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CONTACT BETWEEN ELASTIC BODIES — II. FINITE ELEMENT
ANALYSIS

JAROSLAV HASLINGER, IVAN HLAVACEK

(Received July 16, 1979)

INTRODUCTION

In Part I of our paper [1] the existence and uniqueness of continuous contact
problems have been discussed. In the present Part we apply the simplest finite element
technique, i.e., the piecewise linear triangular elements, to the solution of the contact
problems. Some error estimates are deduced, assuming that the exact solution is
regular enough and using a modified method of Falk. If the solution is not regular,
we prove the convergence itself. For problems with enlarging contact zone, the element
of Zldmal’s type [3] with one curved side along the boundaries, are employed.

1. APPROXIMATION OF VARIATIONAL INEQUALITIES

Let H be a real Hilbert space, " #+ 0 a closed convex subset of Hand J : H - R,
be a given quadratic functional:

J(v) = 1)2 A(v, v) — f(v),

where A(u, v) is a symmetric, positive — semidefinite bilinear form defined on
H x H, fe H' a given linear continuous functional on H.
We shall consider the following problem:

find ueA such that
@) { J(u) = min J(v).
veX

Let {,}, he (0, 1) be a system of finite — dimensional approximations of ¢, i.e.
Ay # 0 are closed convex subset of H for he (0, 1), contained in finite — dimen-
sional subspaces S, = H. Let us define an element u, € 4", such that

(@) J(uy) = min J(v).

veX

263



Lemma 1.1. Let u, uy, be solutions of (%), (2,), respectively. Then it holds:
(1Y) A —upu —u,) £ {f(u—v) + flu, — v) + Alu, — v, v, — u) +

+ A(u, v — u,) + A(u, v, — u)}
for any ve A, v, e A,

Proof. As J is convex on H then ue X, u,e A, solve (2), (#,) respectively
if and only if
A, v —u) 2 f(v —u) Yvex,

Aluy vy — uy) = f(v, — u,) Vo,e47,.
Hence
Al — upu — uy) = A(u, u) + A(uy, uy) — 24w, u,) <

< Au, 0) + f(u — v) + A(up, v) + f(uy — vy) — 24(u, u,) =
=f(u —v;) + flu, — v) + A(u, v — u,) + A(u, — u, v, — u) +
+ A(u, v, — u) VYved , Vo,eA,.
Remark 1.1. If &, = &, the inequality (1.1) yields
(1.2)  A(u — upu —u,) < {f(u — v) + A(uy, — u, v, — u) + A(u, v, — u)}
Yo, e A .
Proof. Inserting v = u,, in (1.1), we obtain (1.2).

Remark 1.2. Let | | and| | be a norm and a seminorm in H, respectively. If there
exists a constant y < 0 such that

(1.3) A(v,v) = y|v|*> YoeH,
then (2), (#,) have unique solutions u and u,, respectively and
(1.4) Yu = w|? < {f(u = v) + f(u, — v) + A(u, — u, v, — u) +

+ A(u, v — u,) + A(u, v, — u)} Yoex', Vo, e,
If

(1.5) Alv,v) 2 ylv’z Yoe H,
then |u — u,,| instead of ||u — u,| can be written in the left hand side of (1.4).
Remark 1.3. As A(u, v) is symmetric and positive — semidefinite, we have
A(u,v) = 1/2 A(u, u) + 1/2 A(v,v) Vu,ve H
and (1.1) can be written as follows:
12 A — wp,u — uy) £ {f(u — v,) + f(uy — v) + 12 A(v, — u, v, — u) +
+ A, v — u,) + A(u, v, — u)} Yved, Vv,eX,.
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Theorem 1.1. Let us assume that
(1.6) Voet Iote{A):|o—uv]->0, h>0+;
(1.7) v, €4, v,— v (weakly)in H implies ve X .
Let the form A satisfy (1.3). Then
Hu - u,,|| -0, h-0+.
For the proof, see e.g. [2] — chpt. 4.

Remark 1.4. If o, « A Vhe(0,1), then (1.7) is satisfied, since A is weakly
closed.
We shall need also a slight modification of Theorem 1.1.

Theorem 1.2. Let us suppose that
(1.8) loall = o0, v,e, implies J(v,)—> + o

and let (1.5), (1.6), (1.7) be satisfied. Moreover, let us suppose that (?) has precisely
one solution. Then
lu -—u,,|—>0, h—0+.

Proof. (1.6) ensures the existence of {v,}, v, € &, such that
oy —ull >0, h—>0+.
Hence
(1.9) J(vy) > J(u), h—0+
and from the definition of (2,): J(u,) < J(vy)-
From (1.8), (1.9) the boundedness of {u,} follows:

3¢ = const. > 0: |u,]| £ ¢ Vhe(0,1).

Then there exists an element u* e H and a subsequence of {u,} (let us denote it by
{u,} again) such that:
u, > u*¥ in H.

From (1.7) it follows that u* € #". As J is weakly lower — semicontinuous on H,
we obtain:
J(u*) = liminf J(u,) < lim J(v,) = J(u).

h—-0+ h—0+

The uniqueness of the solution of ({//’) implies #© = u* and even the whole sequence
{u,} converges weakly to u. Furthermore, we may write

J(u) = J(u) + A(w, uy — u) — f(uy, — u) + 3 A(u — uu — uy,).
Hence

y/2|u —w|* = J(wy) = J(u) + A(u,u — u,) + f(u, —u) >0 if h—0+.
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Remark 1.5. If #", = A Vh e (0,1) then (1.8) can be replaced by the coerciveness
of J on &, i.e. by the assumption

o] > 0, vedt = J(v)> + .

Remark 1.6. Let # be another Hilbert space with the norm || |, H = # with
completely continuous imbedding. Assume that a constant ¢ > 0 exists such that
(1.10) Iv)? < (o] + |0)?) WveH
(for example H = H'(Q), # = IX(Q), |v| = ([, |grad v|* dx)"/2, @ a domain with
a continuous boundary). Let all assumptions of Theorem 1.2 be satisfied. Then

lu—=u] >0, h—>0+.

Proof. From Theorem 1.2 and its proof it follows

|u —u,,l—+0, h— 0+
and
u,—u in H if h-0+.

Since the imbedding of H into S is completely continuous, u, — u in 3#. The
assertion is a consequence of (1.10).

2. APPROXIMATION OF CONTACT PROBLEMS BY FINITE ELEMENT METHOD

In this Section we describe the construction of finite-dimensional approximations
of A", A, 1.e. of closed convex sets of admissible displacements in the problems
(2,), (2,). For definitions — see [1].

First we introduce some notations. Let Q', Q” be two bounded disjoint domains
with Lipschitz boundaries 0Q’, 0Q” and let us set Q = Q" U Q". By .#"(Q), k=0
integer, we denote the space, isomorphe with [H*(Q')]* x [HYQ")]% i.e.

ue #NQ) < ulop = u' e [H(Q)]?

o = ' [
where HY(QY), M ="', " denote the Sobolev spaces. The norm and the seminorm
in #*(Q) is defined as follows:
2.1) lulléo = lwlior + [u"]iar
e = lwla + [wfie
where [[u™|, om and |u™|, ou (M =", ") are the usual norms and seminorms,

respectively in [H*(Q")]%. In what follows, we shall consider the problems (%),
(2,) separately.
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2.1. APPROXIMATION OF CONTACT PROBLEMS
WITH A BOUNDED CONTACT ZONE

Let us consider the following decompositions of 0Q', Q" (see [1] — Section 1.):
0 =T, 0l urlg, 0Q =T,ullUTlyg,
where I',, 'y are non-empty parts of 0Q'. Let us recall that
V={ven'(Q)|v=0 on I, v,=0 on I}
H ={veV

v+ Uy £0 on Iy}

A. First let us suppose that both @', Q" are polygonal domains, 'y =Y Iy,
i=1

where Iy ; denotes a straight-line segment 4,4, ;. Let 7 and 7, be triangulations
of Q" and Q”, respectively, having common nodes on I'x and such that A,, ..., 4,
as well as all boundary points of I, I'y, I'., I'!, 'k belong to nodes of 7, and 7.
We set 7, = 7, U J,. Let h denote the maximal side and 9 the minimal interior
angle of all triangles T; € 7. Assume that a system of {7}, h - 0+ is regular, i.e.
a constant a > 0 exists such that 3 = o if h — 0+.

We define
(2.2) Ve, = {ve[C(@)] x [C(Q)]* n V] UlT e[P(T)]? VTeT,},

where P(T) is the set of linear polynomials, defined on T.

Let ai, j = 1,....m; be the nodes of 7, lying on 'y ; (a} = A4, a,, = A;,),
i=1,...,m and n' be the outward unit normal of the side Ik ;, related to 0Q'.
Let us define:

(23) oA, ={ve V,,Iiﬂ.(v’ —v") (@) <0, i=1,...m; j=1,...,m}.

It is readily seen that ¢, are finite-dimensional approximations of 2". Moreover,
it holds:

Lemma 2.1. ", = A for every he (0, 1).

Proof. Let ve A, Then n'.(v' — v")|r,, is piecewise linear function on Iy ;.
Hence

n (V=)0 on Ty;en.(V—v)@)g0, j=1..,m.

B. Next we shall consider the case, when Q’, Q” are domains with more general
boundaries. For the sake of simplicity we restrict ourselves to the case, when only I'y
is curved. Let  be a continuous concave (or convex) function, defined on <a, b)
(see Fig. 1), the graph of which is I'y. We choose (m + 1) points Ay, ..., Ay o0 Ik
in such a way that A, and A,,, , are boundary points of I'y. Let A;, A;+, € [y, S€ QY
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M =", ". Bya curved element T we call a closed set bounded by the straight — lines

SA;, SA;,, and the arc A?Z,-H such that T < QM, M =’ | ”. The minimal interior
angle of the triangle A4;4;,,S is called the minimal angle of the curved element T,
A triangulation 7, of Q = Q' U Q" contains curved elements along I'y and internal
triangular elements. By the symbols h and 9 we denote the maximal of diameter and
the minimal interior angle, respectively, of all elements T'e . Analogously as in the
previous case we define a regular system of triangulations.

1777777777777 777777
w
Fig. 1.
Define
(2.4) Vi = {ve[C(@)] x [C(2)] n V]vr e [Py(T)]? ¥TeT,)
(2.5) Hpy={veVy[n. (v =v)(4)=0, i=1,..,m+1}.

It is easy to see that also in this case &', represents a finite — dimensional approxim-
ation of X, but A", ¢ A, in general.

Let
(2.6) L(v) = %;J-rij(v)s,.j(v)dx —JF.vdx—j P.vds
Q Q roory”

be the functional of the total potential energy, Fe #°(Q), Pe[IXI')]* x
x [I(I7)], eifv) = HovJox; + dvjlox,), 7,(v) = ¢;uen(v); the coefficients Cijkl
are bounded and measurable in Q,

Cijkl = Cjiy = Cpj A, in Q
and a positive constant ¢, exists such that
2.7 Cijpi€ijen = Coeije;; a.e. in Q')

holds for any symmetric e;;.

1y A repeated Latin index implies summation over the range 1,2.
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An approximation of the contact problem with a bounded contact zone is defined
as the solution of the following problem:

(9’1,,) find u,e A, suchthat
L(u,) = min L(v),

vedX n

where 7, is given by (2.3) or (2.5).

2.2. APPROXIMATION OF CONTACT PROBLEMS
WITH AN ENLARGING CONTACT ZONE

Let Q', Q" be bounded domains with the following decomposition of the
boundaries 0Q’, ¢Q":

oQ =T, oluly, 0 =Tyul’ulY,
where
ry={CEnlasnsb, &=/10)

M ={&mn]asnsb, ¢=rm).

f', f" are continuous functions on <a, b) (for details see [1]). The space V is defined
as in the previous case. Define

IIA

IIA

J{f£={veVlz;g — 0. <& Vnela, by},

where &(n) = f'(n) — f"(n) is the distance of I'y, I'y before the deformation and
v, vg are projections of v', v” into the fixed direction &.

For simplicity we restrict ourselves to the case when only I'y, Iy are curved and
the functions /', f”, describing these arcs are twice continuously differentiable on
{a, b>. Curved element T is defined in the same way as in the previous case-Part B.
For the construction of finite — dimensional spaces on 7, we use the technique,
developed in [3].

Let T be the triangle with the vertices: [0, 0], [1,0], [0, 1]. Let A4;, A;,, € I'k,
Se Q' (for example), and let x = ¢(s), » = y(s), s€<0, 1>, ¢,y € C*(<0, 1)) be
a parametric representation of the arc A;4;,; and T the curved element, determined
by A; A;41,S. Then we can construct the mapping F; : R, > R,, which is C!-
diffeomorphism T onto T. Let P = P, be a set of linear polynomials defined on T
Then we set

(2.8) P(T)={p|3peP:p=p-F'},
where F; '(T) = T.

The triangulation 7, = 7, U 7, of Q consists of curved elements along I', I'y
and interior triangles.
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Elements along I'y, I'y are constructed in the following way: let {C;}7_, be a di-
vision of <a, by, C; = a, C,, = b, A;, B; being the intersections of perpendicular
lines at C; with I'y, I'y, respectively. Points A; and B; coincide with the nodes of 7,
on I'y and I}, respectively (cf. Fig. 2).

ST777777777777777777777777777777777777777777

~

u
Fig. 2.
Let us define
(2.9) V,={veV|pre[P(T)]* VTeT,},
where P(T) = P((T) if T is a triangle or P(T) is defined by (2.8) if T is a curved
element. Let
(2.10) Hogo={veV,|vi(B) —viA) £&C)), j=1,...,m}.

It is easy to see that ¢, is the finite — dimensional approximation of J#°, and
A & A, in general.

An approximation of the contact problem with an enlarging contact zone is defined
as the solution of the following problem:

(221) find u,e A, suchthat
&(u,) = min £(v)
veX ch

3. ERROR ESTIMATES

In this Section we establish the rate of convergence of approximate solutions u,
(defined in the previous Section), provided the exact solution is smooth enough.
We shall analyze the problems (2;) and (2,) separately. The results of Section 1
will be used with .

(3.1 Au, v) = _LTU(M) &;(v)dx,
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(3.2) f(v):fF.udx+J‘ P.vds.
o ryory

First we recall the well-known Green’s formula. Let Q < R, be a domain with
a Lipschitz boundary 0Q. Let us introduce

Y(Q) = {re[L}(Q)]* |t = 1;; ae. in Q}
Y(Q) = {re Y(Q) | 1;;;€ IX(Q), i=1,2},

where 1;;; = 01;;/0x; is taken in the distribution sense. Then there exists a unique
Te 2(Y(0), (H~2(20))?) such that')

(3.3) J‘ 7 6(v) dx = —J‘ ;0 dx + (T,v) Vee 9(Q), Vve[H'(Q)]?,
2 2

where ¢ , > denotes the duality between [H™'?(0Q)]* and [H'?(0Q)]*. If Te
€ [L2(6Q)]? then

(T, vy :f T.v; ds
20
Using (3.3) with @ = Q" and Q = Q" respectively, we obtain
(3‘4) J' Tij 8ii(v) dx = _‘[ Tij, iV dx + (T, v' 500 + <T", 0" )oqr
9] Q
Vie Y(Q), Vve#'(Q),

where T € [H™"/?(0Q™)]? and ( , D,om denotes the duality between [H~'/2(0Q™)]?
and ['?(0Q")]>, M =", ". Henceforth we assume for simplicity that T' € [I2(0Q')?,
T" € [I*(0Q")]*. Finally, let us denote

o = fﬂsij(”) ei(v) dx .

3.1. CONTACT PROBLEMS WITH A BOUNDED CONTACT ZONE

Let the weak solution u of the problem (2,) be such that t™(u) e Y(Q@Y), M =", ",
Then using the definition of (2,) and (3.4) we obtain (cf. [1] — Th. 1.1):

(3.5) ;) + F;=0 in Q, i=12;

(3.6) u=0 on TI,;

(3.7) t{uyn; =P, on I.=I,0I, i=12;
(3.8) u, =0, T,(u)=0 on TIy;

') H'?(2Q) is the space of traces of all functions belonging to H'(Q), H™'/(3Q)
denotes the dual space to H'/*(0Q). We shall write simply {7, v) instead of {T(z), v}.
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(39 u, +u, £0 on Iy,
(3. 10) T,(u)=T;(w)=T(u)£0 on I,
(3.11) T,(u')=T(u") =0 on Iy,
(3.12) T(u).(u, + uy) =0 on Iy,

where T,(u) and T,(u) are the normal and tangential components of the stress vector,
respectively.

A. Let us suppose that Q', Q" are polygonal domains, ', is defined by (2.3).

Theorem 3.1. Let there exist solutions u, uy, of (2,), (2,,), respectively, such that
ue Q) A, Mu)e (@), M="," u, u'e [Who (e )% i=1,...,m.
Moreover, let us suppose that the number of points on I'g, where the contact changes
from binding to nonbinding, is finite. Then

(:13) = = ehllufio + 31T o (01, + o

if the system {7}, h - 0+ is regular.
Proof. From (1.1), Remarks 1.1, 1.3 and Lemma 2.1 we obtain
(314) 1AW —upu —w) = f(u—0,) + LA — v u — v,) + A(u, v, — u)
Yv,e A .

The definition of (2,) and the Green’s formula, (3.5)—(3.8), (3.10) and (3.11) yields:

(3.15)  f(u — vy) + A(u, v, — u) :J T,(u) {(vp, — up) — (V) — uy)} ds
I'k
Yo,e Ay .

(In the following the normal n will be related to Q" only.) To prove (3.13) we make
a special choice of v,, namely v, = u,, where u; is a piecewise linear Lagrange
interpolate of u over the triangulation 7. It is readily seen that u; € /",. In fact,

n' L (up —up). (@) =n".(u —u)(a}) £0.
Using the well — known approximative properties of u,;, we deduce

(3.16) |A(uy = u,uy — )| £ clu — u,|> £ ch?|u
Let

2
2,2

Ig;={xelg; I (up — uy) (x) < 0}

ry,={xelg|(u, — u)(x) <0} .
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Denoting %, = (u; — uj).n' = [(u" = u"). n'];, we have
(3.17) 2, =0
on every side si = ala},, < I'% .. Moreover, T,(u) = 0 a.e.on I'g; follows from
(3.12). From this and (3.17) we obtain
flu—up)+ Aw,up —u)y =3 Y T,(u) [(u, — uy); — (u, — uy)] ds,
i=1sjefiJs;t

where #; is the system of all sj <€ I'g ; containing both points of I*z‘,- and I'g ;. Using
the assumptions of the Theorem, we have

0 L = = s = BT 1= (5 = ) =
st

s Chz“ Tﬁ(”)”@di‘ Up = Uiy Lo syt = ChZHTH(“)”m»Sj" :
. (Iu'll_m‘sj.- + u”ll.m.s_/") .
Due to the assumptions, the number of all s;ef,-, i=1,..., m can be bounded

from above independently of h. Using (3.14) and (3.16), the assertion (3.13) follows.

Remark 3.1. Some sufficient conditions for the existence and uniqueness of solu-
tion of the problem (2,) are given in [1]. Since #°, = ", the same conditions are
true for the problem (2,,). The previous Theorem 3.1 however, doesn’t require the
uniqueness of the solutions.

Remark 3.2. The same rate of convergence O(h) can be obtained for example
if ue Q)0 A, Mu)e Y(QM), M =", " and u), uje H (') Vi=1,...,m.
Under the single assumptions ue #*(Q)n A, t™u)e Y(Q)M), M ="," we
obtain

'u - u,,| = 0O(h**), h—>0+.

Remark 3.3. Leton I'xy < I'k (given a priori) Q" and Q" are in a bilateral contact
ie. u, + u, = 0 on Iy, and let 'y, be such that the rigid virtual displacements,
satisfying the bilateral contact, reduce to zero field, i.e.

veZNV, v,+uv, =0 on [g<=>v=0.

Then using the inequality of Korn’s type, we obtain the rate of convergence in .#"(Q)
— norm.

In the above error estimates we needed very strong regularity assumptions, concern-
ing the solution u. Unfortunately, there are no reasons to expect such a great smooth-
ness in a general case. This is why we are going to prove the convergence of u, to u
without estimating the rate of convergence, using no regularity hypothesis. To this
end we need the following.
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Lemma 3.1. Let us suppose that 'y nI'y = 0, 'y n 'y = 0 and there exists only
a finite number of boundary points I'. "\ I'y, I', T, ', n I'y. Then the set

W= o 0 [CH@) x [C(@)]
is dense in A" in H'(Q) — norm.

Proof. Letu € 2 be a fixed arbitrary function. Consider a system of open domains
{B;} -0, which cover Q' U Q”, such that: B, c @', B, = Q’,

k
recUB;, (k<)

j:

NN Bi£0«2<i<k.

We say that a point P e 0Q' U ¢Q" is a singular point, if P is cither a vertex of the
polygonal boundary or a point of

renT., T,nl, or IynT,.

We may assume that each B; contains at most one singular point. Denote {¢;},
i=0,1,...,r, the corresponding decomposition of unity (i.e. (p,~€C8°(B,-), 0=

<¢ =1, -Zoq)i(x) =1VxeQ u Q). Introducing

J_ P .
w=up;, j=0,1,..,r,

r
we have supp u’ € B;, u’ € #'(Q), Y u’ = u. For each u’ we shall construct infinitely
i=0
differentiable and close functions satisfying the boundary conditions. To this end

we divide the system {B,} into several groups.

1. group. Let j < k and {Bj} do not contain any singular point. Introduce local
Cartesian coordinates (¢, 1), where ¢-axis coincides with the tangent and n-axis with
the normal n’ with respect to I'y. Then (omitting the indeces j), we have

I'vn B = {(@’7)' ’fl < <o ’7:0}7
u = ulle, + u)fe,, M=",",
(es, e, are unit basis vectors),

(3.18) up +uy =uy—uy =0 on TI'g.

Let us extend u, into B Q" and u, into BN Q' in such a way that the extension is
even with respect to 7. Regularizing the extended function Eu, by means of the kernel
o(x, ), we obtain

(3.19) R,E u)(x) :‘[ o(x = X)Eu(x)dx", x' = (&, n).

B

274



There exists a function v e H'(B) such that
v=0 in B, suppvc B,
v=u, —u; <0 on Iy
(see e.g. [7] — chpt. 2, the proof of Th. 5.7). Then
(3.20) Eu, — Euy = v + z,

where z e H'(B), the restriction z|ou € Hy(Bn QY), M =" | "
Obviously, it holds
Rp<0 on Iy, RueCy(B),

Ry—-v in H'(B) for x—0

and aproximations z)' € C§'(B n QM) exist such that z, — zlgm in H'(B n Q™).
Consequently, we have
Rpo+ 2,20 on Iy, setting z,=(z,z,)eCy(B),
(3.21) Ry+z,»v+z in H'(B).
Let us set
u, = R,{Eu,’llgl ,

uy, = [REu, — (R + z,)]|o- -

By virtue of (3.19), (3.20) and (3.21) it holds

(3.22) uy, > uyf in H'(Bn QM) for %x—>0.

nx
Moreover, we have

(3.23) Uy, —uy, =Rp+2,<0 on Iyg.

nx

The components ugf can be regularized by an arbitrary way.

2. group. Let j £ k and B; contain a vertex P e I'y. We use a skew coordinate
basis for the components of u. Let e', e* be unit tangential and n', n? unit outward
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normal vectors, with respect to 0Q — see Fig. 3. Then we may write (omitting
indeces j)

where u'P = u’ . n’, ie.
W =y on I'", p=1,2.
The same decomposition is valid for u” and

”

u'® =~y on I'”, p=12.
Altogether we have

u,+ul=u" -y <0 on ",

First let us consider the components u™?). We map the angular domain B n Q'
into the upper halfplane {(¢, n) [ n > 0} by means of a Lipschitz mapping T such that
Tr'?) is the positive and TI'" the negative é-axis. Let us extend the functions

MANE ) = uMP(TE )
across the ¢-axis to get functions even in 5. Set
Eu™?(x) = E a"?(T(x)).

Regularizing, we obtain
REu™® e Cy(B).

Let us extend the function

U =P —-g"®P <0 on TI?

from the positive onto the negative &-axis in such a way that the extension E% is
even in ¢. Then a function v € H'(TB) exists such that v = E% on the &-axis, 0 £ 0

in TB, supp v = TB. Defining
v(x) = o(Tx),

then ve H'(B), suppv = B,v £ 0in B, v = u'® — u"® on '*.
Consequently, we may write

Eu'® — Eu'® =p + z,
where
ze H'(B), suppz<= B, z=0 on I'?®.
Regularizing, we obtain
(3.24) Rv<0 on I'), Rv—-v in H'(B), %—0.

There exists a function w e H'(B), supp w < B, such that w = z on I''" U I'® and
w = 0 in an “angular neighbourhood” 9] < 9, of the part I'®). Defining a “‘shifted”
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function
wi(x) =w(x + ie'), AeR', 1> 0,

then for ¥ < CA it holds R,w; = 0 on I'®,
(3.25) [Row, = wl| < [[Row; = wi]| + [w, —w| >0 for 21-0,

with the norms in H'(B).
Furthermore, since we have

Z=W+ 2o, Zo|ow € Hy(Bn Q)
(3.26) Row, + 20, =0 on I'® 2z} eCy(Bn QY),
Rw, + 2o, > W+ zo =z in H'(B).
Let us set u> = R Eu'®),,
uy® = [REW?Y — (Ry + Rw, + 20,)]|or
Then we obtain on the basis of (3.24), (3.25), (3.26) that
(3.27) upy® — M in HY(QM A B)

and
u® —u!? =Ro+ Rw, + 2, <0 on I'?®,

The component u™") can be treated in a parallel way. Since the Cartesian com-
ponents w, of an arbitrary vector w can be written as

w, = a,w') + a?w?®
with fixed constants ay, a,, it holds

ol < 3 WO k=12,

Fig. 4.
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Hence it follows that defining
2
Z (Pi / n? , M =" , ” ,
the relations (3.27) imply
[ul — u'|l; o >0, for -0, i-0, %< Ch.

3. group. Letj £ k and let B; contain a point P e ['y n I',. We place the cartesian
system into the point P so that x;-axis coincides with I'. (see Fig. 4). Then we have

u, + uy = —uy) +uy <0 on Iy.

We can proceed in a way analogous to that of the 2. group. replacing the components
uM® by u and the ray I'® by TI'y.

4. group. Let B; contain a point P e I’y n I, which can also be a vertex. If the
cartesian local system is such that x,-axis coincides with I'y, then u, = +u’5 =0
holds on I'y. There exists a function ve H'(B; n Q") such thatsuppv < B;, v = u}
on 0Q", v = 0 in an angular neighbourhood of the ray I'y (with the vertex at P).

If we shift v to get v,(x) = v(x + 1) with a suitably chosen vector 4, then R,v; = 0
on I'y, R,v; = vin H'(B;) for x < C]/ll, |/LI — 0. Since u3 = v + z, where z € H}
(B; n Q"), we have u, = 0 on I'y and

uy, = R, + z,»uy in H(B;nQ").

5. group. Let B; contain a point P e I, n I",. The approach, used for u} in the 4.
group, can be applied to both comonents u;, k = 1, 2.

The cases of B;ndQ < TI,, B;ndQ" I, and B; n Q" = I',, as well as
of By, B, are easy.

Finally, defining

™M
W= T, M=
j=0
we obtain
lu, = ulyo—=0 for x—>0, 250, x<C|.

Moreover, the functions u, are infinitely differentiable and satisfy all the boundary
condition involved in the definition of K.

Theorem 3.2. Let & be coercive on A" and let (?,) have precisely one solution.
Let the assumptions of Lemma 3.1 be satisfied. Then for any regular system of tri-
angulations {7} we have

Hu - u,,“l,ﬂ -0, h->0+.

Proof. It follows from Theorem 1.2, Remarks 1.4, 1.5 and 1.6. It remains to
verify (1.6). Since the Lagrange interpolate v, of any ve 9 belongs to &, and M
is dense in ¢, the condition (1.6) is true.
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B. Assume that I', is a curved arc. Let 4, be defined by means of (2.5). The main
difficulty consists in the fact that #°, ¢ %, in general. First we present several
auxiliary results.

Lemma 3.2. Let Q = R, be a bounded convex domain, the boundary of which is
twice continuously differentiable and let {T,}, h — 0+ be a strongly «— f-regular
system of triangulations,') where f§ = 2 and the maximal straight side in T,
is not greater than the maximal chord of ¢Q. Then

3/2] 2
(3.28) lu = willoe = Wl VYueHHQ),

where u; denotes the piecewise linear Lagrange interpolate of u, ¢ > 0 is inde-
pendent of u, h.

Proof — see [5].

Lemma 3.3. Let p be a linear function, defined on the interval {a, b). Then
(3.29) ”p!l|,<a,h> =< C(b - “)_1/2 “p“l/2‘<a,b> .

—

Lemma 3.4. Assume that the arc A;A;, is the curved side of a curved triangular
element. Let ve P((T) and T, be the triangle generated by replacing the curved
side by its chord. Then

lo3 acr.r < <hllo] .,
where A(T, T,) = (T — T,) u (T, — T). ¢ > 0 is independent of h and of v.
Proof — see [4], p. 199.

Theorem 3.3. Let the problems (2,) and (2,,) have solutions u and u,, respectively.
Let ue #*(Q)n A, t(uM)e Y(QY), M =", ", T(u)e [{I') and let the norms
”u,,“ 1o remainbounded. Assume that the system {7}, h — O+ is strongly « — -requ-
lar with f = 2 and the maximal straight side in T, is not greater than the maximal
chord. Let the function s, describing Iy, be three times continuously differentiable.
Then

3.30 u—u| £ c(u) 3, h—-0+.
(3.30) u = w] = c(u)

Proof. Using the definition of (2,). (1.1), Remark 1.3 and the Green’s formula,
we deduce

AW = wpu —u,) < 5 A(v, — us v, — u) +J T,(u) [(vs — up) —
'

= (vn = up)] ds +f T(u) [(vhn — w,) — (vi, — ;)] ds
I'k

Yo,e A, Yved .

') Le. regular system, such that the ratio of any straight sides (or chords) in 77,
is bounded above by some constant f, independent of h.
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Let v, = u,, where u, is the piecewise linear Lagrange interpolate of u on Q. It is
easy to see that u, € 47, and we obtain

(331) IA(UJ —usu; — u)l = M“ul - uil%.Q = Chznqu,Q >
j T,(u) [(u) — w').n — (uf —u”).n]ds <
I'k

< efluy = wlore + [ui = wor) £ ch*ul, 0,
as follows from (3.28).").
The most difficult is to estimate the term

(3.32) J‘I-KT,,(u) [(v, = v) = (up — uy)]ds, vex .

In what follows we shall construct a function v € & such that (3.32) is small.

X5

A ) A X1

Fig. 5.

We identify the origin of the coordinate system (x;, xz) with the point A; (see Fig. 5).

Let X, be a closed set bounded with the arc A;4,,, = s; = 'k, connecting A4; with
A;yy, and the chord A;4;.,. Let x € Z,. By the symbol P(x) and Q(x), respectively,
we denote the intersection of the perpendicular line through the point x with s; and
AA;,, respectively. Let T, « Q', T/ = Q", 0T, n 0T} = s; be the two adjacent
curved elements. We extend any function v € [Py(7)]? on T/ L X, as follows:

Eve [P(T! v Z)]*;

i

Ev IT."’ =v.

) In order to aply Lemma 3.2, we can proceed as follows. Let Q' be a convex
set with twice continuously differentiable boundary 0@ < I'y. Let Eu e [H*(E;)]?
denotes the continuous Calderon extension (see [7]) of u'e[H*(Q')]*. Then,
according to Lemma 3.2

[u" = uillory < [|Ew — (Eu')]o05 < ch®?||Ew’

25 S|

2,02
Analogously one can estimate |[u” — uj|lo -
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For simplicity of notations, we use again the symbol v instead of Ev. Let us define
functions %,, U, again on U X; by means of the following relations:
i

Uy(x) = (ui(x) = uj(x)) . n(P(x))
Oy(x) = (uy(Q(x)) — ui(Q(x))) - n(P(x)) = (&, — ;) (x) . n(P(x)),
where
ay(x) = uy(O(x)), @(x) = u;(Q(x)), xe X,
Clearly

m

Uy (x) = Uy(x), xeU 44,4,
i=1

Let tﬁ,»(x), x € A;A;, be the linear Lagrange interpolate of %, on 4;A,,, and let us
define the function @ on |J Z; as follows:

P(x) = P(0(x)), xeZX;,, i=1..m.

Itis readily seen that & < 0 on I'y. Let us estimate | — %o 1. We may write:

(3.33) & = Zore £ 19 = Opllore + |00 = Uio.re »

100 = f5.r = L N00 — 55, =
i=1

=3

i=1

m
i = @8+ X i = 5.5
i=1

Let 1 be the arcs’ parameter of the point P(x) = (Py(x), P5(x)) and denote Q,(x) =
= x,. Then for M =", " we have

M M Pax) 5 M P2(x) 5 M .
Upj — Up; = —— (up; — @) dx, = —updx,, j=1,2.
0o 0x, o 0x,
Integrating and using Fubini’s theorem we obtain
M ~AM||2 M|2 >
funi = @ill5.s, € ch?ulifi ;s J=1,2.

From this and Lemma 3.4 we have

(3.34) 10, = 2,5, = h?(X |75, + X il 7 ) £ ch®ulli o
i=1 i=1

Let us estimate ||@ — U, /.-

¢ = 06 = X[ = U5 -
i=1
N 01(1) g N
o(z) — U,(x) :j — [®(x,,0) = U)(xy,0)] dx; +
o dx,
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Pax) g ' ~ _
" J.O dfx [‘bi(Qx('\)’ X3) — Uh(Ql(T)’ xX;)]dx; =

(1) d
=J [(I)(\l 0) — U,(x,, 0] dx, .
0
Since Y € C*(<a, b)), we have b,,e H*(A;A;,,). Hence
(3.35) |#(z) = O,(x)]> < ch|@; = U7 4iaiv, < ch®| O3 4inis, -
As Uy(x) = (@, — @) (x). n(P(x)) and 4, i) € PI(A,-A,-H), we may write:

thz Aidie = C[”“h“l Aidie T ‘luZ\I%.AIA;+1] .

Thus, (3.35), Lemma 3.3 on A4;4;,, and the definition of strong regularity of
(7,) yield:
‘LQ h ylc .

(3:36) le)(f) — Uy(r))? dr < ch

Sl U1 EOPI

it

IIA

ch® hu,,]

1/2,4iA4i+.

Adding (3.36) for i = 1, ..., m we obtain

(3:37) | = O5.re < ch®{[uill?2r, + 0320} -

where I'y, = |J A;A4;,  is the polygonal approximation of I'g. Using the trace theorem
i=1
and Lemma 3.4, we obtain

’

2
u,,'

11,9

N = CI

”“h“l/z ry = c||“h”1 @our = CIIM'AIIf.m ")

Using these estimates, (3.33), (3.34) and (3.37) we deduce
(3.38) 19 = 0.0 < )10
Next let v € Vbe such that v” = 0 on Q” and v’ such that v’ . n = @ on I';. Then
vV.n—v.n=0v.n=o =<0 on [,

consequently v € . Finally we may write
(3.39) J‘ T(u) [(vn — up) — (vy — up,)] ds =

') The constant ¢ such that |[u;|, .5, < c|upls oox, and [uy| ,/théc“u;:H,.ﬂuwih

respectively, depends on h, in general. From the definition of the norm of traces
however, (see [7], p. 88) it follows that ¢ can be estimated independently on h for
h > 0 sufficiently small.
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= j T(u) [@ — %] ds < ch**||uy|, 0.
'k

The assertion (3.30) follows from (3.31) and (3.39).

Remark 3.4. If (1.6) and (1.8) hold, the norms [u,[|; , are bounded (see the proof
of Theorem 1.2). The condition (1.8) follows from the coerciveness of & over A,
provided 4", < # for all h. Unfortunately, this is not our case and therefore we have
to assume the boundedness of norms in Theorem 3.3 explicitely.

Remark 3.5. The assumption on the boundedness of the norms ||u, |, o is satisfied
if e.g. on I'y, = ' (chosen a priori) the bilateral contact of Q" and Q" is considered
(see Remark 3.3). Then & is coercive on ¥, hence (1.8) holds. The condition (1.6)
follows from Lemma 3.1, which can be proved also for curved domains, modifying
slightly the proof.

Remark 3.6. In [l] (Theorem 3.4) some sufficient conditions for the coerciveness
of & on A have been presented. Let I'y contain a straight-line segment I. Let us
define

Hy={veV

vy —v, 20 on I}.

Assume that the sufficient conditions, mentioned above, are also satisfied, if 2 is
replaced by ;. (For instance, in the situation of Fig. 5 — [1], it holds & n 2 =
= AN R and the sufficient conditions become identical). Then & is coercive
on A, as follows from the proof of Th. 2.4 [1], substituting only #" by 4, and I'g
by 1 everywhere. Since

Ay Ay Yhe(0,1)

(see the proof of Lemma 2.1), we have
l!vhul,!) -0, ved,=>L(vy)> +o,
i.e. (1.8). From this and (1.6) the boundedness of norms |u, |, o follows.

Remark 3.7. Let us consider the case, solved by Theorem 2.3 in [l] Let us restrict
ourselves to the problem (2,), with I'y and I'y parallel to x;-axis. Then (see [1],
Fig. 4)

Ry =VnR=HNR=1{z=(, :”)lz’ = (0,0),z" = (a,0),a e R},

where Z is the subspace of rigid bodies displacements. Let V= H @ Z, be the
orthogonal decomposition of V with respect to the following scalar product:

(u, v)y = [u, ] + p(u) . p(v),
where [u, v] = [qe;(u) e, (v) dx,

(o) = '[ vids, I"caQ", mesl”>0.
»
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Then (see [1]) we have
H ={veV]|p(v) =0}.
From Th.2.3in[1]itfollows that it is sufficient to solve the problem (2,) only on the
set K = # n H. Then the problem

(Py) find 4eK such that
L(a) £ #(v) VweK

has a unique solution. At the same time, the closed convex sets K, = 4, n H can
easily be realized numerically. In fact,

IE’,,={U€.%”,,|J vids =0} = K,
-

because I’ is a straight-line segment. It means that only one supplementary condition

J' vids=0
r

must be added to the definition of ,. The problem
find @,eK, such that
(Py) L(4,) £ Z(v) VveKk,

has a unique solution #,. The element u, € X", represents a solution of (2,,) if and
only if
u,=td,+y, yeR, .

As the inequality of the Korn’s type holds on H, i.e.
lv| = c”v”,,!) Yve H,

the seminorm | | in the error estimate (3.13) can be replaced by the norm | |, o,
if (#,) and (2,,) are solved on K and K, respectively (i.e. if we solve the problems
(P,) and (P,,)). However, the proof of rate of convergence requires a slight modifica-
tion: v, = u; in the proof of Th. 3.1 must be replaced by v, = Pyii,, where i, is the
linear Lagrange interpolate of & and Py, is the projection of ¥ onto H (see [6], Th. 2.1).

3.2. CONTACT PROBLEMS WITH AN ENLARGING CONTACT ZONE

Let the weak solution u of the problem (2,) be such that t™(u) e Y(Q"),M =", ".
Then using the definition of (#,) and (3.4) we obtain (cf. [1] — Th. 1.2) the same
group of conditions (3.5)—(3.8) as in Section 3.1 and

(3.9') uy —u

’
3
S s

(3.10) — T{(cos o)™ = T/(cosa")" " <0

&

IIA
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(.11%) T, =T/ =0
(3.12) T/(ui —u;—¢)=0

S

for almost all y € {a, b).

Theorem 3.4. Let (#,) and (2,,) have solutions u and u,, respectively, let u e
e (Qn A, ™Mu)e¥@Y), M=".," ueW' = (Iy), u e W>(ry), and
S, /"€ C*(<a, bY). Moreover, let us suppose that the number of points on T'y, I'y,
where the contact changes from binding to nonbinding, is finite. Then

lu - u,,[ < c(u)h,
if the system (7}, h = 0+ is regular.

Proof. Analogously as in the proof of Theorem 3.3, using the Green’s formula,
we obtain

12Au — wpou — u,) < 12 A(v, — u, v, — u) +

+J T;(u) (vpe — ug) ds +‘[ T (u) (vpe — uf)ds +
e .

'k

+f T;(u) (v; — uye) ds +'[ T{(u) (v — uy)ds
e oo

K

Yo,€e A, Yoed,.

Let v, = u; be the P-interpolate of u, constructed by means of the isoparametric
technique, i.e.

u,IT = M(u

TOFT)OF;Iv

where IT denotes the operator of linear Lagrange interpolation on T. It is easy to see
that u; e A . Using the approximative properties of u; (cf. [3]) we can estimate
A(u; — u, u; — u) as follows:

(3-40) |[A(u; — w,uy — u)| £ Mlu, — u
We may write

[ r@i- w1660 - wyos -
Ik k"

K

%.n = Chz”“”%,n .

b
- [0 L = w0 = = i .
where Ty(u) Y T(u) (cos ay;) ™' = — T;(u) (cos a;) ™. Set

Wi(n) = ui(f"(n)s n)) — uif'(n), n)
n) = ui(f"(n), n) — udf'(n).n) nelaby.
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From the definition of u;(f'(n), n), uj(f"(n), n) it follows that these are piecewise
linear functions of y-variable on {a, b) with the nodes of C; (see the construction
of A ,,, where suitable multiples of # are chosen as the parameters in the arc
representation). Since ¢ is a fixed direction, W, is also a piecewise linear function
on {a, b).
Let
r° ={neda, by | ul — u; = ¢}

r- ={r]e<a,b>|u’§’——ué<f;}.
If {C;, C;yyy = I'° (see Fig. 2) then W, is the linear Lagrange interpolate of ¢ on
{Ci, Ci4yy and

Ci+

eay [ o) = vy an = [ o - o an <

Cy Cy
= Chzlglz,<c,-c”,> .
If(C;, Civy> & I'",then T(u) = Oon (C;, C;y,>. Hence
Civ1
() [ 0t = oy an = 0.

Let # be the system of all {C,,C;, ;> = <a, b}, containing both points of I'® and I'".
Using the assumption of the Theorem, we have

!%,<Ciqci+1> || ;/Vh - 0]/”“31<Civcl+l> é

Ci+1
Gas) [ 0t = wtryon = 17
é Cllz“n(“)”w,<Ci,Ci+1> \‘%Il,d),<ci.(:i+l> .

Due to the assumptions, the number of all (C;, C;, > € # can be bounded from
above independently of h. From (3.41)—(3.43) we obtain

(44 |10 Tt = w3 = w2 = w0 5 oy

It remains to estimate

[ me-ugess | 06 - was-
K

I'r

b
- [t = 9 = i = g an, ver,.
Let us denote
Unn) = upe(n, f"(n)) — wne(n, /() me<a, by

and define the function W, as follows

Wil(n) =”E<il;_fb >[%('1), e(m)] -
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It is readily seen that W, e H'({a, b)) and W, < ¢ on <a, b). Since
0 if %, <e
W, — Y, = / h =
. P Ne =, if U, > ¢

we can write

b
(3-45) j T;(“) (///h - Wh) dn| = CHJ%: - 8”0,5 >

a

where & < (a, b) is the set of points, where %, > ¢. As %,(C;) < &(C),j = 1,....m
by the definition of 4", we have also %,(C;) < ¢,(C;), where ¢ is the piecewise
linear interpolate of ¢ on {a, b). %, and ¢, are piecewise linear on {a, b}, therefore
%, < ¢; on {a, b). Hence (3.45) can be written in the following form:

[ = iy

a

< Cles = elos = Clar = ello,<aps = ehlels <ans -

The rest of the proof can be accomplished in the same manner as that for Theorem
3.3. There exists a ve V such that v” = 0 on @” and —v; = W,. Then ve X', and
it holds:

b
[t = ) - = iy an -

b
- j T) [ Wy = 0] dn < chl]s o

Using also (3.40), (3.44), the assertion of the Theorem now follows.

As in the case of contact problems with a bounded contact zone, we shall prove
the convergence of approximate solutions u, to the solution u of the problem (?7’2)
without any regularity assumptions. To this end, we need some auxiliary lemmas.

Lemma 3.5. Suppose that fMe CM. M =" | " m =3, ¥ n[,=0,T¥nTy=0
and there exists only a finite number of points 'y T, o 0 T, Let u e A, satisfy
the condition u} — u; < f" — ["in(a — 6, b + 6), with some § > 0.

Then u belongs to the closure (in W) of the set

Ao [C(@)] < [Cr(@)].

Proof. Consider a system of open domains {B,}}., covering Q" U Q" and such

U
k

that By« Q' , B, c Q" Iy uly cUB;, (Ixuly)n B, +0<«=2=<i <k Assu-
j=2

me that the union of arcs (see Fig. 6)

];Z), U'};—é// . oM = (_/""(b), b) S M=","

is contained in one and only one domain B;; the other domains contain at most
one singular point (vertex or point of I',n I, [y N 1T,).
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We use the decomposition of unity as in the proof of Lemma 3.1. and construct
smooth approximations of each u; = u¢;. In general, we can proceed like in the proof
of Lemma 3.1, except for the situation of Fig. 6., where we argue as follows.

Fig. 6.

Note that ¢; = 1 on I'y U I'y due to the assumption. First we map Q' n B (the
indeces j will be omitted) into the right halfplane (¢ > 0) and Q" N B into the left
halfplane (¢ < 0) by means of the two mappings

2=T~MX{EM=€_/‘M(’7)’ ﬁM:’]}, M:r,/r
£=(&n), x=(&n).

Denote B = T'(Q" 0 B) LU T"(Q" n B) and @"(%) = u™((T™)"" £). Since
(3.46) wi(f"(n)s n) = wl(f'(n).m) = e(n) < O, mo <n < b,

we have
Un) = (@ — 4, —8) <0 for E+0, np<hH=bh.

Let us extend ¢ onto the interval b < # in such a way that the extension E¢ e C™,
E% remains non-positive, E# < H'/*> and supp E# < B.") Then there exists a func-
tion € H'(B) such that < 0in B, o = E% for £ = 0, supp = B.

If we extend #}" across the f-axis to get functions Eu}' even in &, we may write

Ed — Ed;, — E¢ = 0 + 2,
2eH'(B), 2[s.0=0.
Regularizing # and 2, we obtain
(RD + 2)|e=0 =0, RO+ 2,—0+2 in HY(B).

Define

AN Al

Upy = R,‘Eué,r,g,, ,
Ui = [REQ, — RD = 2,])|r0 — £,
upe = L8 = S"(n),n), ug = a4, —f'().n), (E=¢).

!) We can take E¢ = oif - /"), provided that the point (0, b + 6) is outside B.
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Then the condition (3.46) is satisfied by ug,, ul' € C™ and [ull, — ul|, ou — O,
since both T and (T™)~" are Lipschitz mappings.

Lemma 3.6. Let ¢ be a continuous function defined on {a, b,(— o < a <b < ),
D,:a=x} <x} <..<x,=badivision of (a, b),¥(D,) = max |x} — xj_,| -

i—-1
i=1,..
— 0 for n > . Let {I/I,, +_, be a sequence of piecewise linear functions with nodes
at x7 such that Y,(x7) < o(x})) Vi = 0,..,n:n = 1,2, .... Let , > } a.e. in {a, b).
Then y < ¢ a.e. in{a, b).

Proof. see [8] — Lemma A.2.

Theorem 3.5. Let the problem (2,) have precisely one solution u and the norms
”u,,n of solutions of the problems (2,,) remain bounded. Let all assumptions of
Lemma 3.5 be satisfied. Then for any regular system of triangulations {7 ,} we have

Ilu — u,,[],,ge 0, h->0+.

Proof. We must verify (1.6'), (1.7) and use Remark 1.6. From Lemma 3.5, using
the same arguments as in the proof of Theorem 3.2, we obtain (1.6"). It remains to
verify (1.7). Let v, € A, be such that v, — v in #'(Q). By virtue of the complete
continuity of the trace mapping we obtain

v, = v in I(Tg), vy, > v in IXI}) (strongly).

”

Hence subsequences of vy, and »;, exist such that

Vi(n) = vie(f"(n), ) = vpe(f'(n), m) = vA(S"(n), n) — vi(S'(n). ) = Vin)

a.e. in {a, b). Since V;(n) is piecewise linear on (a, by and V;(C;) < &(C)), i = 1,2, ...
..., m, Lemma 3.6 implies V < ¢ a.e. in {a, b).
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Souhrn

KONTAKTNI PROBLEM PRUZNYCH TELES.
CAST I.: APROXIMACE METODOU KONECNYCH PRVKU

JAROSLAV HASLINGER, IVAN HLAVACEK

Prdce se zabyva aproximaci kontaktniho problému dvou rovinnych pruinych
téles metodou konecnych prvkl. Navazuje bezprostifedné na predchozi vysledky
autor(l, obsazené v [1]. Pripustnd konvexni mnoZina posunuti pro klasicky variadni
princip se aproximuje po ¢dstech linedrnimi vektorovymi funkcemi na trojihelnicich.
Studuje se rychlost konvergence a konvergence piibliznych feSeni k feSeni presnému
v zdvislosti na normé déleni. UvaZzuji se pfitom jednak ulohy, v nichZ se rozsah
kontaktu béhem deformace neméni, jednak Glohy s proménnym rozsahem kontaktu.
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