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THE INITIAL VALUE PROBLEM
FOR NONLINEAR BOLTZMANN EQUATION

JAN KyNcL

(Received May 10, 1979)

FORMULATION OF THE PROBLEM
In the paper the following problem will be studied:
0
(1 »0—([) +vVo(x,v, 1) = J' dVIJ dxc® . (v; — v)xH((v, — v)2x).
t E; Q

Lo, v, 1) o, vi, 1) — o(x, v, 1) o(x, vy, 1)],
p(x,v,t =0) = yY(x,v), 9G¥, YyeG”.
Here  is a given function, ¢ the function to be determined, x and v mean three-

dimensional vectors, x the unit one, Q the surface of the unit sphere and ¢ a positive
number.

Further, vVi=v 4 x(v, —v)x,
vi=v, —x(v, —v)x,
M, = E, x E,,

M=M; x[0,T], T>0.

H(x)is the step function, H(x) = 0 for x < 0, H(x) = 1 x > 0. G*” denotes the class
of nonnegative functions y defined on M,, and such that for given positive constants
o, f# and y the functions

o

ox,
are continuous and bounded there. Similarly, G}’ means the class of functions ¥
defined on M and such that

1 2 0 1 2 2
(B + yv?) 2™, O—X—(ﬂ + y0?) ™D and  y(B + yv?) e

U;

2B+ yo?) e, -fl (B + y?) Y, ?L(/} + ) ef @ (i =1,2,3) and
X; v;

o
ox (B + ) e
ot
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are continuous and bounded there (for t =0 and ¢t = T, the time derivative must

be taken from the right and from the left, respectively). The problem just formulated

frequently occurs in the theory of gases composed of neutral particles [, 2, 3]. In

that case ¢ means the density of particles dependent on the spatial coordinate x

velocity v and time t, o is the diameter of the particle or, equivalently, the diameter

of the respective hard core potential. Problem (1) expresses the time evolution of the

system having the following properties:

— the system is composed of particles of one sort,

— the particles interact with each other through binar collisions,

— the velocity of a particle is constant between any two collisions,

— the diameter o is negligible if compared with the unit volume,

— the system develops in infinite volume (i.e., formulation (J) corresponds to the
case of a sufficiently large reservoir and negligible influence of the walls).

The nonlinearity of Eq. (1) presents great mathematicaldifficulties when attempting
to solve the problem. This is why methods of linearization (e.g. that of Chapman-
Enskog [1]), perturbations [1], approximations (hydrodynamic equations) and
numerical ones are mostly used. The main purpose of this paper is to find the exact
solution of problem (1) and to prove its uniqueness.

MATHEMATICAL RESULTS

Lemma. Let y € G**'. Then there exists T > 0 such that the function ¢, 1,

2) our(xv. 1) =ftdtl exp(~J‘tdt2m72 .Ldu]u —V gulx - vt — ). 4 1)

0 t
J\ dvljv duc? . (v — v)xH((vy — v)x) @ (x — v(t — 1;), v/, 1;).
E; o
Cou(x = v(t = ty), Vi ) F (x — v v)

t

exp (— J dtlnazf dulv — u| @, (x — v(t — 1,), u, t,)) ,

0 E;
Po(x, v, 1) = Y(x — vi, v)

belongs to the class G for any n = 0, 1,2, .... Furthermore, there exist finite

positive constants Ay, A,, Ay and A, such that

sup gu(B + 70%) € < A, sup o, (B + et < 4, (i=1,23),
M Mm |0x;
0([),, 2\ H(av?) . (7([),,
sup || (B + yv?) ¢ <4y, (i=1,2,3) and sup|—"| £ 4,
M | Ov; m | Ot

Joralln=1,2,...
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Proof. The following relations hold:

~ B e—z(v’2+v,’2)
sup dv,J dxo® . (v — v)%H((v, — v) %) & (B + yo?) — — - =
Es J;; [ (B + v 2) (B + yot

2 1
sup dvlj dxo® . (v, — v) xH((v, — v)x)e ™" ( T e
E; JEJ o B+ (07 — (xv,)* + (xv)?)
1 2 ()2 wv)?
I R R y(lj‘ 2(’?”‘) +2(/U) )> Sa(a, fy)= a < w.
B+ y(v? = %) + (e0,)?) B+ p((e0)* — (x0,)%)
Thus, denoting by L(¢p,) the right hand side of Rel. (2) and A = sup g™’ (B + yu?),
we have Mo

—ap?
av
e

0= ¢, =Ly py) £ (A + A*at)- .
= o0 5 (4 + %)

Then, using the recurrent formula (2), we find easily by induction that

—av? 1
0Oz 2 ielo ),
1 — adt p + yv? aA

for all n.

In the following we will take T < 1/aA. Then, clearly, A, = A[(1 — aAT) satis-
fies Lemma. The continuity of ¢, in its variables is obvious.

Formal differentiation of (2) with respect to x;, (i = 1,2, 3) leads to the relation

t t
(3) 50— Pusr(X, v, 1) :j dt; exp (—f dIZJ dulv - u‘ no’ @, (x — v(t — 15, u, 1,)).
X; 0 t E;

0

S
0x;

{ j v j RO ICEL AR [2.

. (pu(x - V([ - tl)* V;, tl) - (P,,(x - V(Z - 'l)’ V;, tl) .

' 0
j dtznazj du . ¢u(x = v(t — 1), u, tz)]} +
i1 Ez i

(‘“(
+ cxp(‘J‘td’NwZJ du|u —v[@u(x = v(t — 1;). u, tl)> [j W(x — vt v) —
E; i

0 Ox

u—yv

t
—P(x = i, V)J dtl_[ dunazlv - ui ﬂiq),, (x —v(t = 1,), u, tl):l .
0 E; OX;

This is evidently correct for n = 0. Denoting

Ul

B = Sup e'%(auz) (ﬂ + yvz) s Bl = Al . a(%a’ ﬂ’ V) >

Mo

0x;
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—1(av?) —4(au?)

B, = sup A7 . a(a, B, y - | dunc?lu —v
z E; ' ( )ﬁ+,y02 E; I |ﬁ+yu2

and
B, = _273247
Al . a(aa ﬂ’ y)

we obtain from (3) that

e"i(IUZ) t t
< B- 5 U de; (J dt,B, + 2B + B3> + 1] =
ﬁ + yv 0 ty

—$(av?) 2
t
:B.ﬂ e [B25 + (2B; + B3)t + 1] <

99,
0x;

—4(av?) 2

<BS " exp (B2 4 2B, + By
B+ yv? 2

(i=1273),

i.e. Rel. (3) is valid for n = 1 and an easy calculation yields

992
0x;

<5 exp (221 & (2B, + By)1 (i=1,2,3).
= ﬂ T ‘YUZ 2 1 3 s “s

Clearly, in this manner the validity of (3), the continuity of 0¢,/0x; in its variables
and the inequality

0 ~ i) B,t?
Wl < Bl exp( 2 + (2B, + By)t (i=1,273)
0x; B+ yv* 2
can be proved for all n. Therefore, we can put
2 B
A, =Bexp<%~+2<31+—;—>7’> (i=1,23).

Similarly, applying the operation 0/dv; (i = 1,2, 3) on both sides of (2) we obtain
a recurrent formula for d¢,,,/dv;. Using this formula and taking into account the
properties of the functions ¢, d¢,[dx; and 61///01;,-just proved we arrive at the relation

—4(av?)

e

99,
B+ g0?

ov;

< A

(i=1,23)

independently of n. In the same way, the continuity of dg,[dv; (i = 1,2, 3) in its
variables can be shown.
Now it is seen that Rel. (2) is equivalent to the relation

(4) E‘)‘(/i(;:—‘ +v V”+1 + ¢11+1J dUlV - U\ nO.Z ([)”(X, u, t) =
Es
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= J dv, J duc’s(v, — v) H(x(v, — v)) @, (x, v, 1) o, (X, v{, 1),
E; o}
Ppr1(X, v, 1 =0) = y(x,v)

and. therefore, 0, /0t (n = 0, 1,2, ...) satisfies the assertions of Lemma as well.

Theorem. For any Wy € G**", there exist T> 0 and just one solution ¢ e G
of the problem (1). It satisfies ¢(x, v, 1) = lim @,(x, v, 1), where ¢, is given by the
formula (2). now

Proof. First of all, let us choose the constant T in the same manner as in Lemma,
i.e. Te(0, 1/aA), and let us keep the above notation. Now consider the recurrent
formula (2) and put x4y = @ui1 — Pp

Apparently, according to Lemma this function satifies

t t
(5)  dusr(x v, 0) =J dr, exp(—f dtznazf dulu — v| @,(x — v(t — 1,), u, t2)>.
1 E;3

0 t

. {J dvlf da? u(vy — v) H(xe(vy — v)) [, (x — v(1 — 1;). v/, ;).
E3 0
can(x = v(t = 1y)ovisty) Fop(x = v(t = 1) v 1) @ (x = v(t = 1,), vy )] =

— @ux —v(t — 1)), v, 1)) HUZJ du]v - u‘ In(X — (1 = 1,), 4, tl)}
E;

(n=0,1,2,...). Obviously,

(a2 1

7l £ Bpte *®  ——|

I/(il = Po B + 02

where B, is a positive constant. Then we have from (5)

(2 L= Ha?) B.A 2 ,— 3(av?)
IX2| =B - 24,04 gs B, 7’> + 20t ="c.t By,
2 B+ vt 2 A

Il

‘Xsl < -C—— By,

<L ®

Xn

Hence the sequence {e*™(B + yv?) ¢,}7-o is uniformly convergent. Rel. (5) and
Lemma imply

’) t / 1
() Yo :Jdtl exp| _J drzngz[ dulv — o] pux — v(t — 1), 5 t2)>.
0x; 0 K 1 Es

o
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{ j v J ero v, = v) Hislo, — v

0
,,:q)”(x —v(t —1;), v, t])gw

i

Talx = v(t = 1)), v ty) +

@ , ’
+ b—A Xn(x - V(t - tl)’ v, tl) (/)n~l(x - V(f - ’1)* Vi, Il):l -

—pu(x—v(t— tlk),vJI)J‘ dunoz‘v -~ ul 70— In(x — v(t — 1), u, tl)} + Fy(x, v, 1)
E; 0X;

(i =1,2,3). The form of the function F{), is rather complicated but obvious.
It is homogeneous in y, and on the basis of the previous result, it can be shown that
n+1 —4(av?)
@, g Uer L (i=123n=1,2..),
(n+ DB+
where C, is a finite and nonnegative constant. Clearly,
1

SCP gtemE@D L (1 =1,2.3),
2 5t ( )

x4

0x;

where €SV is a finite constant.
The use of Rel. (6) gives

> o] _ 1° 1 2 ?
eI 4 y0?) 22 §—[C§)<2A a< ﬁy>+A1D>+C;:lEEC‘2 ,
0x;

2
3 2 7'['[2 )-—5(1112)
where D = sup exp(— O-“i-) P f dulv —u £ 5
Ej E; ﬂ + yu

I"
cy A, /z ? +Ci=—c
n.’ n!
(i=1,223).
From the definition of C%” it is seen that C§" > C" so that

cy o )
2

Therefore the sequence {e*™" (B + yv?) dp,[0x;} ¢ is uniformly convergent.
Similarly, the operation d/dv; applied to (5) gives

T t
(7) -12 Tni1 = f dt, exp<_ f dtznazf du]v — u| Pu(x — v(t — 1), u, t2)>.
i 1 E;

ov; 0 t

and in general

)4((1'] )(ﬁ + v ) 0)(,,

CY
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.j; dv, fﬂdxaz x(vy — v) H(x(v, — v));;[(pn(x —v(t—1y),v.1,).

801]i~ ( (l—-t) V1,t1) _}.?wuli
; 0v] v,

(X = (= 1), v 1) (p,,_l(x —v(t =), vi, )] + G,(,ill (i=1,23).
Here G.); is an expression containing combinations of x, and dy,[dx; (i = 1,2, 3)
and it can be easily shown that

n+1
G| = < R o (i=1,2,3,n=12..),
(n+ 1!

where R is a finite constant. It is also apparent that
< St .exp ow b (1—123)
ﬁ +

where S is a finite constant. Then, using (7), we conclude

2 2

< —(124,a - ﬂ y)S® + R?2) = so
2 2

< = (12450 (%, 8, v) se-1 4 gr) = s L
nt 4 n!

(i = 1,2, 3). Clearly, S(")/S("‘” < 124,a(«/4, B. y) + R and, therefore, the sequence
{*D(B + yv?) 0, [0v; )% is uniformly convergent for any i.

Finally, the uniform convergence of {d¢,/dt} -, immediately follows from Rel. (4).
Thus we have proved: the function ¢, ¢ = lim @,(x, v, 1) exists and is continuous

n— o0

together with its first derivatives on the set E x E x [0, T] = M. This function is
3

o
Ov;

aXz

(aw )(B + '}JU) S
v

i

(avz)(ﬁ + U) 2Xn

i

a solution of the problem (1) (see Rel. (4) and Ref. [4]). It remains to prove the
uniqueness.
Let ¢, € G¥” be another solution of (1). Then x = ¢ — ¢, € G2 and, therefore

—av?

® o—olsc s

(C3 = const. <c0). From (1) it follows that

©) Axov.i) = J.;dtl eXp<~ J :‘dtzmz Ldu[v —ulg(x — v{t - 1), u, 1)

.{Ldvl Jf dwo? x(v, — v) H(x(v, — v)).

Q2

Jelx = v(t — 1), v, 1)) x(x — vt = 1)), vi, t) +
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+ ok = v(t = 1,), v 1) @, (x = v(t — 1), vi, 1,)] —

— @y(x = v(t — 1y), v, 11)J dunt 6|v — u| x(x = v(t — 1;). u.1,)}
E;
(see also [5]). Substituting the estimate (8) into Rel. (9) we obtain
— $(av?)
l‘/’ - (P1I =160, *B“_‘{_“"'z‘
(C4 = const. <oo) and, recurrently,
(Cat) e7te?

o= ol =6 nl B+ po*

Therefore ¢ = ;.
Concluding remarks

1. The class G¥” was defined so as to enable us to study the majority of physical
situations. Such a restriction has a certain mathematical advantage: problem (1) is
equivalent to the problem

(10) o(x,v, 1) = J;dt1 exp(— j:ldtznaz ‘leulu — v o(x — v(t — 1), u, 12)).
. j K2 f e w{e, — ) Hlelv, ).

Co(x = v(t =), v, 1) e(x — v(t = 1)), vi, 1) +

T
+ y(x — vi, v)exp (—J dtlnazj dulu —v|o(x —v(t —1,),u, tl)) ,
E;

0

yeGh, peGy
[5], and its solution can be found by an iterative method (see Rel. (2)).

2. It is seen that Theorem remains valid also in the case when ¢ is replaced
by a function of the variables x, 2, v, v, and ¢, which is continuous and bounded
together with its first derivatives in the arguments mentioned above. Such a modifica-
tion is useful especially in the case of scattering which is anisotropic in the centre
of mass system [1].
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Souhrn

ULOHA S POCATECNI PODMINKOU
PRO NELINEARNI BOLTZMANNOVU ROVNICI

JAN KyNcL
Clanek se zabyva problémem &asového vyvoje hustoty v systému &astic jednoho
druhu v zavislosti na prostorovych soufadnicich a rychlosti v nekoneéném objemu.
V koneéném Casovém intervalu je nalezeno presné feSeni tilohy a dokdzina jeho

jednoznacnost.
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