'(xz)) = h((lpr)—l (lpr(xz))) = h(XZ)

for all x, € E;, which proves the validity of the condition (5.17). By substitution,
similarly as in [6], we can verify that the continuity equation (5.14) and the Euler
equations (5.15) are satisfied.

Let us denote

. -0

(5.28) P(x1x5) = Wi(xa) + 0 (Wo(xy) — W(x)) -
02 — 0y

It is casy to see that Y,., ¥, € CL25(Q), ¥ | Ko = ¥o, ¥ | K, = ¥, and

(5.29) P(xy, x5 +5) = P(xg, %) + @ V(xy,x,)eQ, .

We shall seek a solution of the problem (C,) in the form y = % + { and get thus
a new problem, equivalent to the problem (C,), for an unknown function % € C2:%,(Q,)
and constants qy, ..., 4,

(5.30) a) M = J(x,%) in Q,
b)%|Ky =0, %|K, =gq,,
o) U|K" =" +4q;, neZ, i=1.,r-1,
oy
d)ﬂ(zﬁ"’)=ui‘ neZ, i=1,..r.
on
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Here,
fx, 1) = A'(t + ¥(x)) — Aj(x), xeQ,, teE,,

P (xy, x;,) = GO(x,, x, — ns) = —f(xy, x5) + nQ, (g, x;)eK],

neZ, i=1,..,r—1,

U = —a—l//(Zﬁm), i=1,..,r—1, u= v—a—w(lﬁo)).
on on

The function f is periodic in the direction x, with the period s in Q. x E|,
feCc*(Q. x E\); &" e C**(K”) forne Z and i = 1,..,r — 1.

Finally, we shall transform the problem (5.30) into the problem (P) by means
of the mapping

F(Z) = F(x, + ix,) = exp (2nZ[s) (i* = —1).

The image of the unbounded, infinitely multiply connected, periodic domain Q.
is the set Q = F(Q,), which is bounded, (r + 1)- multiply connected. Its boundary
is formed by r + 1 disjoint Jordan curves C,, ..., C,, where C; = F(KE")), ne %,
i=1,..,r—1, Cy=F(K,y),C, = F(K,). The curves C, and C, are concentric
circumferences with the centre at the origin. The curves Cy, ..., C,_; lie in the annu-
lus bounded by C, and C,. We denote z; = F(Z{"),ne Z,i=1,...,r.

If % e C;2(Q,) and g = (q4, ..., ¢,) form a solution of the problem (5.30), let us
define the function u = %o F_, :Q — E,. Although the inverse F_ to F is an infinitely
valued analytic function, the properties of % and F imply that the function u is
single-valued. Since F locally has the property of a conformal mapping, we can easily
transform the problem (5.30) into the equivalent problem in the domain Q for the
unknown function u and unknown constants gq;:

(5.31) a) Au=f(-,u) in Q,
b)ulcozo’ uICrzqr’
ulC =yi+aq, i=1..,r—1,

The functions f, /; and the constants v; are defined by the relations
f(F(x), ) = J(x, 1) |F'(x)| "%, xe€Q,, tekE,,
Yi(F(x)) = ¢9(x), xeK®, i=1,..,r—1,
v, = w|F(ZO) ", i=1..,r.
Moreover, 3Q e C*?, fe CY(Q x E,), ¥, e C>¥(C)fori =1,...,r — 1.

362



We see that the solution of our original problem (C) has been transformed into the
solution of the problem (5.31), which is a special case of the problem (P) Theorem
4.5 guarantees the existence of at least one solution ue C**Q), q, ..., q, € E;
of the problem (5.31). From this fact and from the above considerations, it immedia-
tely follows that there exists at least one solution vy, v, H € C;%,(Q.) of the problem

(©).

Remark 5.1. The problem (C) can be modified a little in such a way that the
condition (5.17) is replaced by the given distribution of the vorticity @ = dv,[0x, —
— 0vy[0x, at the inlet K,. If we assume that w(oy, x,) € Ci(E,), then we are able
to define the first-order derivative of the function 4 by the formula

A= (] K)o (#)-

and to obtain A by integration. It is necessary to mention that in this case the ge-
neralized enthalpy H = A o/ need not be periodic in the direction x,. To satisfy
this demand, we have to consider the additional condition

x2+s
J o(oy, 9)9(3)d3 =0 Vx,€E,.

X2

We leave the detailed calculation to the reader.

Remark 5.2. In the same way as in this section, we can study the existence of the
stream fields through cascades of profiles in a layer of variable thickness; the only
difference is in the continuity equation, which has the form div (¢ 17) = 0 in this
case. The function o, which is continuous, periodic in the direction x, with the period
s and bounded from below by a positive constant, characterizes the thickness of the
layer of the fluid. Without any difficulty, we can also apply our approach to the
solution of a rotational flow in radial plane cascades.
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Souhrn

MATEMATICKE VYSETROVANI ZAVIRENEHO PROUDENI{
NESTLACITELNE NEVAZKE TEKUTINY
VE VICENASOBNE SOUVISLYCH OBLASTECH

MiLoSLAV FEISTAUER

V ¢ldnku byla dokdzdna existence feSeni okrajové ulohy pro eliptickou kvazi-
linedrni parcidlni diferencidlni rovnici druhého fddu v rovinné, vicendsobné souvislé,
omezené oblasti za predpokladu, Ze dirichletovské okrajové podminky jsou na jed-
notlivych komponentdch hranice ddny az na aditivni konstanty. Tyto konstanty je
tfeba najit spolu s feSenim uvaZované rovnice tak, aby byly splnéné dodateéné, tzv.
odtokové, podminky. Vysledky maji bezprostfedni aplikace pfi vySetfovdni zavifené-
ho obtékdni skupiny profili a lopatkovych mfiZi idedlni nestlacitelnou tekutinou.

Author’s address: RNDr. Miloslav Feistauer, CSc., Matematicko-fyzikalni fakulta UK,
Malostranské n. 25, 118 00 Praha 1.
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