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SVAZEK 26 (1981) APLIKACE MATEMATIKY Cisto 3

ON A METHOD OF TWOSIDED EIGENVALUE ESTIMATES
FOR ELLIPTIC EQUATIONS OF THE FORM Au — Bu =0

KAREL REKTORYS and ZDENEK VOSPEL

(Received June 7, 1979)

The well-known Collatz method developed originally for the case of ordinary
differential equations was shown to be applicable — at least theoretically — to the
case of sufficiently general elliptic equations of the form Au — ABu = 0 by K.
Rektorys in his book [1]. From the point of view of its practical use, the main
difficulty consists in the fact that in the case of partial differential equations the
corresponding boundary value problems are to be solved only approximately, as
a rule, so that the estimates of eigenvalues — derived on base of exact solutions
of these problems — are no more valid, in general. The aim of this paper is to show
how to ensure practical applicability of the method also in this case. At the same
time, some results of their own interest are derived.

1. INTRODUCTION. ASSUMPTIONS. SURVEY OF RESULTS

There is a lot of methods yielding twosided eigenvalue estimates in partial differen-
tial equations. However, on the whole, they are rather labourious or applicable only
to special cases of operators.

A relatively simple method suitable especially for linear ordinary differential

*equations of the form

(1.1) Au — ABu = 0

with homogeneous boundary conditions not involving the parameter 4, and for the
first (= least) eigenvalue 1,, was suggested by L. Collatz many years ago. 1t consists in
the following:

Let A, or B be linear ordinary differential operators, of order 2k, or 21, respectively,
k > 1, having some properties of symmetry and positiveness on their domains of defi-
nition D 4, or Dy. (These domains consist of sufficiently smooth functions satisfying
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some of the given boundary conditions. We do not go into details here; see [2].)
Let f, € Dy, f, € D, be two (nonzero) functions satisfying

(1.2) Af, = Bf,

and denote

(13) ag = (Bfo,fo), a, = (Bfo.f1) = (Af. /1), a2 =(Bf1.f1)
(the so-called Schwarz constants) and

(1.4) %, = aglay, %, =a,la,

(the so-called Schwarz quotients). From the properties of the operators 4 and B
it follows, first, that a,, a,, a, are positive, and then almost immediately that

(1.5) wyZ oy 2 A

Now, provided the first eigenvalue 4, is simple and [, is a lower bound for the second
eigenvalue 1,, greater than x, (thus

(1.6) 0, <1y £4,),

the following twosided eigenvalue estimate is derived by Collatz:

(1.7) % — ”l‘ “ < <,
2

2

P

{An appropriate value for I, can be obtained using a propre comparison theorem,
see Example 4.1.) Then he improves the accuracy of the estimate (1.7) in the follow-
ing sense: Starting with the function f, again, he constructs the functions f, f5, ..., fy €
€ D, satisfying

Af, = Bfo,
(18) AfZ = Bfl )
Afy = Bfy-

He than proves that for the corresponding Schwarz quotients we have
(1.9) Ky Uy 2 2 2 Ay
and — in consequence of the last relation (1.8) — that

Ky — %,
(1.10) Moy — L 2 2 S Ky

z 1
Hi+1

On many examples he demonstrates, in [2], the efficiency of his method. Then he
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extends the obtained results to some simple types of partial differential equations.
(Cf. also Collatz [3].)

In the monography [1] K. Rektorys extends the Collatz method to the case
of sufficiently general elliptic equations of the form

(1.11) Au — ABu =0
(with linear boundary conditions, not involving 1), under rather natural assumptions
which will be kept throughout the whole paper:

Let Q be a bounded region in Ey with a Lipschitzian boundary Q. Let 4 and B
be liner differential operators of order 2k, 21, respectively,

(1.12) k>1.
Denote

(1.13) ¥V, = {v; ve Wi¥(Q), v satisfies, in the sense of traces, the given (homo-
geneous) boundary conditions which are stable for the operator A},

(1.14) Vg = {v; ve W(Q), v satisfies, in the sense of traces, the given (homogene-
ous) boundary conditions which are stable for the operator B}.

In the weak formulation the considered eigenvalue problem consists in finding all
values of 4 such that to each of them there exists a nonzero function u € V,, satisfying

(1.15) (v, u))s — A(v,u))p =0 VoeV,.

Here ((v, u)),, ((v, u))p are bilinear forms corresponding, in the usual sense, to the
operators A and B, respectively. (Thus we come formally to (1.15) when multiplying
(1.11) by v € V,, integrate over Q and use the Green theorem in the familiar way.)
Throughout this paper, we assume that the forms ((v, u)),, ((v, u))p are symmetric
on V,, Vg, respectively, i.e. that

(1.16) (0, u))s = ((u,v))s Yu,veV,,

(1.17) (v, u))p = (. v))g Yu,veVy

(and, consequently, Vu, v e VA) and that they are on V,, Vg, bounded and V-, Vj-
" elliptic, i.e. that there exist such positive constants K, K,, «, B (not depending on
u, v) that

(119 (@) £ Kool b a0 Vi,

(1.19) (@ 0] = Kool Julve Vaoe Vs,

(1.20) (0, 0)4 = afo]}, YoeV,,

(1.21) (v, ) 2 B3, YoeV,.

(Here, ||v||v,, or ljv]},,, means ||u|]w,u<m, or ||o]w,ma for ve ¥y, or v e Vg, respectively.)
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When considering the eigenvalue problem for the equation
(1.22) Au — Ju =0
(with corresponding boundary conditions) we put, of course, B = I and
(1.23) (v, u))p = (v, u).

In the quoted Rektorys monography [1] a thorough treatment of the eigenvalue
problem (1.15) is given in Chap. 39: First it is shown that to every g € Vj there exists
precisely one function u € V, such that we have

(124) (v w)s = (02 9))s Vo Vs
At the same time

(1.25) July., < el
where ¢ is independent of v and g. Consequently

(1.26) u=Tyg,

where the operator T: V; — V,is linear (as a consequence of linearity of the operators
A, B) and bounded (according to (1425)). Bzcause of the Sobolev immersion theorem,
this opzrator can be shown to be completely continuous as an operator from V,
into V.

Denote by V, the space, elements of which consist of elements of the space V,
and in which the scalar product is defined by

(1.27) (v, u)y, = ((v,u)), -

(Propezrties of the scalar product are ensured by the properties of the form ((v,u)) ,.)
Let us note, at this place, that the metrics in V, and V, are equivalent because
of (1.18) and (1.20). Analogously, let ¥, be the space of all elements from Vj, with
the scalar product

(1.28) (v, u)py = ((v, u))p.

The metrics in Vz and Vjp are equivalent as well.

In [1] it is shown that the operator T considered as an operator from V, into V,,
thus

(1.29) T:V,>V,.

is a positive selfadjoint completely continuous operator.
The eigenvalue problem (1.15) can then be written in the following equivalent form:

(1.30) u—2Tu=0 (ueV,u=*0).
The operator T having the just mentioned properties, we have especially ([ 1], Chap.

39):
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The eigenvalue problem (1.15) has a countable set of (positive) eigenvalues

(1.31) M S22 ..., liml, =+«
n—o

The corresponding system

(1.32) iy Vg Dy ol )

of orthonormalized (in V) eigenfunctions is complete in V, (and because of equi-
valence of the metrics in ¥, and V, also in V).

The system of functions
(1.33) Op = U2, n=12 ...
is then orthonormal and complete in the space V, (and complete in Vj).

All being prepared in Chap. 39, Rektorys then gets, in Chap. 40, twosided estimates
of the Collatz type for the elliptic equation (1.11):

Let f, € V; be a given nonzero function and let f; € V, satisfies

(1.34) (0. f ) = ((v.fo))s YveV,.

(According to (1.26) it means that

(1.35) fi=Tf.

If all the given data are sufficiently smooth, then f, and f, satisfy
(1.36) Af, = Bfy,

cf. (1.2).) Denote

(1:37) ao = ((forSo))s

(1.38) ay = ((fi:S0))s = ((f1-/1))a»

(1.39) ay =((f:/1)s

(1.40) %, = aplay, ¥, =ala,.

First, Rektorys shows, in a simple way, that
(1.41) a,>0, a; >0, a,>0,
(1.42) %y

Then, using the so-called Temple theorem (see [3]), he proves: If the first eigenvalue

v
1\

A

A .

1y The usual “licence™ is chosen for the ordering of eigenvalues in order that the correspon-
dence between (1.31) and (1.32) be one-to-one.
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4, of the problem (1.15) is simple and if 1, is such a lower estimate of the second
eigenvalue A3 that 1, > x, (thus

(1.43) #, <1 £ 4),

then

(1.44) Hy — LT < g <
Iy
21
i)

In this way, the estimate of the Collatz type is obtained for the elliptic eigenvalue
problem (1.15).

As mentioned above, when applying this result practically, the following difficulty
arises: While in the case of ordinary differential equations one often succeeds in
finding an exact solution of the problem (1.2) (or exact solutions of the problems
(1.8)), in the case of partial differential equations the analogous problems should
be solved approximately, as a rule, so that estimates of the type (1.44) with x,, %,
replaced by the numbers %,, %, constructed with the help of approximate solutions,
are no more valid, in general.

To get a better insight into this problematics and to be able to answer the question
of applicability of estimates of the form (1.44) in this case, we choose here an other
approach than that used in [1], not applying the Temple theorem, but using suitable
Fourier expansions. In this way, we come, in Chap. 2, to the following results (p. 224):

Let the first eigenvalue A, of the problem (1.15) be simple. Let f, € Vy be not
orthogonal, in Vy, to the corresponding first eigenfunction v,*) (or, what is the same,
to ¢y, cf. (1.33)). Solve, successively, the following boundary value problems (cf.
(1.8)):

(. /1)a = ((v.S0))s »

(1.45) (0. f2).a = ((0.1 )5 »

YveV,.
Denote
(1-46) arp = ((fmfn))s >0,
dap+1 = ((fn“,fn))u = ((fn+l’fn+1))A >0,
n=20,12,...,
(1.47) = Gy_yfay, k=123 ..

2) This assumption does not represent a substantial restriction, in practice, see Remark 3.4,
p. 235.
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Then, first,

(1.48) Xy 2Ry D Hy 2 . 2 Ay,
(1.49) lim », = 2,
k=

(Theorem 2.1, p. 224.) Thus, 4; can be approximated, with an arbitrary accuracy,
by %, if k is sufficiently large (the problems (1.45) being solved exactly).

Further, this method yields, in a simple way (without using the Temple theorem)
estimates of the form (1.7),

(1.50) sy — AT <<
Lo,

He+1

where I, > x,., is a lower estimate of the second eigenvalue 4,. (See the same Theo-
rem 2.1.) Especially, for k = 1, we get (1.44).

In Chap. 3, the case of approximate solution of (1.45) is considered. To fix the idea,
the Ritz method is chosen. (However, any method, having similar properties, can
be applied. Especially, all the main results of this paper remain valid for the finite
element method.) Let f, be the approximate solution of the problem

(1.51) (0, u))4 = (v, fo))s VveV,,

obtained by this method (using N terms of the base), further let f, be the approximate
solution of

(1.52) (v, )4 = ((v, 1)) VveV,,

etc. Denoting

ﬁZn = ((]m fn))B s
‘72n+1 = ((fn’f;l+]))8
“with fo = fo,
(1'53) A = dk-—l/dk >

we prove (Theorem 3.1, p. 234): If 4, is simple and if f, is not orthogonal, in Vy,
to the first eigenfunction ¢, then

(1.54) BzazAE .2,
(1.55) lim %, = 2,

k— 0

N- o
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Further it is shown how to modify the estimate (1.50), or (1.44) for this case
(see (3.45), or (3.73) with Remark 3.4).

Although this new estimate is not too complicated, a modification of the present
method is given in Chap. 4, enabling to find relatively very simple and accurate
estimates (as demonstrated on a numerical example). The idea is the following:
Let us perform some steps in solving the problems (1.51), (1.52), . ... To fix the idea,
let f, and f, be found. (The number of steps depends on the required accuracy;
an arbitrary accuracy can be obtained by (1.55).) Having f5, it may happen that we
succeed in finding such a function f; that the integral identity

(1.56) (0, /)4 = ((v,]1))s VveV,

is satisfied exactly. (This happens very often, because it is much easier, practically,
to find f, if f, is known, than conversely, since the order of the operator B is smaller
than that of the operator A; if, especially, the eigenvalue problem Au — Au = 0 is
solved, so that B is the identity operator, and if the coefficients of the operator A4 as well
as the function f, are sufficiently smooth, then f, = Af,. Thus, in this case, the
function f; is obtained by operations of the differentiation only.) Now, because
(1.56) is fulfilled exactly, the twosided estimate (1.50) is valid with x's constructed
from the functions f,, f, instead of f,, f,. In this way a very simple method of two-
sided eigenvalue estimates is received, giving, moreover, relatively very exact
estimates (cf. Example 4.1, p. 237).

2. CONVERGENCE OF THE SEQUENCE ;. ESTIMATES OF THE COLLATZ TYPE

Let the forms ((v, u))4, ((v, u))p satisfy assumptions (1.16)—’(1.21) concerning
their symmetry, boundedness and V,- or Vy-ellipticity. Let

(2.1 Uy, Vg, Usy - -

be the complete set of eigenfunctions of the problem (1.15), orthonormal in V,
(on V¥, see (1.27), p. 214), i.c.

. 0 if i<%j,
(2.2) ((U.', Uj))A = {1 T
Then (cf. (1.33))
(2.3) Py =0;A, @2 =0y, @3 =0513,...
is a complete set, orthonormal in Vy i.e.

oy (A

i=j.
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Let the first eigenvalue A, be simple and let f, € V; be not orthogonal, in V3. to v,
or, what is the same, to ¢,. Solve, successively, the scquence of problems

(o /)4 = ((©: S0))s

(0 f2))a = (0. 11))s -
Qs

Each of these problems is uniquely solvable (cf. (1.24)—(1.26)). Denote

(2'6) Ay = ((fmfn))}; s

(2~7) Aopt1 = ((fmfuﬂ))s = ((fn+1>fn+1))A :3)
n=2012 ...,

(2.8) X = Q_fa. k=123 ....

The first purpose of this chapter is to show that

(2.9) Ry Ay 2 H 2 ... 2 A
and that
(2.10) limsx, = 4,.

k— o

In the second part of this chapter we show that, for every k = 1. 2,3, ..., we have

(2.11) He+1 — T T M S Ay £ At
2
—— =1
K+

where 1, is a lower estimate for the second eigenvalue 4,, greater than s, .
The proof of (2.9) is simple: We have, for every t € (— o0, + ),
(212) 0 é ((fn + tfn+l’fn + tfn+1))B = ((fm fn))ﬂ + Zt((fmfn-%-l))li +

+ tz((fn+1~fn+1))3 = dy, + 2taz,,; + t2a2"+2 .

Because the quadratic expression in ¢ should be nonnegative for all 7, its discriminant
cannot by positive. Thus

2 —~
(2.13) Aon+1 = Apl2p+12 >
wherefrom, dividing by @2,+ 192,42,

(214) Hon+2 é Hon+1 -

3) Because of (2.5). It follows that a;>0,i=0,1,2,....
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Similarly
0= ((fn+l + tfysos fosr + ’fn+z))A = ((fn+l’fn+1))A +

+ 2t((fn+lvfn+2))A + ’2((fu+2vfn+2))A = Uypsq + 2Mag,4 2 + tzazn+3 P
wherefrom, in the same way as before,

(2-15) Hon+3 = Hoptz -

Moreover, because f,+; € V,, we have

< ((f'h‘l’ f"+l))A _ %an+1
- ((f,,+1, fn+1))B Arp+2

(2.14), (2.15) and (2.16) yield (2.9).

(2.16)

Han+2 -

To prove (2.10) and (2.11), we use Fourier expansions of the functions f, with
respect to the orthonormal (in V) system (2.3).

Let
(2~17) Jo = Z O
i=1

be the Fourier expansion of the function f, in V. Thus

(2.18) a; = ((fo,0))s, i=1.23 ...,
while, according to the assumption,

(2.19) oy = ((fo, ¢1))s # 0.
Moreover, -

(2:20) iaf < +o.

Denote, for a while,
(2-21) F, =.Z '—iq’i .

Because of (2.20) and of 4; — + o0 for i — oo, the series (2.21) is convergent (in V).
We have (cf. (2.3) and the first of the integral identities (2.5))

-5 (Ut g

o;
— @i
14 i=1

(2.22) f

"MS

((fo’ ‘))Bvi = Z ((fx’ Ui))A v; = fy,
i=1
since {v;} is a complete orthonormal system in ¥, and the last series in (2.22) is the
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Fourier series of the function /i, thus converging to f; in V, (and the more in V).
Similarly, denoting a;/1; = Bi so that

fi =A§1ﬁiq’i s

we get

Il

F2=§ﬁ i f Z((f'”\/)) Vi

i=1 A7 ¢ i=1 A, i= vy

= ii((fl, Ui))B = igol((fp Ui))A v; = f,

in V, as well as in Vp, and, in general

%;
“x Pi
12

s

(2.23) fo =

1 /4;

(in V, as well as in Vj).
Putting this result into (2.6) and (2.7), we get

(2.29) @z = ((fur Sa))p = (( i %i v »B =§ a?

i=1 1] =1 1A

(2.25) Azt = (fox s Sor1)a = <(i§1 /:‘H Q; ,i ;n+1 <p,)> =

oc aiZ
T lm Va2 (0 v))0 = Zl P
Thus
(2.26) =Y

N
2.27) %k=(i; ,1’5‘1>/<.'; )—k> k=012 ....

i

Now, to prove (2.10) it is sufficient to write
1 © y k—1 @© /: k-1
s () A
1 i=1 i _ i= i
[e0]
2 %

2 A
1 k 5 @ ) }'] 13
— oy + ) o | —
VS (i) ! igl ()ﬁ)

whence it immediately follows

(2.28) e =

(2.29) limx, = 4,

k=
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because o; # 0 and 4, < 4, < 4; = ... holds, so that the sums of both the series

on the right hand side of (2.28) can be made arbitrarily small if k is sufficiently large.

Remark 2.1. In the preceding text we assumed that the least eigenvalue A, was
simple and that f, was not orthogonal, in Vy, to the first eigenfunction ¢, i.e. that

(2'30) %, = ((fos (P1))B +0.

To derive both (2.9) and (2.10), the assumption of simplicity of 4, is superfluous:
When deriving (2.14), (2.15), this assumption was nowhere used. The same holds
for (2.16). Moreover, only f, * 0 was sufficient to be required. To examine (2.29),
let us assume that the least eigenvalue is of multiplicity s, so that

(2.31) Ay =Ay = .. A < Ao
and
(2-32) Dis Pas-evs Ps

are éorresponding eigenfunctions orthonormalized in V. Let f, be not ortogonal
to each of the functions (2.32), so that at least one of the numbers

o = ((f0:<pi))8’ i=1,2,..,s,

is different {rom zero. Then (cf. (2.28))

oo /‘L k-1
o + .o+l Y af(j)

(2.33) % = A, et PRUEE
I N e D af(—‘
i=s+1 /1;
whence
(2.34) lim s, = A,
k—
as before.
If 4, is simple and if
(2.35) o2 = ((fo @1))s = 0,

then (2.9) remains true, but (2.10), i.e. (2.29), does no more hold. For example,
if then 4, is simple*) and

ay = ((fo, 02))s *+ 0,

4) Or not, cf. (2.33).
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it follows from (2.27) that

i=3 /1,<
A = 4 © A k
A
i=3 }'i
whence
(2.36) lims, = 4,.
k-

If is easy to examine what happens in other cases.

Let us turn to the proof of (2.11).

Let A, be simple and o, = ((fo, ¢,))s * 0. Let I, be a lower estimate of 1, greater
then x,,,. According to (2.9) the right-hand side inequality in (2.11) is ensured.
We thus have to prove the validity of the left-hand one.

Let

(2.37) a1 > Ay

(If %4, = A,, there is nothing to prove, because %, — .., = 0 and I /s, > 1.}
Then (cf. (2.26))

Hp — A gy — Aya
(2.38) Ay k 1“ — k=1 - 14 —
Hpv1 — Ay g = A0g4y
© 2 © 2 o 2
o o o )~l
— bt 1 =4
_ 1;1 Poa ‘;; 3 i>=:z . < /1,»>
T e 2 = 2 T % 2 -~
o o; o; Ay
Zi i Yifp =22
.; i ‘,Z‘l ket =Zz % ;.i>
Now, for i = 2, we have 2¥ > 1,247 !. Thus
i ol | - 2y
Xy — )»1 i=2 A’f-l A
(2.39) Hpy — 2 . 12 — ; =izl
Hir1 — Ay Z % 1 — f_l
T2 A a1 A
Further
(2.40) "k—’ﬂ‘{ =T My
Hhwy = Ay Myey T A
(2.39) and (2.40) yield
X T Hrr o [P —1
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and finally,

(2.41) e S VN T

12_1—

Xk+1
what is nothing else than the left-hand side inequality in (2.11).

In this way, (2.11) is proved. Note that here the assumption on 4, to be simple
is essential (we require that x4 < I, and, at the same time, we have 4, < 3,4,
and [, £ 4,).

Let us summarize the results received in this chapter into the following

Theorem 2.1. Let the forms ((v, u))4, ((v, u))p satisfy assumptions (1.16)—(1.21)
(concerning their symmetry, boundedness and ellipticity in V,, resp. Vp). Let the first
eigenvalue 1, of the problem (1.15) be simple®). Let f, € Vg be not ortogonal, in Vy,°)
ta the first eigenfunction ¢,. Let f, f,, f3, ... be solutions of the boundary value
problems (2.5), let ay, x, be defined by (2.6)—(2.8). Then we have

(2.42) KA DR D .. 2 Ay,
(2.43) limox, = 2, ,
k=

and the following twosided estimate for 2, is valid:

IIA

s
Al S Xt s

(2.44) Ky ) — & Xt

where 1, is a lower bound’) for the second eigenvalue 1,, greater then x,+,, thus
satisfiing

Upry < 1y £ 25

In this way, a twosided eigenvalue estimate of the Collatz typ is received. No
Temple theorem has been used.

5) See, however, Remark 2.1.
%) On V.4 and Vp see p. 213.
7) Received, as a rule, using an appropriate comparison theorem.
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3. APPROXIMATE SOLUTIONS. THE SEQUENCE {;k} AND ITS PROPERTIES

The aim of this chapter is to make clear what happens if the “iterative”’problems
{2.5) are solved approximately. To be concrete, let us use the Ritz method. The same
results are obtained when using some other method (e.g. the finite element method)
with properties similar to those which are summarized at the beginning of this
chapter for the Ritz method.

Let
3.1 Wi, Wy, Wy, ...
be a complete (linearly independent) system in V. Let us choose the first N functions
(3.2) Wiy Wa,y eeny Wy

from this system and denote by Sy the N-dimensional subspace of V,, constituted
by these functions. Let us solve the problem of finding such a function u € V, that

(33) (v, u)g=((v,f)p veV,.
The solution u minimizes, in V,, the functional

(3.4) . Fv = ((v,v)4 — 2((v, /)5 -

As well known, the Ritz method consist in finding such a function

(3.5 iy = ilamwi

which minimizes this functiqnal in Sy. It can bq shown that i is the orthogonal
projection, in ¥, of u into Sy, i.e. that

(3.6) iiy = Pyu,

where Py is the corresponding projector. Obviously,

(37 laxlv. = luly. -

(Remind that ||h[y, = \/((h, h))4.) If an orthonormalized in V, system {z;} is used
instead of (3,1), i.e. if

(3.8) \ ((Zb Zk))A = Oy,
then

(3.9) u =

18

((zi» u)az;i

I

l,i((z o f))s zi

1]

i=1

(according to (3.3)), while
(3.10)

=
Il
1=

i

N

i

1((zi,f)),, Zi -

The system {z;} can be obtained from the system (3.1) using the familiar Schmidt
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orthonormalization in V,. The function (3.5) with a,; found by the Ritz method
can then be written in the form (3.10)°).

Now, let us solve the problems (2.5), p. 219, approximately using the Ritz method
with the base functions (3.2). Let

(3.11) s
(3.12) {7}

be sequences of such functions that f, , is the approximate solution of the problem

(3.13) (v, u) e = (v, f,))s YveV,

(n=0,1,2,..., Jo = fo), obtained by the Ritz method, while f,,, is its exact
solution, i.e.

(3.14) (0 FuseDa = (1)) Yo Vs4
(n=0,1,2, ..., fo = fo, [y = 1})

‘We shall assume, as before, that 4, is simple and that f,, is not orthogonal, in Vj,
to the first eigenfunction ¢, i.e. that

(3.15) ((fo, @1))s * 0.

(Cf. (2.19).) In particular, f,, % 0. It will follow from Remark 3.3 (see also Theorem
3.1) that for all sufficiently large N, the functions (3.11) and (3.12) are different
from zero. We shall always assume N so large to quarantee this property.

Denote

(316) dZn = ((fm.fn))ﬂ ’
(3'17) 52n+1 = ((in’]l+l))li s
n=0,1,2,.... We have, according to (3.14), written for v = Fovr:

52n+1 = ((.fmj;+1))8 = ((]n+l:f_n+l))A .
Now, J,+, is of the form (3.9), f,, of the form (3.10), both with f = f,. Thus

(3'18) ((fn+]>fn+l))A = ((fnﬂ»fn“)),{

because z; are orthonormal in V. From f, + 0, f,., + 0 and from (3.16)—(3.18)
it follows

(3.19) @y >0, dyyy >0, n=0,1,2 ...
We thus can define
(3.20) = d,,]a, k=1,2,3,....

8) This fact is mentioned from theoretical reasons only, see (3.18), etc.
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Now, it is easy to prove that

(3.21) %,

1\%
X
v
X
v
1\
>

In fact, the inequality

Hont2 = Hops1 s

n=20,1,2, ... canbe derived in the same way as the inequality (2.14), p- 219. Further.
dln+l = ((.fn+]’f~n+l))A

>

as we have just proved, and

rpir = ((]n+1’ n+1))B = ((fn+1> n+2)) ((in+l’fn+2))A s

because f,,; is of the form (3.10) with f = f, and f, 4. or f,,, is of the form (3.9),
or (3.10), respectively, with f = f,,. Thus we can use precisely the same procedure
as when proving (2.15). Because

~ - 52u+1 ((fn+lv n-rl )4

X
w2 52"4.2 ((fn+1s n+1))B

the proof of (3.21) is finished.

Further, we shall prove that not only the analogue (3.21) of (2.9) is valid, but that
also the analogue of (2.10) holds:

(3.22) lim %, = 4, .
k— o0
N-ow

However, the proof of this assertion is not so simple as the proof of (3.21), and it is
left to Remark 3.3.

We proceed now to give an analogue of the twosided estimate (2.11), p. 219. First
we show that, k being fixed, it is possible to make ]xk - ;?,\.i arbitrarily small if N
in the Ritz method is sufficiently large. To this purpose, we show the same
assertion for | f, — 7|y, if pis fixed.

Let us remind, first, that when solving the problem (1.24), p. 221,

(i) a constant ¢ > 0 exists, independent of g and v, such that we have

(3.23) lulv. = clgllv.
(cf. (1.25), p. 221);
(ii) using the Ritz method, to every n > 0 an N, can be found such that
(3.24) iy — uly, <n
forevery N > N,,. (Here, @iy is the approximate solution received by the Ritz method

when using the functions (3.2).)
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Further, note that (see (1.18), (1.20), (3.7))

N 1. 1 'K
(3:25) Jliy]y, = - lin]y., = - luly, < v fully, = clglv, = clglv,.
Ve Ve Ve \/
where the constant
(3.26) c= VK, ¢
o

\
does not depend on g.

Let, as before, A, be simple, let f, satisfy (3.15). Let, again, f,, f5, f3, ..., f, be
(exact) solutions of the first p “iterative” problems (2.5). Let f, be the Ritz approxim-
ation of f}, i.e. the approximate solution of the problem

(v, u) 0 = ((v. fi-1))s Vv EV,
received by the Ritz method, taking the first N; terms of the base (3.1). (Thus
(3.27) fi=PyTfiey, i=1,...,p,

in the sense of (3.6.)°) Let, as before, f;, i = 1,..., p, be the Ritz approximation
of the solution of the problem

(v, u)a = ((v. fi-1))s VoV,
Letn > Obegivenand let N, i = 1, ..., p, be so large that
(3.28) Ifi = Fillv. <m.
Such N, always exist (see (3.24)). Moreover, if we denote
(3.29) N = max(N,,...,N,),

(3.28) remains true if we substitute N for each of N;. (This is a well-known property
of the Ritz method, based on (3.9).)

Performing the Ritz method with this N, we get according to (3.28) and (3.25)
(note that f, = f,)

(3'30) “fp _fp”Vu = “fp —j‘PHVA = ”fp —fI’”VA ’Ap _-fP”VA =
=n+ Eufp—l _fp—IHVB =n+ E(”I + E”fp—'?. _fp-ZHVB) =... =
=n+em+en+ ..o +efi = Nilvel) =
=npl+c++ ...+ )=

with

(3.31) C,=l+c¢+&+ ...+ ",

9) The functionsf,- play only an auxiliary role here, they are not constructed, actually.
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Thus p being given, to arbitrary ¢> 0 such an N can be found that

(3.32) 1o = Falls < e
(even that
(3.33) /e =Talla <0

forallg=1,2,...,p

Now, from the form of a,,, a3+, %, and @y, ds,4 1. %, (cf. (3.16), (3.17), (3.20))
it immediately follows (choosing ¢ sufficiently small) that k being given, to every
{ > 0 such an N can be found that

(3.34) o — %] < C.

Now, the sequence of x, satisfies (2.43),

(3.35) lim s, = 4,
k=

Thus choosing ¢ > 0 and denoting 8/2 = {, it is possible, first, to find such a k that

I“k - lll <,
and then to find such an N that

ka — ;?k] <.
Thus we have:

Proposition 3.1. If k is given, then to every ¢ > 0 it is possible to find such an N
that using the Ritz method with the first N terms of the base, we have :

(3.36) [ — Ay <e.
Remark 3.1. In Remark 3.3 we give a substantially stronger assertion, even that

lim %, = 4,
k-
N->w

(see also Theorem 3.1).

Remark 3.2. When deriving inequality (3.34), it was possible, using (3.30) and the
formulae for a,,, a3, + 15 %k G2n> G2n+1, %, tO give an explicite estimate for |xk — ;’Zk|.
We did not do it, because our aim was to show only that %, can be made arbitrarily
close to A, if k and N are sufficiently large, and to establish in this way the usefulness
of carrying out our iterational process. To get the error-estimate when stopping
the process after k steps we can go on in a considerably simpler way:

Thus let the functions f, = fo, fi. ... fi—; be known. As described above, f, is
the approximate solution of the problem

((U,, “))A = ((U’ fk— 1))B YveV,,

while f, is its exact solution, thus satisfying

((v?f_k))A = ((U,ﬂ_ l))ﬂ YoeV,.
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If f, be known, we could write down the tvosided eigenvalue estimate in the form
(1.44),

(3.37) *y — 3{1—‘—_—1{3 <A £y,
SR
X2

taking f, _, for the outcoming function f,, and f, for f,, i.e. writing

(3.38) X, = aela,, %, = ala,

with

(3’39) ag = ((fk‘l’fk—l))ﬂ s a4y = ((fk—lsfk))ﬂ , Ay = ((f_kafk))ﬂ .

With the help of (3.38), the inequalities (3.37) can be rewritten in the form

I, — x
7‘2‘2—1‘ S i =%,
I, — %,
or
al, — ag a,
(3.40) —— < 1, £ —.
al, — a, a,

Now, we do not know f,, but only its Ritz approximation f,, received with an error &,

(3.41) 5 = fellva = &

(How to get error estimates using the Ritz method see e.g. [1], especially Chaps 11
and 21.) Before substituting f, for f, into (3.39) note that

(342 |((Fe=157))s = (=1 TDs| = (T 15 T = Tl = [Fe=sllpa e
G43)  |((Feds = (o Tl = (T e = 75 = (e Ji = F| =
= (|Alvs + @2 + [Alvae = QlAdr, + 2) e
Thus denoting
(3-44) dy = ((fk—x»fk—x))s , 4y = ((ﬂ—lsﬂ))& a, = ((fkafk))a P
we have
dy=ag, a,=ad — [ficillpae, a2 =+ Qlhlv, + e

Substituting into (3.40) and noting that

v

a,/d, = 4

(cf. (3.21)), we get finally the following relatively simple twosided eigenvalue estimate
(ﬁl - ”ﬂ—1”vu 8) [, — a,
(@ + @Ay, + &) el b+ [fi-ilvae — 4

Here, a,, d,, a, are given by (3.44), 1, is a lower estimate of the second eigenvalue

IIA

i £ da, .

(3.45)
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A,, greater then %, = 4,/d,, ¢ is the error caused by using the Ritz method when
solving the problem

(("’ u))A = ((Usﬂ—l))ﬂ YveV,
(see (3.41); how to get &, see the text following (3.41)), |-y, = V((..-))s
Remark 3.3. (Proof of the relation

(3.46) lim % = 4,.)
k=
N—-x

Let us remind, first, that f,, f, ., being known, we have

(347) Eilp = ((fps]p))B s ﬁZp'fl = ((j;v’fpi-l))B > ﬁZp+2 = ((.fp-{-lvfp-fl))ﬂ
and
- a - a
(348) x2p+l = T_Z_p_ ’ %2p+2 = # -
Arp+1 Arp+2

From (3.47) and (3.48) we have immediately:

Proposition 3.2. To every ¢ > O there exists such an n > 0 that if

(3.49) f,=clp, + 0,) with o, Lo, in Vzand |o,|y, <n,

~ K . . =
(3.50)  foe1 = ;—— (¢, + 0,) with o, Lo, in Vg and ”02“75 <n,

1

(3.51) |K — 1] <29,
then
(3.52) [opsr — At <&, |fpez — 4] <&, 19

19) Roughly speaking, if f, ~ co,fp+1 = (c/A;) @,, then % ~ A,. In fact, we

have
Raper = a,, - ((ﬁfp:fp))li _ cz(((ﬂl + 0,0, + 7)) _ )_1 ”(/71E%73 + ”0‘[“;273 ,
52p+l ((jp?fp+l))li C—ZIS(((PI-I-O", (P1+0'2))B K ”(/)1”;78 +((O’1,UZ))B

‘1

Haprr — Ay = A4 <

(because ||y, = 1) and

2 2
).1< l L)< A (i/liﬂﬁl‘? - l)é 11< : 1:%‘ 1)-
L+271+ 7 K 1+ ((01,02))s L=2nl-n

Similar inequalities are received for #,,+2 — 4;. Wherefrom Proposition 3.2 immedia-

TSy
K1+ ((0y,02))s

tely follows.



Here, ¢, is the first of the eigenfunctions orthonormalized in Vj (see (1.33)).

Because A; < 4, is always assumed, it is well to be seen that n may be choosen
so small that, moreover,

(3.53) 1= J(Afd) — 21> 0.

First, we can really achieve that fp be of the form (3.49) choosing p and N in the
Ritz method sufficiently large: In fact, as shown in the preceding chapter, starting
with a function f, € V such that

(3'54) fo= ilai(pi >
we have
(3.55) fi=Tf, =_;l(ai/,1i) ;.

The assumption that f, is not orthogonal, in Vg, to ¢, ensures that

(3.56) % = ((fo, #1))a * 0.

It follows, because 4, < A, and
(3:57) .;“‘? = |foll#s < +0,

that f, is arbitrarily close (in Vj) to

. o
(3.58) Ié @
if p is sufficiently large. Now, this p being kept fixed, the N in the Ritz method can
be choosen so large that f, and f, are arbitrarily close (see (3.32), p. 229). Thus
can be made arbitrarily close to the function (3.58). More precisely, # > 0 being
given, p and N can be found such that f, is of the form (3.49). (With ¢ ~ «,[A];
however, this is unessential for what follows.) This result remains true (for P ﬁxed)
even if we increase N, because from the well-known property of the Ritz method
it follows that the more will then f, and f, be close.

Now it is sufficient to prove that f, being of the form (3.49), f,.; will be of the form
(3.50).

Let us choose such an N, in the Ritz method (N, = N) that the orthogonal (in V)
projection Py @, on the subspace Vy, spanned by the first N, functions (3.1) be
sufficiently close to ¢,. More precisely, that we have

(3.59) Pyooy = ko + 7,
where
(3.60) k=1 <n, [plps S c= (1= J(A/d) = 20)n
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(cf. (3.53)). Solving the problem

(v w)a = (0. ]p))s VoeV,

by the Ritz method, we have (cf. (3.6))

(3.61) Jor1 = Px,TJ,.
However,
Py
T, = —
1 3
and

. 1
Py,Tp, = — (ko + 7)
Ay
according to (3.59). Further (we have o, L ¢, in V)
gy = Z‘X“Pn 0; = ((0'1, (Pi))a; i=23,..,
i=2

according to (3.49). Thus

|PyTosly, < [ Tou]p, < ﬁ

n

Vi)

1
(3.62) Py T |7, = :E [Py, Tolly, <

because for all v € V, we have

((v, )4 >2,.
(v, 0)s

Thus if we denote Py To, = 1, we have according to (3.49)

~ ~ 1
(3.-63)  Jfp+1 = Py,TJ, = c(Py,To, + Py To,) = ¢ (7 (ko, +7) + T) =

‘1

=f(k<p;+7+ilr),

1
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where

(3.64) sy, < j_z

in consequence of (3.62).

Denote by y,, resp. 7, the orthogonal projection, in Vj, of y, resp. T on the subspace
generated by the function ¢, thus

Y=y, +7, t=7+17, Ly, r,Lt, in V.
Because of (3.60), (3.64) we have
(3.65) i + 4z flpe = (1= 20)m,
Iv2 + Jitallp, = (1= 20) 7.
According to (3.63) we then get

IIA

~ c Y
(3:66)  fpi1 = }._ [(key + y; + A7) + (12 + 472)] = fK(Q’x + 03),
1

1

where

(3.67) oy L, in Vy and ”62”75 <n,
since

(3.68) 1-2n<K<1+4+2g

according to the first inequality (3.60) and the first inequality of (3.65), and because
of the second inequality (3.65).

Thus if f, is of the form (3.49), f, ., is of the form (3.50). It follows that a similar
result is obtained for f, ., and f,, ,, etc.

In consequence of Proposition 3.2, the proof of (3.45) is finished.

At the same time it follows that all the f; are nonzero, functions if the number
of the terms in the Ritz method is sufficiently large.

Let us summarize the results of Chap. 3 into the following theorem:
Theorem 3.1. Let the forms ((v, u))4. ((v, u))p satisfy assumptions (1.16)—(1.21)
(concerning their symmetry, boundedness end ellipticity in V,,, resp. V). Let the first

eigenvalue )., be simple. Let f, € Vg be not orthogonal, in Vy, to the first eigen-
function @, and let f; (i = 1,2, ...) be approximate solutions of the problems

(3.69) (v, u)a = ((v,fi=1))s VveV,
(fo = f,) received by the Ritz method'"), taking the first N terms of the base (3.1).

11y Or by an other method with similar properties, e.g. by the finite element method.
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Then:

(i) For all N sufficiently large no f; is a zero function,
Gyp = ((fp’fp))ﬂ >0, a4y = ((f‘p’f‘p"—l))ﬂ >0,

so that the quotients

7, = St
a
are well-defined and positive for all k = 1, 2,
(ii) We have
(3.70) Bz ... =2,
(3.711) klim Fe= Ay
N-o

(iii) Let us stop the process (3.6) after i steps and denote, for this case only,

a, = ((fi—lafi—l))Ba a = ((fi-lv.fi))Bv 52 = ((fnfi))ﬂ-

Then if for the exact solution f; of the problem (3.69) and its Ritz approximation
£ the relation

(3.72) I7: = Fillvs < ¢

holds'?) and if 1, is a lower estimate of the eigenvalue ,, greater then %, = a,/d,.
the following twosided estimate is valid:

(3.73) (?x;!!ﬂ-lnvg &)l — % <
’ [a, + Q|filvs + &) el la + |fizillvoe — ar —

Remark 3.4. (A remark of practical nature.) The assumptions of the theorem
are rather natural. To get the needed information, one applies, as a rule, a suitable
comparison theorem: The given problem is compared with a “similar” problem,
or with “similar” problems; most often the given differential equation is compared
with differential equations of the same kind, but with constant coefficients (and with
the same boundary conditions). If these “‘similar” problems are directly solvable —
and this is often the case — we get, on base of the comparison theorem, the needed
(rough) estimates for 4, and 4,.(See Example 4.1, p. 237.) In this way, the simplicity
of 1, follows immediately, as a rule. If, moreover, the system of eigenfunctions i,
of such a “similar” problem is known, it is convevient to use it as a base for the Ritz
method. (For details and for the theoretical background see, e.g., [1].) Choosing
then f, = Y, it is sufficient, as a rule, to take only a few terms of this system to ensure
the functions f; to be nonzero ones.

A
S | S

12) (3.72) can always be achieved for an arbitrary ¢ > 0if only N is sufficiently large.
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The number of steps in the iterative process depends on the accuracy required.
The relation (3.71) shows that it is advisable to carry out more then one step. After
stopping this process, (3.73) gives the desired twosided estimate. How to determine ¢
in (3.72), see e.g. [1], especially Chaps 11 and 21.

4. A MODIFICATION OF THE METHOD. AN EXAMPLE

Although the twosided eigenvalue estimate (3.73) is relatively simple, its construc-
tion may appear rather labourious in some cases. This concerns especially the often
tedious way how to get ¢ in (3.72). We thus show a modification of the described
method which may appear considerably more suitable to get the desired twosided
estimate.

Thus let us have the functions fo, fi, .., /;'*). Now, instead of constructing the
estimate (3.73), let us try to find a function fi—1 which is the exact solution of the
problem

(4.1) (v f)a = ((v.Jiz1))p VveV,.

We often succeed in finding such a function, because, roughly speaking, (4.1) means
to solve the problem

(4-2) Bfi—l = Aii

with f; known, and this problem is considerably simpler to solve than the “in-
verse” problem, because the order of the operator B is smaller than that of the ope-
rator A'*). If, especially, B is the identity operator and if all the data are sufficiently
smooth, f;_, is received only by differentiation’*). Now, because (4.1) is fulfilled
exactly, not only approximately, we can apply the estimate (1.44) with f, = fioi,
f1 = f;- Thus denoting

(4-3) dy = ((fi—l’fi—l))B’ a, = ((fi—l’fi))B’ a, = ((.fi,fi))Ba
2y = do/‘il s Ry = dx/dz,

we have under the same assumptions as before (4, simple, £, < I, < 1,)

(4.9) e LY

13) In practice, i = 1 or i = 2 is often sufficient.

14) Moreover, the corresponding twosided estimate obtained in this way is very accurate,
see [4]. See also Example 4.1.

15y If finite element method is used, this step requires application of smoother spline functions,
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Example 4.1. Let us solve the eigenvalue problem

(4.5) Au — ABu =0, u=+0,
with
64 64 64
(4.6) A =(9+cosy)ax4+ 18m+(9—cosx)67,
0* 0*
4.7 B=—A=—(" 4
“7) <0x2 0y2>

on the square
G = (0, m) x (0, my

with the boundary conditions

(4.3) u=0, S =0 on the boundary I .

2

Here (the second of the conditions (4.8) being unstable)

If

(49) Vi = {v;ve Ws?(G), v = 0 on I in the sence of traces} ,
(4.10) Vg = {v;ve WZ“)(G), v =0 on I in the sense of traces} .

If we multiply (4.5) by v e V,,, integrate over G and use formally the Green theorem
in the usual way (to get symmetric forms), (4.5) turns into

(4.11) (v, u))q = H(v,u))p VveV,y, u+0,
with
2 2., A2 2 2 A2

((v,u))A———J {(9—i-cosy)a—ua—b2 1822 6? 9—-cosx)a—%“ i}dxdy,

G Ox* dx 0xdy 0xdy ay* dy
(4.12)
(4.13) (v, u))s = u v + u v dxdy.

¢ \0x Ox  dy dy

The form (4.12), resp. (4.13) is on V,, resp. V5 symmetric, bounded and V-, resp.
Vg-elliptic. This can be established precisely in the same way as in [1]. Chaps 22
and 23.

Use of the comparison theorem:
The problem

(4.14) Aju — aBju =0,
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where

(4 64 64
4.15 A =8—"— + 18— + 8 —,
(419 ! ox* ox? oy* oy*
(4.16) B, = —A,

with the same boundary conditions (4.8) on I', has smaller eigenvalues. Here the
system of eigenfunctions (not orthonormalized) is known:
Y, =sinxsiny,
(4.17) Vs
Vs

It

sin 2x sin y ,

il

sin x sin 2y,

The value of «, follows immediately:
(8 +18 + 8)sinxsiny — 2o, sinxsiny =0, o, =17.

Similarly, we get a, = 41.6.
If we compare our problem with a similar problem

A,u — fBou =0,

where
4 4 4
A2=100—+18—0 10 9
ox* ox? dy? oy*
B, = —-A,

with the same boundary conditions, we get in a quite analogous way upper estimates
for A, and A,:

B, =19, p, =484.
Thus we have

(4.18) 172,219, 416 <1, <484.

Especially it follows that A, is simple. At the same time, we have a lower bound
41-6 for A,.

Choose in the Ritz method the system (4.17) for the base (this is possible, see [1],
Chap. 20) and choose f, = ¥, = sinxsin y. Let, first, N = 1, so that we look
for f; in the form

fi=ky, = ksinxsiny.

The Ritz system reduces here to

((Wl» ‘//1)),4 ku = ((fo; l//l))s = (('//1, l//l))u .

A simple computation leads to the equation

9k, = 1)2,
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1. .
= —sinxsiny.
Ji TS
Now, it is possible to find the error ¢ (see (3.72)) and use the estimate (3.73). Instead
of this, we show that it is possible to find in a simple way such a function f, for which
Bfo = A]x .
Performing Af;, we get

(4.19) Bf, = é[@ + cos y) sin x sin y + 18 sin xsin y + (9 — cos x)sin x sin y] =

= 2sinxsiny + fésinxsinZy — —31—651112xsiny.
From (4.19) and from the form of the operator B it follows that fo will be of the form

jo = kllpl + ki, + ks .

A simple computation then leads to the result
fo =sinxsiny + 1/180 sin x sin 2y — 1/180sin 2x sin y .
Now, we apply (4.3) with i = 1. We get
2, = 18.0027, %, =18.
We can take I, = o, = 41.6 (see 4.18)) and get finally

18— 2027 < <8,

wherefrom
17.9978 < 4, £ 18.

Thus we have obtained by our method a very satisfactory result performing only
one iterative step and taking even one term of the base in the Ritz method.
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O JEDNE METODE DVOUSTRANNYCH ODHADU
VLASTNICH CISEL ELIPTICKYCH
DIFERENCIALNICH ROVNIC TVARU Au — JBu =0

KAREL REKTORYS a ZDENEK VOSPEL

Collatzova metoda dvoustrannych odhadd vlastnich &isel typu (1.7), resp. (1.10),
koncipovana pro obyéejné diferencialni rovnice, byla rozsifena na pripad dostatecné
obecnych eliptickych rovnic tvaru Au — ABu = 0 K. Rektorysem v jeho monografii
[1]. Zatimco v3ak v piipad€ oby&ejnych rovnic se &asto podati fesit okrajové problémy
(1.8) pfesng, je v ptipad® parcidlnich rovnic zpravidla tfeba uZit pfibliznych metod
(Ritzovy metody, metody konenych prvki apod.). Tim oviem nedostaneme piesné
hodnoty Schwarzovych kvocientii x,, nybrz jen pfiblizné hodnoty %,. Zminéné dvou-
stranné odhady s témito %,, dosazenymi za x,, pak obecné neplati. Cilem prace je
ukazat pouzitelnost uvedené metody i v tomto pfipadé.

Proto autofi pouZili pon&kud jiného postupu neZ jakého se uZiva v knize [1]
a dokézali nejprve vétu 2.1 (str. 224), tykajici se vlastnosti Schwarzovych kvocientil
a dvoustrannych odhadi Collatzova typu (odvozenych bez uziti Templeovy vé’ty).
V kap. 3 pak ukazali (viz v&tu 3.1, str. 234), Ze ,,pFiblizné* Schwarzovy kvocienty
%, maji podobné vlastnosti a Ze p¥i pfiblizném feSeni zminénych okrajovych problémii
Ize misto odhadu (2.44) (s pfesnymi Schwarzovymi kvocienty) pouZit odhadu (3.73).

PfestoZze tento odhad neni nijak komplikovany, &ini nékdy potize praktické
uréeni odhadu &isla ¢ (chyby pfiblizného feSeni). Proto je v kap. 4 uvedena urditd
modifikace uvazované metody, ktera vede Casto k cili podstatné jednodussi cestou.
Zaroveii je uveden numericky pfiklad ukazujici praktické uziti této metody a demon-
strujici jeji presnost.
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