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SVAZEK 26 (1981) APLIKACE MATEMATIKY CisLo 2

NONHOMOGENEOUS BOUNDARY CONDITIONS AND
CURVED TRIANGULAR FINITE ELEMENTS

ALEXANDER ZENJSEK
(Received May 18, 1979)

The majority of model problems for which the convergence of the finite element
method has been analyzed is restricted to homogeneous Dirichlet problems (see,
e.g., [3]. [4]. {6]. [10], [11], [12]). There arc only a few exceptions where nonhomo-
geneous Dirichlet boundary conditions have been treated (see, e.g., [1], [8], [9]
where, however, only CC-finite elements and second order elliptic equations are
considered).

In this paper, both Dirichlet and Neumann nonhomogeneous boundary conditions
are studied. In Section 1 the approximation of nonhomogeneous Dirichlet boundary
conditions is analyzed in the case of elliptic equations of order 2m + 2. This section
is a generalization of the results presented in [12]. In Section 2 the approximation
of boundary conditions is studied in the case of a mixed nonhomogeneous boundary
value problem for second order elliptic equations.

The notation used in this paper is the same as in [12] and thus its explanation is
omitted as far as standard symbols (e.g., derivatives D*u, spaces H*, Hi, W%, their
norms, etc.) are concerned.

1. NONHOMOGENEOUS DIRICHLET PROBLEM
FOR ELLIPTIC EQUATIONS OF ORDER 2m -+ 2

Let Q be a bounded and simply connected domain in the x,y-plane with a boundary
I' which is of class C?with ¢ sufficiently large to fulfil our requirements. We consider
the following model problem

(1) (="' Y DMagDu)=f in Q.

laf,1Bl=m+1
u
o |

where v is the outward normal to I' and a,g, f, g; sufficiently smooth functions (the

)

=g; (j=0,...,m)
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smoothness will be specified later). The symbols «, f denote multiindices. We assume
that there exists a constant ¢ > 0 such that the inequality

(3) Yooag(xy)&Ezu Y &

lal,|Bl=m+1 lal=m+1

holds for arbitrary (x, y) e Q and for arbitrary values of £,. Using (3) and Friedrichs’
inequality we see that the bilinear form

(4) a(v, w) jj a5(D*) (D*w) dx dy
[az| 1/}[ m+1
is Hy'1(Q)-elliptic.
The weak solution of problem (1), (2) is a function u € V, satisfying

(5) a(u,v) =1(v) VveV, =H;"(Q)
where
(6) I(v) =J. fvdxdy,
2
(7) v, - {ve H"*'(Q) : 'v[0v/ = g; on I in the sense of traces

(j=0,..m}.

We shall solve problem (1), (2) by the finite element method using curved triangular
finite C™-elements described in [12]. To this end let us triangulate the domain Q,
i.e. let us divide it into a finite number of triangles (the sides of which can be curved)
in such a way that two arbitrary triangles are either disjoint, or have a common
vertex, or a common side. Let the triangulation have the property that each interior
triangle (i.e. a triangle having at most one point common with the boundary I')
has straight sides and each boundary triangle has at most one curved side. Then this
side lies on the boundary.

With every triangulation T we associate two parameters h and 3 defined by

(8) h = max hy, 9 = minJ,,

Tet Tet
where hp and 31 are the length of the largest side and the smallest angle, respectively,
of the triangle with straight sides which has the same vertices as the triangle T.
We restrict ourselves to such triangulations that 9 is bounded away from zero as
h—0,i.e.

) 9=89,, 9% =const>0.

Let us replace the curved triangles T of the triangulation t of Q by the curved triangles
T* described in [12, Theorem 2] and denote the triangulation obtained in this way
by 7,. The union of the closed triangles of 7, will be denoted by &, and the boundary
of Q, by I',. Let us note that if the curved side of a boundary triangle T'e t has the
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parameteric representation

(10) x=0(s), y=1uyls), s, <s=s;
then, according to [12], the parametric representation of the curved side of T* € 7, is
(11) x=0¢*1), y=y*1), 0511,

where ¢*(t) and y*(t) are Hermite interpolation polynomials of degree n = 2m + |
of the functions @(t) and ¥(t), respectively. The polynomials ¢*(t), y*(t) are uniquely
determined by the derivatives @V)(¢,), y9(t,), j = 0, ..., m; i = 2,3 (t, = 0,13 = 1).
The functions @(r), §(1) are defined by

(12) (b_(t) = (p(52 + 532’) B ‘p(t) = \0(52 + 5‘320

where §3, = 53 — s,.
At each vertex P; of the triangles of the triangulation t, let us prescribe the para-
meters

(13) D*w(P;), lot| <2m.

At the centres of gravity P§ of the interior triangles T of 1, let us prescribe the para-
meters

(14) D*w(Pg), lof < m—2
and in the interiors of the boundary triangles T* of 7, let us prescribe the parameters
(15) w(Ps;), j=1,...,R (R=mn(mn — 1)[2)

where Pl ..., Pdg are certain distinct points and n = 2m 4 1 (for details see
[12, p. 356]).

The parameters (13), (14) enable us to construct generalized Bell’s C™-elements
on the interior triangles of 7,. The parameters (13), (15) enable us to construct curved
triangular C™-elements on the boundary triangles of 7,. (For detailssee [ 12, Section 2].)

Let W, denote the finite dimensional subspace of C™(,) consisting of functions
which we obtain by piecing together the curved triangular finite C™-elements just
mentioned with generalized Bell’s C™-elements. Further, let

(16) Vo = {we W, :d'wlovj=0on T, j=0,..m}

where v, is the outward normal to I',. Finally, let V,, be the subset of W, consisting
of those functions which at the nodal points lying on I', satisfy the boundary con-
ditions (2) and all consequences of these conditions containing the derivatives of
order at most 2m. E.g., in the case m = | we have at the nodal points (i.e. vertices)
on I'y:

(17) w=g

- 1

ow

ow
0> ax

bl =G bl
dy 2
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'}2 @2 f N2 62
(13 oy T g g T O
Ox? Ox dy Ox Oy oy?

where prime denotes the derivative with respect to s, g, and g, are the functions
from (2), ¢ and y are the functions from (10) and

lp, (/), ’ — qD, ’
(19) Gi=%—9g,+590. Go=F —4g:+ 40
4 Q 0
with
o =) + ()]
If v = (¥'[o, —¢[0) then we take the upper sign in (19), if v = (—y/'[o, ¢[0) then
we take the lower sign. It should be noted that the relation w” = g is a linear combi-
nation of (17) and (18).
According to [12, Lemma 2], we have

(20) LWweVy=>0v— wel,.

‘Now we can define the discrete problem for solving approximately problem
(1), (2): Find @, € V,, such that
(21) ay(ity, v) = I(v) VYve Vy,

where

(22) ay(v, w) =|a|,|ﬂ|Z=m+l f ,L(ZM(DIU) (DPw) dx dy

(23) 7,,(0) = j‘ fodxdy.

Qn
The symbols d,, denote continuous extensions of the functions a,, to the plane E,.
The continuity of d,, and inequality (3) imply the existence of a domain & > Q
and of a constant i > 0 (dependent on Q) such that the inequality
(24) Z 51ﬂ(x, .V) éaéﬂ .2_ I- Z éf

la| . |Bl=m+1 la|=m+1

holds for arbitrary (x, y) € @ and for arbitrary values of &,.
Having established @ > Q we can find i (dependent on &) such that

(25) Q>Q, Vh<h.

Thus (24) holds for arbitrary (x, y) € @, h < h.
The symbol f denotes an extension of the function f and will be specified in (32).
Finally, using quadrature formulas with integration points lying in € we replace
the forms @,(v, w) and I,(v) in the same way as in [12, p. 365] by the forms a,(v, w)
and I,(v), respectively, and solve the following problem instead of problem (21):
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Find u, € V,, such that
(26) ay(uy, v) = 1,(v) VYve Vyy,.

The estimate of the rate of convergence is based on the following abstract error
theorem which is a modification of similar theorems from [3], [4]:

Theorem 1. Let a family of discrete problems (26) be given and let (25) hold.
Let there exist a constant y > 0 independent on h such that for h < h we have

(27) Pl

Then for h < I every problem (26) has a unique solution u, and

2
mi1,0n = ah(l’, U) Voe Vo .

(28) Hf = Uplms1,0, = CI:Sup lah(u*fw—)rj l,,(w)‘ + inf {Hﬁ — U“mﬂ,nh +
weVon ll Wilmt 1.0 veV gn !
+ sup |d"(v’ W) — ay(v, W)i}] ,
weVon ”W m+ 1,9,

where @ is an arbitrary function in H"*'(Q) and C is a constant independent
on i and h.

Proof. Assumption (27) implies that for h < h every problem (26) has a unique
solution u,.

Let v eV, be an arbitrary function. Then, according to (20), w = u, — ve Vy,
and relations (26), (27) imply

(29) y||w
+ [a(a — v, W) — a1, ) + av. W)].

!,2”1,9,‘ < a(w, w) = (W) — ayv, W) +

The continuity of the functions 4, in the domain @ and inclusions (25) show that
in the case h < h there exists a constant M independent on h such that

Iﬁ,,(v, w)l < M”U 1.0 “wh",,,H._Qh Yo, we H" Y(Q,).
Using this inequality we obtain from (29

Iah(u M) - l,,(w)l

(30) “W!m+l,91, é
7 “':l Oh Il“ "H+1 Qn
M ! ay(v, w) — ay(v, w)
li — ! h w0
+ - U!m+1,Q,, - sup -’ R
y Y weVon :\\'!]",H.Qh

Combining (30) with the triangular inequality

~ l _ | 1
“” ”h!mﬂ.ﬂ;. = | l’l! me1.on “ H'"“ 2n

and taking the infimum with respect to v € V;, we obtain inequality (28). Theorem |

is proved.
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In what follows the function & will be a continuous extension of the exact solution
of problem (1), (2) to the domain Q. In this case the first term on the right-hand side
of (28) can be rewritten: Assumptions (36), (37) of Theorem 3 about the functions
@,4, U allow us to use Green’s theorem and find

(31) Gy, w) = I(w)= f L{w dxdy (we Vo)

with
(32) J=(=0m™* ¥ D¥a,D).

lal,|Bl=m+1
Equation (32) defines an extension of the function f because for (x, y) € Q the right-
hand side of (32) is equal to f.
If we do not use numerical integration then condition (27) takes the form

(33) K|v|as1.0, = @lv,0) YoeVo,, h<h
where the constant K > 0 is independent on A and inequality (28) reduces to the
inequality
(34) Hﬁ - ah”m+l,!)h < Cinf Hﬁ — l)“mﬂ,gh
veVgn

which is a generalization of a similar inequality derived for second order nonhomo-
geneous Dirichlet problems in the case of polygonal domains by Strang [9]. Let us
note that inequality (33) follows immediately from (24) by means of Friedrichs’
inequality (121). (The independence of the constant K on h is a consequence of the
fact that in the case of V,, = H(®,) we can set C = b? in (121) where b is the length
of the side of a square containing & — see [7, pp. 13—14].)

It follows from the construction of ¥, that the interpolate ITd of the function i
belongs to V. Thus, setting v = ITii and using the interpolation theorem from [12]
we obtain:

Theorem 2. Let ii € H>"*%((). Then

G 017 = e, S O 2
where C is a constant independent on h and .

Thus owing to a sufficiently smooth approximation of the boundary I’ by the curve
I, consisting of arcs (11) the problem of convergence of a finite element procedure
using curved triangular finite C™-elements reduces also in the case of nonhomogene-
ous boundary conditions to an interpolation problem and to an analysis of the effect
of numerical integration.

Inspecting the proofs of [12, Theorems 7, 8, 9] we see that they are valid also
in the case of boundary conditions (2) (i.e. for v, w € Vy, in the case of Theorem 7
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and for ve Vy, we Vy, in the case of Theorems 8, 9). Thus the following theorem
can be proved in the same way as [12, Theorem 10]:

Theorem 3. Let inequality (3) hold for arbitrary (x,y)e Q and for arbitrary
values of &,. Let

(36) ie H3m+2(g) ,
(37) Ay e WETIID(G), a| = |Bl=m + 1,
(38) ]‘e 112m+1(ﬁ)

where i is an extension of the solution of problem (1), (2) to the domain Q, d,; are
extensions of the coefficients a,, tofﬁ and f is defined by (32). Let the degree of arcs
from which T, consists be equal to 2m + 1. Let the numerical quadrature scheme
over the unit triangle T, be of degree of precision 2(n + 2) m,

(39) E*(p*) =0 Vp*eP(2(n + 2)m),

with n = | for generalized Bell’s C™-elements and n = 2m + 1 for curved triangu-
lar finite C™-elements. Then for sufficiently small h the solution u, of the discrete
problem (26) exists and is unique and the following esiimate holds

(40) Hﬁ - uhlm+l,.()h = Chzm“[”ﬂ

+ Ha”3m+2.!~2 (1 + Z ‘

lal 18] =m+1

2m+1‘!~) +

ﬁaﬂ 2m+1 ,00,5)] 5

where C is a constant independent on h, ii and .

Remark 1. Instead of (36) it suffices to assume that u € H3"*%(Q). Then, accord-

ing to Calderon’s extension theorem, there exists an extension # of u for which
ﬁeH3’"+2(Q), HﬁH3m+2,§ = C“““3m+2,.«z-

Remark 2. The error functional E*(p*) appearing in (39) is defined in [ 12, p. 368].

2. NONHOMOGENEOUS MIXED BOUNDARY VALUE PROBLEM
FOR SECOND ORDER EQUATIONS

In Section 1 we considered only main (stable) boundary conditions. In this section
we study natural boundary conditions. Their approximation and analysis is different
from the approximation and analysis of Dirichlet boundary conditions. For simplicity,
we restrict ourselves to second order elliptic equations and consider the following
model problem:

@) S0 (0 o,
0x 0x dy dy

(42) ulp, =g, mes I'y >0,
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ou ou
(43) ky —vy + ky — "erz =0Q,
x dy

where
(44) kix,y)Z2u>0, i=12, (x,y)eQ.

The domain Q satisfies the same assumptions as in Section 1, the symbols I';, I', deno-
te disjoint parts of the boundary I' of Q; it holds I = I'; + I',. The vector (v, ;)
is the unit vector of the outward normal to the curve I', and ky, k,, f, g, Q are suffi-
ciently smooth functions (their smoothness will be specified later).

Equation (41) is a special case of equation (1) for m = 0. Inequalities (44) imply
that inequality (3) is satisfied. In this case the bilinear form (4) takes the form

- .

45 a(u, v) = k ﬂ(11—4—k£3£6—v dx dy

(45) (u, v) ) 2 )
o Ox 0x dy Oy

and is Vj-elliptic where

(46) Vo ={ve H'(Q):v =0 on I, in the sense of traces} .
The weak solution of problem (41)—(43) is a function u € V, satisfying
(47) a(u,v) = I{v) VoeV,,

where

(48) I(v) = 1°(v) + I"(v),
(49) P(v) = J:[ fodxdy, I"(v) = J QOvds,

(50) V,={veH'(Q):v =g on I'y in the sense of traces} .

We shall solve problem (41)—(43) by the finite element method: Let us approximate
the domain Q by a domain @, in the same way as in Section 1. Let the functions (11)
be now Hermite interpolation polynomials of degree 2k + 1 of functions (12) where k
is a given integer. (In the case of second order problems we usually choose k = 1.)
Then on the interior triangles of the triangulation 7, we shall use Koukal’s polynomials
of degree 2k + 1 [5, Theorem 5] which are uniquely determined by the parameters

(s1) D*w(P), || £k (i=1,213)
(52) D*w(Py) , |1| <k -1

where P, P,, P are vertices of a triangle and Py its centre of gravity denoted in a focal
notation.

On the curved triangles T* of the triangulation 7, we shall use Zldral’s curved
triangular finite C°-clements [11]. These finite elements are uniquely determined
by parameters (51), (52) where P, P,, P, denote the vertices of T* in a local notation
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and P, is the image of the point R, in transformation [12, (23)]. R, is the centre
of gravity of the triangle T, which lies in the £,n-plane and has the vertices R,(0, 0),
R,(1,0), R;5(0,1).

In this section the symbol W, will denote the finite dimensional subspace of C°(£2,)
consisting of functions which we obtain by piecing together Koukal’s and Zlimal’s
CP-elements. Further, we define the space V,, by

(53) Vo = {weW,:w=0on I}

where I'y; is the part of I', approximating I';. Finally, let V, be the subset of W,
consisting of functions which at the nodal points lying on I'; satisfy the boundary
condition (42) and all consequences of this condition containing the derivatives
of order at most k. E.g., in the case k = 2 we have at the nodal points (i.e. vertices)
on I');:

ow 0
(54) w=g, o ey oy,
0x dy
0w 0w 0w ow ow
55 (/’, 27 " + 2(p/¢// IR + l//I)Z A (pu e l//” A, "
(53) (¢) 0x? Ox dy ( oy? Ox dy

where ¢(s), y(s) are the functions from (10) and the prime denotes the derivative
with respect to s.

The relations of the type (54), (55) indicate how to specify the smoothness of the
function g: We assume g(x, y) € C5(U) where U is a domain containing the curve I',.

Let us note that implication (20) holds where the symbols Vgn» Vo have the meaning
defined in this section and where v, w are arbitrary functions from V.

Now we can define the discrete problem for solving approximately problem
(41)—(43): Find i, € V,, such that

(56) @i, v) = I,(v) VYve Vg,
where

- (57) ayv, w) = ,UQ,(’E% ?\‘—) + ks 2—: g%) dxdy,
(58) L(v) = T(v) + L),

(59) 12(0) - U] dxdy,

(60) Ih(v) = 0, ds

T'n2

where I',, = I, — I',;. The symbols k; denote continuous extensions of the functions
k; to the plane E,. Similarly as in Section 1, using the continuity of k; we can establish
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a domain & > Q and find i > 0 and /& (dependent on () such that (24) and (25)
hold.

The symbol f denotes an extension of the function f to the domain & and will
be specified in (68).

The symbol Q, denotes the function which we obtain by ‘“transferring” the function
Q from the curve I', onto the curve I'y,: Let ¢(P,, P3) be an arc lying on I', which
has the parametric representation (10); P, and P are its end points denoted in a local
notation. Let ¢,(P,, P3) < I'), be the approximation of ¢(P,, P3). Let

(61) (x, Y) = (‘P*(’)’ l//*(l))e Ch(PZ: Ps) , 01

where x = @*(1), y = y*(1) is the parametric representation of ¢,(P,, P3) (cf. (11)).
Then we set

(62) Qh(xs J’) = Q(QD(Sz + 532’): '10(52 + S;«)2‘)) = Q(@(I) ‘p(l)) .

According to the definition of the line integral, we have

1

@ | owas= [ o) #0) o)) e,
cn(P2,P3) 0

where the functions (1), (1) are defined in (12) and where

(64) o*(1) = V{lo¥ (O] + [v* ()]} -

Using quadrature formulas with integration points lying in Q we replace the forms
(v, w) and T;(v) in the same way as in [12, p. 365] by the forms a,(v, w) and I5(v),
respectively. Further, computing numerically the integral on the right-hand side
of (63) for each ¢, = I'y, we obtain a linear form I;(v). We solve the following
problem instead of problem (56): Find u,, € ¥, such that

(65) ay(up, v) = L(v) YveVy,,
where
(66) W(v) = () + I(v).

The estimate of the rate of convergence is based again on Theorem I, where m = 0
and where V,, Vo, @(v, w), a,(v, w) and [,(w) have the meaning introduced in this
section.

In what follows the function # from Theorem 1 will be a continuous extension
of the exact solution u of problem (41)—(43) to the domain Q. In this case the first
term on the right-hand side of (28) can be rewritten: Assumptions (70), (71) of Theo-
rem 4 about the functions #, k; allow us to use Green’s theorem and find

(67) ay(a, w)= J"[ fwdxdy + J <I€1 o Vi + ks o v,,2> wds (weVy,),
On I'ins 0x dy
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where v,;, v,, are the direction cosines of the outward normal to the curve ', and
where

N 0 [~ Ol 0 [~ ou
68 ey ) LY § S B
() / 0x<lax> ay<zay>

Equation (68) defines an extension of the function f because for (x, y) € Q the right-
hand side of (68) is equal to f — cf. (41).
Using (59), (66) and (67) we can write

69 | (@, w) = Lw)]| _ [T () = B0w)]
@ T T
ol oii
. J;M(k ;,); v + ks 5; th) Wdii_ I (W)
Hw'llﬁh '

The following theorem is a consequence of [12, Theorems 8, 9] with r = N* =
=2k + 1, m = 0 and of the interpolation theorems for Koukal’s and Zlamal’s
C°-elements.

Theorem 4. Let

(70) de H* (),
(71) kiewED(@Q), i=1,2,
(72) Je (D),

where i is an extension of the solution u of problem (41)—(43) to the domain @,
k; are extensions of the coefficients k; to G and the function f is defined by (68). Let
the degree of arcs (11) from which T, consists be equal to 2k + 1. Let the numerical
quadrature scheme over the unit triangle T, be of degree of precision 4k, i.e.,

(73) E*(p*) =0 Vp*e P(4k)

for both Koukal’s and Zldmal’s C°-elements. Then for h < h the sum of the second
and third terms on the right-hand side of (28) (with m = O) and of the first term
on the right-hand side of (69) is bounded by

(74) .?2)] >

i

where C is a constant independent on h, i and k;.

It remains to estimate the second term on the right-hand side of (69) and to find
a sufficient condition for the validity of inequality (27). In solving the first problem
we start from the inequality

(75) f (1? g;v,,1 + k2 8) ,,,) wds — 1,,(w)
I'nz
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=

k, ggv,,l + 127@{\),,2 - Q) wds| 4
Tna ox (7y

The first term on the right-hand side of (75) depends on the error of approximation
of the curve I', by I'y,, the second term divided by HWH 1.0, 18 less or equal to the error
of numerical integration on I',,. Both terms are estimated in Theorem 5. Before
formulating and proving Theorem 5 we must make some notes on numerical integra-
tion on I',, and establish some lemmas.

J Qwds — l,’,(w) .
I'n2

Let us have at our disposal a numerical quadrature scheme over the segment [0, 1]
(76) f G*(1)dt = Z o G¥(1;),
0

where a);!< are the coefficients and t; the integration points of the formula. According
to the definition of the line integral, we have

1 !

(77) J F(x, y) ds = J Flo*(1). y(0)) (1) di = f FH(1) o*(1) dt ,
Ch 0 0

where the function ¢*(¢) is defined by (64). Relations (76) and (77) imply

(78) J F(x, ) ds = i . F(B,..)
with "
(79) jen = 070%(1;) s By, = (0%(t;), ¥¥(1;)) -

Both w; ., and B; ., depend on ¢*(1), y*(t) and thus on ¢,. As the curve I', is a union
of arcs ¢, the linear form l:(w) is of the form

(80) l'f(w) Z Z @j,en Qh( J Ch) W(BJ th .

ch j=1

Let us define the error functionals

(1) Bulr) = [ Pl a5 = S F(B).

1 J
(82) EX(F*) = J FH(i)di — ¥ o F¥(1).
0 i=1
According to (76)—(79), the following identity holds:
() Eo(F) = EI(F0").
With respect to (83) we have
(84) E(Qww) = ET(Qyw*o*)
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where, according to (62), (63),
(85) Q5(1) = Q(a(1), (1)) .
(86) w*(t) = w(q)*(l), 1//*(1)) .

The functions @(1), §(1) are given by (12). It follows from the construction of the

curved triangular finite elements (see [ 10], [11], [12]) that the function w*(t)is a poly-
nomial of degree 2k + 1 in one variable 1.

Lemma 1. Let r be a given integer and I = [0, 1], There exists a constant C
independent on v* € P(r) such that

(87) max lv*u)‘ < C.U*L-J , J 20 Vo*te P(T‘) >
I

(88) s = Clo*fir, C=isj oreP(r),
P(r) being the space of all polynemials of degree not greater than r.
Relations (87), (88) arc one-dimensional analogies of relations (24), (25) from [11].

Lemma 2. Let the boundary I' be of class C***2. Let the functions ¢*(1), y*(t)
defining the arc ¢,(P,,P3) < I'y, be Hermite interpolation polynomials of degree

2k + 1 of the functions (1), (1) (see (12)) on the interval I = [0, 1]. If h is suffi-
ciently small then the following estimates hold:

(89) ahy £ 55, £ ahy, a; = const >0,

(90a) l@*(1) — V(1) = ChT™2, j=0,1,...2k + 1,
(90b) W) — g ()] £ Ch' ™2, =012k + 1,
(91) le*P(1)| = Chy, [W*(1)| < Chy j=1,2,...,

(92) lo*P(1)] = C*hitt, =01, ..,

where §3, = s3 — s,, the function o*(1) is defined by (64), the constants a,, a,,
C depend only on T and the consiant C* depend on T and j.

Proof. If I' is of class C?%2 then there exists a parametric representation of I’
x=¢(s), y=1(s), se[A, B]
such that ¢ € C***2(4, B), yy e C****(A, B) and
(53) o) < M, WO = M, sel4 B],
j=0,1,...,2k + 2,

where M is a constant. The segment [A, B] can be divided into a finite number
of segments [ 4, B;] such that at least one of inequalities

(94) oGz >0, W) zp>0, seld.B]

133



holds, where f is a constant. As in [12] the triangulation is chosen in such a way that
cach segment [s,, s3] (a local notation) is a subsegment of a certain segment [ A;, B;].
First we prove inequalities (89), We have

(95) mes (P, Py = [ VL + (7] ds.
It follows from (9) and from the sine theorem that the length of the smallest side
of the triangle P,P,P; is greater than or equal to hysin 8y. Thus hysin 9, <
mes ¢(P,, P3). The first inequality (89) then follows from (93) and (95).

If h is sufficiently small then there exists a constant K > 0 independent on the
triangulation t of Q such that Khy = mes ¢(P,, P;). The second inequality (89)
then follows from (94) and (95).

As mes I = | we obtain from the remainder theorem for the Hermite interpolation
|<p*“"(t) — (ﬁ(j’(t)| < C, max |¢(2k+2)(t)l ,
I

where j = 0, 1, ..., 2k + L. According to (12) and (93), we have max; |(}5(2"”’(t)l <
< M5357? and (90a) follows from (89). Estimate (90b) can be proved in the same way.

Relations (12), (89), (93) imply |¢(1)| < Chi, |[§V(1)| < Chij = 0,1,..., 2k +
+ 2. Hence |@*U(1)| £ Chy + |pV(1) — @*(1)| and (90a) implies the first ine-
quality (91) for j = 1, ..., 2k + 1. In the case j = 2k + 2 this inequality is satisfied
automatically. The second inequality (91) can be proved in the same way.

Estimate (92) can be obtained by differentiating relation (64) and using (91) and the
relation

(96) 0*() = Vilo*@T + [P (T} = Chy.

Inequality (96) follows from (90) and (94): If the first inequality (94) holds then
’(,T)’(t)i 2 53,8 > 0. Then, according to (89), a,fh; < }(p*’(t)l + I(p*’(t) - q‘)’(t)‘.
This implies, with respect to (90a), |*/(1)] = Chy for sufficiently small /; and (96)
follows. Lemma 2 is proved.

Lemma 3. If h is sufficiently small then
(97) IW*‘O,I = Ch;l/zlwlo,c,.
where the constant C depends only on T.

Proof. According to (96), we have

|w

1
- f w2 ds = f (w*)? 0% dt 2 Chalw*[2,
Ch

0

and (97) follows.
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Lemma 4. Let the boundary I of Q be of class C** 2. If h is sufficiently small
then

(98) j w2ds < CHWH,Z,QH Ywe H'(Q,),
ar,

h

where AL, is an arbitrary part of the boundary I', of Q, and C is a constant depend-
ing only on AT, i.e. on the part of I' which is approximated by AT',.

Inspecting the proof of the trace theorem (see [7, pp. 15—16]) we see that the
independence of the constant C on h follows from (90).

Theorem 5. Let the part I, of the boundary I of Q be of class C?**2_ Jet the exten-
sion @i of the solution of problem (41)—(43) be twice continuously differentiable
on Q with derivatives bounded by a constant K,

|D*ii(x, y)| S K, |2 £2. (x,y)e@,

let the extensions k, k, of the functions k,, k, be once continuously differentiable
on @ with derivatives bounded by a constant K,

|Dkx, p)| £ K, Ja] 1, (x,p)e@, i=12,

and let the function Q(x, y) belong to the space C***'(U) where U is a domain
containing T,. Let the functions ¢*(t), y*(1) defining the arcs ¢, of T’y be Hermite
interpolation polynomials of degree 2k +1 of the functions @(t), Y(t). In computing
the integrals (77) let us use a quadrature formula of degree of precision 4k + 1,
i.e. let

(99) Ef(v*) = 0 Vo*e P(4k + 1).

Then for sufficiently small h the second term on the right-hand side of (69) is
bounded by

(100) Ch?*t,
where C is a constant independent on h, C = C(K, K,, Q, ;).

Proof. a) First we estimate the first term on the right-hand side of (75). Let us
denote for simplicity

. O ~ onu
(101) o =ki—vy + ks —vp— Q.
Ox oy

The Cauchy inequality and Lemma 4 imply

j ow ds
Th2

(102)

< |<7!0.,—,‘Z 1W|o.rhz§ C, /(mes I'y,) mrax la‘ ) Hle_m ,
C, =Cy(I,).
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Let us set

(103) Ay = @*(1) = @(t), Ay = Y1) = ¥(1).
According to (90) we have
(104) 4, = O(hi**?), 4;=0(h3*?), i=12.

Using the Taylor formula we obtain
ki(o*(1), v*(1)) = k@(1) + 40 9(1) + 4,) =
= ki(@(1). ¥(1)) + 0(4,) + 0(4;) = k(1) (1)) + O(h3**?).
As F(@(1). B(1)) = k(@(1). 7(1)) we can write
(105) ki(@*(1), y*(1)) = ky(@(1), ¥(1)) + O(h3**?).

Similarly we obtain

(106) (o0 07(0) = (@00 F0) + 003+2),
(107) 2 (*(0 w*(10) = 2 (3(0), B(1)) + O(hE*2).
dy dy
Further,
(108) v = v + O(h¥**Y), i=1,2.

To prove (108) let us realize that
m =Y Ofe*(1) . v = —o*()]ex(1),
v =9 0fe(t), va = —'()ae(t)
where ¢*(1) is defined by (64) and where
o(t) = Vilo' (] + [ (1))} .
. 2 40\? 45 \?
(1) =1 4+ ——= (v, 4y — v, 47) + [ =~ +<J) .
0=+ gyt = (G5 ) + (5
v = (0'(1) + 45)[(2(1) 6(1)) = v, + O(hF**1)
because (104) holds and (1) = a,fhy. The second estimate (108) can be proved

similarly.
Estimates (105)—(108) imply

Let us set

Then we have

1 . od 0 0
k « v Tk vl =k = vi + k, o vo| + O(h3* 7).
0)6 Oy ch ax (’}y .
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As, according to (43) and (61), (62),
Ou du _N T
Ky vy + k) ahll- = Qa(1). v(1)),

0u(@*(1), ¥ (1) = Q). = Q(&(1). ¥(1)).

we obtain with respect to (101)

2k+1)

(109) max ]al = O(h?}
or in more detail,
(1]0) max la’ < Czh?'“ , C, =CyK,, K,, I'5).

Ch

As mes I',, < 2mes I', and hy £ h relations (102) and (110) imply

(1) j ow ds
I'n2

b) Now we estimate the second term on the right-hand side of (75). According
to (80) and (81), we have

(112) f Quw ds — Ij(w)
I'nz

Taking into account relation (84) we shall estimate the term EJ(Qyw*o*). Let us
consider the form

< G w0, Cy = Ca(K Ky T5).

<y EL.,,(Q,,W)I.

chSIn2

(113) Ef(u*w*), u*e WD), w*eP(2k + 1).
According to (82) and (113) we have
(114) fE;k(u*w*)l < C4[u*]0,oo,1 m;Iix ’w*l .

Using (87) and the inequality ]u*|o,w’, < Hu*“z,‘ﬂ’w,, we obtain from (114)
B 5 Collaes s 7

For a given w* € P(2k + 1) let us define a linear form f(u*) on W3** (1) by
Slut)= Ef(uew) Vat e WED().

The linear functiona]f(u*) is continuous with the norm less than or equal to CSIW*‘OJ
onthe one hand, and vanishes over P(2k) on the other hand, by virtue of assumption (99).
Therefore, using the Bramble-Hilbert lemma (see [2] or [4], [10], [12]), we obtain

(“5) IE;‘(“*W*)I = C()I“*(zkﬂ,a».l ]W*ko,l
Yu* e w2kHI(I), Vw*e P2k + 1).

Relations (12) and (85) give
r d r ‘3 r
(116) w00y = 5, [ T2 (92} 4 L4 2 vl
ds (’?'),' dgr

ox"
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The assumptions of Theorem 5 about I', and Q together with (116) show that
Qr € C**1(I). Thus, setting u* = Q;0* we obtain from estimate (115)

(l 17) |ET(Q7:Q*W*)‘ < Cb max ‘(Q;‘:Q*)(Z"Jr 1)] . lW*|0,I .
I
As

. Ig*(2k+l~r) ,

r

ety < () ore
we get from (116) and Lemma 2
(118) max |(Qro*)*** V| £ C;hi* "2, C; = Co(Q.T,).
Relations (84), (1171) and (118) together with Lemma 3 give
(119) E.(Qww)] £ Ceh™ 32w, ., -

Let us combine estimates (112) and (119) and use the Cauchy inequality and the
fact that the number of boundary triangles is O(h™"'). Then we obtain with respect
to Lemma 4

(120) < Coh™* | wl; o,

lf Qyw ds — I5(w)

with Cy = Co(Q, T,).

¢) Combining inequalities (75), (111) and (120) we obtain the bound (100) for the
second term on the right-hand side of (69). Theorem 5 is proved.

It remains to find a sufficient condition for the validity of inequality (27). Inspecting
the proofs of such sufficient conditions in the case of Dirichlet boundary conditions
on I (see, e.g., [3], [4], [12]) we see that in virtue of [12, Theorem 7] the problem
reduces to establishing the inequality

(121) [2[6.0 < C|0|T.0n YvE Vo,

where C is a constant independent on v and h. The solution of this problem follows
from the following theorem which is proved in [13].

Theorem 6. Let the boundary I of a bounded domain Q be of class C**2 gqnd let S
be an arbitrary but fixed part of I' such that mes S > 0. Let every triangulation
T of Q satisfy the condition

(122) hlh = ¢y (co = const > 0, h = min hy)
Tet

and have the property that S is a union of the curved sides of some boundary
triangles. Let S, be the part of I', which approximates S. Then the constant C(Q,,)
appearing in the inequality

(123) lo]2.00 = C(2,) (j vds + |v|§,gh> Voe W,

Sh
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can be chosen in such a way that
(124) (@) - K@) if h-0,

where K(Q) is an arbitrary constant which can occur in Friedrichs’ inequality
(125) 0 = K(Q)q v* ds + |v|f,9> Yoe H'Y(Q).
S

Corollary, Let the assumptions of Theorem 6 be satisfied with S = I';. Then
inequality (121) holds for h < h, where h is sufficiently small.

Theorem 7. Let k{(x, y) e W ¥ (@) and let inequalities (44) hold. Let the assump-
tions of Theorem 6 be satisfied with S = I';. In computing the bilinear forms
ay(v, w) let us use a quadrature formula of degree of precision 4k, i.e. let (73)
hold for both Koukal’s and Zldmal’s C®-elements. Then inequality (27) (with m = 0)
holds for h < h, where b is sufficiently small.

The proof of Theorem 7 follows the same lines as that of {12, Corollary 1]. We
use the corollary of Theorem 6 together with [12, Theorem 7] where we set N* =
2k + 1, m = 0 for both the curved and the interior triangles. (It should be noted
that in the case m = 0 the proof of [ 12, Theorem 7] does not depend on the boundary
conditions prescribed on I'.)

The results of this section are summarized in the following theorem:

Theorem 8. Let the assumptions of Theorems 4, 5 and 7 be satisfied. If h is suffi-
ciently small then the solution u,, of the discerte problem (65) exists and is unique
and

(126) “11 - u,,“l,gh = O(h**1),

where il is an extension of the solution u of problem (41)—(43) to the domain Q.
The assertion of Theorem 8 follows from Theorem 1 with m = 0, from (67), (69)
and from the assertions of Theorems 4, 5 and 7.

Remark. If we consider the Newton boundary condition

=Q (b=by,>0, b,=const)

(127) bu + k Eaﬁv +k2?ﬁv
, 1 1 2
ox ay |r,

instead of the Neumann condition (43) we can obtain similar results. The bilinear
form a,(v, w) has in this case the form

(128) av, w)=J b,ow ds +IJ (El-aﬁ@hlé @g‘i))dxdy,
Tn2 On

oxdx  Cdyady

where by, is the function obtained by “transferring” the function b from I', onto Iy,
(cf. (61), (62)). In proving condition (27) we use again Theorem 6. In the case of the
boundary condition (127) we can also consider the situation I' = I,.

The results obtained in this section can be extended to the case of fourth order
elliptic equations with various combinations of boundary conditions.
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Souhrn

NEHOMOGENN[ OKRAJOVE PODMINKY
A ZAKRIVENE TROJUHELNIKOVE KONECNE PRVKY

ALEXANDER ZENISEK

V ¢lanku je navrzen zpusob aproximace nehomogennich okrajovych podminek
Dirichletova a Neumannova typu pfi feSeni okrajovych uloh eliptickych rovnic meto-
dou koneénych prvku. V pfipadé¢ Dirichletovych podminek spliiuji parametry,
které jednoznaéné uréuji testovaci funkce, v uzlovych bodech lezicich na hranici
podminky typu (17), (18), resp. (54), (55). V piipadé Neumannovych podminek
predepsanych na I', je kiivkovy integral podél kiivky I', aproximovan krivkovym
integralem podél aproximujici kiivky I',.

V prvni ¢asti élanku je studovana konvergence metody koneénych prvkd pfi feSeni
nehomogenniho Dirichletova problému eliptickych rovnic fadu 2m + 2. Tato Gast
¢lanku zobectiuje vysledky ziskané v [12]: pfi pouZiti zak¥ivenych trojihelnikovych
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kone&nych C"-prvk( popsanych v [12] je rychlost konvergence v normé prostoru
H™(Q,) op&t O(h*™*1).

V druhé c&asti Clanku je analyzovéna konvergence metody konecnych prvka
v pfipadé nehomogenniho smiSeného okrajového problému eliptickych rovnic
druhého Fadu pii pouZiti Koukalovych polynomii stupné& 2k + 1 [5, Véta 5] a Zla-
malovych zakFivenych trojithelnikovych koneénych C%-prvka [11], které Ize na Kou-
kalovy prvky napojit. Rychlost konvergence v normé prostoru H'(Q,) je O(h*™*1).

V obou &astech ¢lanku je studovan vliv numerické integrace na rychlost kon-
vergence.

Author’s address: Doc. RNDr. Alexander Zenisek, CSc., Laboratof pogcitacich strojii VUT,
Obranct miru 21, 602 00 Brno.
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