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APPLICATION OF THE NORMAL DISTRIBUTION
TO QUALITY CONTROL
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0. INTRODUCTION

Let the quality of products be classified by means of the departure of their me-
asurement X from a given constant u,. A product is said to be one of the i-th class iff

1, ...,m,

I

XeCi={x k4 =|x—po| <kd}, i
where
A>0ky<0<bk <k,<..<k,=mo
are given constants.
Denote m
B,=UC; ={x:|x —po|Z ki 4}, i=2..m.
Jj=i

Let given constants o;, o, i = 2, ..., m satisfy

O<am§[xm—1§"'§d2<l‘
* * - %
0< O __S. O~ 1 = % <1 H

% .
o <o, I=2,...,m.

Let X be normally distributed N(y, 62), write X% N(u, 6). A large batch of in-
spected products should be accepted if

(1) P(B))<«a; forall i=2...,m,
while the adoption of them when
(2) P(B;) = «f foratleastonei, i=2,...,m,

would make the loss great. Therefore in this paper the optimal tests are formed
in order to accept the inspected products if (1) is satisfied and to reject them if (2)
holds, with probabilities larger than given numbers respectively, as well as to make
the loss minimum.
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I. TESTING PROBLEMS

X

We shall denote ¢(x) = (1/\/(27)) exp (—x?/2), and P(x) = j (1) dt the density

and distribution function of the normal distribution N(O, ]). The following two
Theorems will change the conditions (1) and (2) to conditions for p and o?.

Theorem 1. (1) is satisfied if and only if

(3) 0 < 0o =min{k;_,Afu,, :2 <i < m},

and

(4) ./—1——_:—“9 Sb=min{b;:2=<i<m},
o

where b; is uniquely determined from
D(k;—yd]e + b)) — &(—k;_d]e + b)=1—«a;, i=2,..,m,
and u, by (u,) =1 — af2, i.e. P(|N(0, 1)| >u)=00=<Lasl

Theorem 1 follows from the following Lemma.

Lemma 1. Let X% N(u, 6*). For

(5) P(X —p|sa)zl—a,a>00<a<l,
it is necessary and sufficient that
(6) o < alu,
and
(7) "= Ko § b ,
c

where b = 0 is uniquely determined by
®(ajo + b) — &(—ajo + b) =1 — «.
Proof.

P(IX"#oléa):P _ﬂ+,“2_:_/f§£__‘§f+’i°~__—_”):
o g 0 o 14

Y N Sl A W N U el :G(lu ,
g g ag g g

say, where G(x) = G(|x|) and decreases strictly from ®(a/o) — &(—afs) to 0 when
lxl increases from 0 to -+ oo. Therefore (5) is satisfied iff #(afo) — @(—afo) = 1 — «,
i.e. alo = u,, and I(/L — Ho)Jo) < b where b = 0 is a solution of G(b) =1 - a.

Q.E.D.
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Remark | (to Theorem !). Ifo < oy, thenb > 0, and if ¢ = gy, then b = 0.
Theorem 2. (2) holds iff either

(8) o = ¢* = min {ELLA =2, m}

:ua*,‘
or
(9) o < o*,
and
(10) li‘*_;ﬁ = b*=min{bf:i=2,...m},

where b} > 0is a unique solution of

<l>(£ifl—/]-+ bT) - <1><—- kiad + bT) =l—-of, i=2..,m.

o2

Proof. Note that Lemma 1 remains true if inequalities (5)—(7) are strict. Thus
Theorem 1 with inequalities (1), (3), (4) being strict is also true. Hence the opposite
statement to Theorem 1 appropriately modified affirms Theorem 2. Q.E.D.

Remark 2. Clearly o* > ¢,. Moreover b} > b;,2 < i < mand then b* > b = 0

if ¢ £ g,
Let us consider the test of #: (1) is satisfied, against # : (1) is not satisfied. We
assume throughout the paper that 62 is known. In view of Theorem 1 there are two

possibilities in the testing problem (#, .%”):

1) If 62 > o we accept A without any observation and without any loss,

2) If ¢* < a5 we have to test # :0 < ¢, < b, i.c. (4) holds, against A" : ¢, < b,
where ¢, = |(n — po)/o].

2. THE TESTS

2

Let X,,..., X, be a simple sample from X, where X.% N(u, 0*) with ¢ < o2
Denote "
X=(1/nYX,.

i=1

For pe # and arbitrary probability e we denote by D the event

{ < uL} {— u, < Xon < u‘} < {—ue —b/n

ol\n
= Ho

==

X —qu

af/n

§ue+b\/n}=D,

X —u

ol/n

I\

+

Il

IIA

47



Therefore

D= —}—(;/”«0 > uc+b\/n}c{x_,‘u > U,
aln ol\/n
and
(11) P(D) =1 = [®(u, + (¢, + b)/n) — &(—u, + (¢, — b) n)]
for each p e #. Since
P([(X = no)[(o|yn)| > x) =1 = [@(x + ¢, /n) — &(—x + ¢, /n)]

is increasing in ¢, 2 0 for each xe R, then |(X — ;LO)/( /n] is stochastically
increasing in ¢, = 0 (see [1]. chapter IL. 7). Therefore the critical region of the form
{| — po)/(c \/n | > A} is meaningful in our testing problem.

Theorem 3. In testing (5, ") above, the test defined by the critical region
X — 1o

(12) D:{ ARG +b\/n}

has the level 6" sup {P(D I A’} determined by

(13) 6 =1—=[P(u, +2b/n) — &(—u,)] =e¢/2 + [1 — &(u, + 2b /n)] =
=e— [P(u, + 2b/(n) — ®(u,)].

and the probability of error of the first kind 6 has the following properties.
(14) (ef2<d <e,

(i)e — o runs O 1 [@(2b /n) — 1[2]  as erunsO11,

(iii)o runs0 1t 1 — [®(2b \/n) — 1/2]  as erunsO11,

and & = 6(e) is convex,
(iv)drunse | e/2 as nruns0?1 oo, and & = (n), for neR™, isconvex.
Proof. It is easy to see that P(D) determined by (11) is increasing in ¢, and also

sup {P(D)|#} = P{D|c, = b}. Thus (13) follows from (11). (14) (i)—(ii) follow im-

mediately from (13). (14)(iii)—(iv) follow from the derivations of (13) according
to e and n respectively. In fact

oL =1 [1 + (ﬂ(ﬁfzb},/’_’)] >0,
o(ue)
8y = b J(n) o(u, + 2b /n)2¢*(u,) > 0,
—bop(u, + 2b /n)[/n <0,
on = (b/n) o(u, + 2b /n) [b(u, + 2b /n) + 1/2/n] > 0,

&~

and

=
It
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where we have used the relations

D(x) = o(x), ¢(x)=—xox), Pu,)=1-e¢2

then du,/de = —1/2 p(u,). Q.E.D.
The behaviour of ¢ is illustrated in Figures | and 2.

[
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Now let us consider the error probability of the second kind

(15) B = P(D | ) = @[(c, + b) V(1) + u] = @[(c, = b) /(n) = u.],

for pe A, ie. ¢, > b.
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Theorem 4. The test defined in Theorem 3 is unbiased, i.e. y(1) = | — B(i) > &,
forpue .

Moreover
(16) (i) p=pp)runst —6 — 10 as ¢, runsb + 1 oo,
(ii) for each pe A, putting x = JneR*, f=p(x)1as xtxo=(—u, +
+ J(uz+(2bje,)log((c, + b)[(c, — b)))[2b . and B(x) L 0 as x runs x, 1 oo,

(iii) foreachpue A ,neN",
B = Ble) runs 1 | @[(c, + b)/n] — P[(¢c, — b) Jn aseruns011,
+ ifb =0, ﬂ(e) is convex in e € [0, l],
+ if b>0:

Ble) is convex for 0 < e < Lif ¢, > ¢, and it is convex for 0 < e < éand

concave for ¢ < e < 1if b <c¢, £¢ where ¢ =¢&(n) > b is a unique

solution of ntb = Ylog((¢ + b)/(¢c — b)), and &is determined by

ug = —b V’/(n) + (l/(2 \/(”) Cu)) log ((Cu + b)/(cu - b))

Proof. From (13) and (15) we have f(u) <1 — 0 for ¢, > b. (16) (i) follows
from (15). The derivative of f = (x) is
ﬁ(x) = (Cu + b) (p[(C" + b)x + uc':l - (Cu - b) (p[(cu - b)X - ue]
= (¢, — b) o[u, + (¢, + b)x] H(x),
where H(x) = (¢, + b)/(c, — b) — cxp (2bc, x> + 2u,c,x)is decreasing from H(0) =
= 2b/(c, — b) > 0 to — oo as x runs 01 co. So there is a unique positive solution
xo of H(x)=0:x,=(1/2b)(~u. + J(ul + (2bc,) log((c, + b)/(c, — b}))).
Since the signs of '(x) and H(x) are the same for ue A '(c, > b), (16) (ii) is proved.
For f = f(e), we have
Be) = (=12 p(u.)) [o((c, + b) J(n) + u.) + o((c, — b)/(n) —u)] <0,
B'(e) = (— nf4 o*(u.) [(c, + b)(\p((c,, + b)J(n) + u,) —
- (Cu - h) (P((Cu - b) \/(n) - ”0)] =
o ) o, + (e, — b)) l] o),
where
h(e) = ¢, — b — (¢, + b)exp {2 () e (u, + b Jn)}.

Since h'(e) = — \/(n) ¢,(c, + b)exp {=2/(n) ¢ ,(u, + b /n)}[p(u,) <0, then h(e) |.
One has h(o) = lim h(e) = ¢, — b > 0, for pe A,

e+ mw

h(1) = h{e)

w0 = ¢, — b —(c, + b)exp(—2bnc,).
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Clearly for ¢, > b the signs of h(1) and of f(c,) = ne,b — (1)2) log (¢, + b)/(c, — b)
are the same. Since

flen) = nb = () (e, + b) = (e, = b)) = b(n + 1)(c; — b*)) >0

for pe A, and b > 0; and f(b+) = — o, f(0) = oo, there is a unique ¢ = &(n)
such that the signs of f(c,) and ¢, — ¢ are the same. Thus h(1) 2 0ife, = ¢, h(1) <O

iz

Fig. 3.

3

0 X, x(Vn

1
n increasing
c.<c(n)
\CH___E(”)
\
C“:C(") Fig. 4.
0 1 ¢

if b < ¢, <@ provided b > 0, i.e. 0° < ol, see Remark 1. If b = 0, i.c. 62 = o2,
h(1) = 0 for all ¢, > 0. Since p’(e) and h(e) have the same sign we have finally:

In the case b = 0: f"(¢) = 0 and h(e) = 0, e [0, 1], forall ¢, > b,
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In the case b > 0:8"(e) = 0 and h(e) 2 0, ee[0,1], if ¢, = & and f"(e) and
h(e) change their sign from positive to negative when e crosses the solution & of
h(e) =0, if b < ¢, < ¢ That proves (16) (iii). Q.E.D.

Figures 3 and 4 illustrate the behaviour of f.

3. THE OPTIMAL INSPECTION PLANS

Suppose X% N{u, %) with 6> < g as in Section 2. Then ¢ < ¢*2, by Remark 2.
One can see from Theorem 2 and (16) (i) of Theorem 4 that p(y*), where ¢,, = b*,
is the largest error probability we can make if we accept the inspected batch when (2)
holds. So our purpose in this Section is to form the tests with the smallest sample
size to make either 1) the error probabilities § and ﬁ(,u*) smaller than given numbers
3o, and By € (0, 1), or 2) the risk of the form t = 1,6 + 1, f(y*) + 137 = minimum.
Such tests will be called optimal tests in the first or second sense respectively.

a) The first case

The set of tests defined by the critical region D in (12) is equivalent to the set
{(e,n)e[0,1] x N*}. Let G, G = [0, 1] x N*, be the set of all solutions of

(17) o =1(e2) + [l — ®(u, + 2b /n)] £ 5,
Bin*) = ®[u, + (b* + b) /n] — ®[—u, + (b* — b)/n] < B,
Then G, = G 0 {[0, 1] x {ng}}. where ny = min {n : (e, n)€ G}, is the set of all

optimal solutions in the first sense.
Put for (e, x)e[0, 1] x [0, o0):

oe, x) = (ef2) + [1 — D(u, + 2b/x)],
Ble, x) = ®[u, + (b* + b) /x| — [ —u, + (b* — b) /x].
Denote G to be the set of all (e, s) such that
e, x) £ 9y,
Ble.x) = o
Let ¥ = min {x : (e, x) € G45}.
Denote Gy = Gy 0 {[0, 1] x {X}].
Theorem 5. Suppose 0 < 20, < 1 — i, < |. Then
(i) G,y consists of a single point (¢, X), and dy < & < 20,.
(ii) The optimal test (eq, ny) exists uniquely iff X € N* . In this case (eq, ny) = (&, X).

(i) If £ ¢ N*, the set of optimal tests is Gy = [e;, e;] x {[X] + 1}, where e; < e,
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are determined uniquely by

[))(61* [‘2] + l) = B,
oez, [] + 1) = 0o,
where [ ] stands for the integer part of X.

Proof. Clearly d(e, x) < 3, if 0 < e < Jy, by (14)(i); d(e, x) > 5,125, < e < 1,
and (e, x) = J, has a unique solution x = x, increasing strictly from 0 to + o0
as e increases from &, to 25,, by (14) (iii—iv). Put

0,0 e =9y,

x = x(e) =
(©) Xo 0g < € < 20, .

The set of all solutions of d(e, x) < J; is
Gy = {(e.x) 1 e€[0,25,), x = x(e)} ,

the equation of the lower boundary G of which is x = x(e). Similarly, by (16) (i —iii),
for ee[0, 1 — B,) the equation f(e, x) = B, has a unique solution x; decreasing
from +o0. (For e = | — B, there is another solution VT*(<xff) increasing from 0.
If 1 >¢é>1— f, such that xj = x}* then for e > ¢é the equation f(e, x) = B,
has no solution. But we do not need this fact.) Thus the set of solutions of (e, x) < B,
for ee[0, 1 — ) is

Gy ={(e.x):ee[0, 1 — ), x = x},

and x = x(e) = x} represents the lower boundary G, of G, From that one can
casily get the results of Theorem 5, noting that G, = G, N G, and % = Gs N G/x-
Q.E.D.

Remark 3. Inapplications both d, and f, are often small and satisfy 26, < 1 — f,.
Thus G, consists of a single point (&, %) with J, < & < 25, and (¢, £) may be found
approximately as follows:

Put e; = 0y + 10,

and
eimy + o2, if x,,_, < xi

251 NMej-y
. =
€

eimy — Sof20, il xp, > xE_ .,
i=23,.., provided x, + xfj, j=1,..,i—1.
If x,, = x, then (&, %) = (e;, x,,). If x,, & x},, then

Gsp 3 (e;, max (x,, xJ,)) & (¢, %) with

< 5of20 = 0,

e; — ¢

and
*

|¥ — max (x,, x7,) *l-o0.

<

Xe, — X
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b) The second case
Let
(18) t = t(u,n) = 1,6 + t,p(u*) + t3n =
= t,[te + 1 — D(u, + 2b /n)] +
+ [0, + (0% + b) Jn) — D=, + (5% = b) Jm)] + tyn

where t,, t,, t3 are positive constants.

Let T = {(u, n) : t(u,, n) = min,ee[0,1], ne N*}. Then (d,, A) € T, with i =
min{n : (u,, n) € T}, determines the optimal test in the second sense.

As n is not continuous, we may first find, for given n e N*, the @i, = @, (n) which
minimizes t.

Clearly

(19) e = —Lo(u,) + @(u, + 26 yn)] t; + [o(u, + (b* + b) /n) +

+ o(ue = (b* = b)n)] 12,

and t,, = 0if and only if

O OO (RSN R (A [ NS
“ N o(u,) + o(u, + 2b /n) ty

Lemma 2. For h > 0,
o(x)p(y) — o(x + h)o(y + h)>0 if x+y+h>0,
=0 if =0,

<0 if <0.
Proof. Since

J@r) [o(x) o(y) — o(x + h)o(y + h) =
=exp[—3(x* + y)] {1 —exp[—h(h + x + )]} .
and for h >0, 1 —exp[—h(h + x + y)] has the same sign as h + x + y, the
Lemma follows. Q.E.D.
Lemma 3. Put
kx)= PE - tolxtate) g sy

A s

o(x) + o(x + ¢)

Then
() k(x)>0 if x+4c>0,
=0 if =0,
<0 if <0,
(ii) limk(x) = +o0.

X @
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Proof. As ¢'(x) = —x ¢(x),
[o(x) + o(x + )" K'(x) =
= a)ol —a) 4 (x +at ol +at o] [o(x) + p(x + )] +
+ [o(x —a) + o(x + a + )] [x o(x) + (x + ¢) p(x + ¢)] =
=alo(x — a)o(x) — o(x + ¢)p(x + a + ¢)] +
+(a+ Lol — ) plx + ) = o) o (x +a + )]

Applying Lemma 2, one gets (i).
In order to prove (ii), note that

k(x) = {exp (ax — a®|2) + exp[—%(a + ¢)* — (a + ¢)x]} :
Sl + exp(—=c?2 — ex)} . Q.E.D.
Theorem 6. Let k = k(u,, n) be defined in (20).
(i) kincreases strictly from k(0, n) to oo as u, from 0 to oo for eachn e N*, where

_ o((b* + b) /n) + o((b* = b) J/n)
(21) 0 < k(0, n) = (//(20) + o(2b ) <.

(ii) The equation (20) has a solution u, = u}(n) if and only if

(22) t/t; = k(0, n).
In this case, uy(n) is unique, and
ur(n) >0 if 1]t > k(0, n) .
=0 if = k(0, n),
(iii) t attains its minimum in u, = u}(n) for n satisfying (22) and in u, = 0
for n not satisfying (22).

Proof. (i) follows from Lemma 3, putting x = u,, a = (b* — b)/n, ¢ = 2b /n.
(ii) is a consequence of (i). In order to prove (iii) note that for n satisfying (22),
k(u,, n) — t,[t, and then t,, < 0 or >0 if u, — ui(n) <0 or >0; and for n not
satislying (22), k(u,, n) > t,/t, and then 1, > 0 for u, = 0.

e

Let o up(n) if k(0. n) < 1)ty
ifn) =g if >4t .

Then from (ii) and (iii) ¢ attains its minimum in a unique u, = d,(n) for each ne N*.
Q.E.D.
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Put

(23) to = min {t(7(n),n): 1 < n

lIA

[(t; + 6)]t5] + 1},

(24) i=min{n:1(@,(n),n) =151 =n<[(1; + 1,))t3] + 1} .

IIA

Theorem 7. (7(77), i) is a unique optimal solution in the second sense. Especially,
if (1, + 1,)/ty < 1, the optimal solution is (i (1), 1).

Proof. From (18) one has

(@ (ny), ny) = mint(u, ny) <ty + 1, + t3ny,

UeZo

((a(ny), ny) = min t(u,, ny) > t3n, .
UeZ0
Thus 1(d,(n,), ny) 1(d(ny), ny)if (t; + t,)/ts < ny — ny . Therefore ¢, defined in (23)
is equal to min {t(d,(n).n):neN*} = min {t(u, n):(u,n)e0, 1] x N*}.
Q.E.D.
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Souhrn

APLIKACE NORMALNIHO ROZLOZENI NA KONTROLU JAKOSTI
NGUYEN VAN Ho

Clanek podava nové vysledky z teorie statistickych prejimek méfeni za piedpo-
kladu normalniho rozlozeni zkoumaného znaku jakosti prfi testovani hypotézy
o pfipustném, resp. nepfipustném podilu vyrobkd v ddvce se znakem mimo prede-
psanou toleranci. Jsou odvozeny optimalni picjimaci plany pro ptipad, kdy vyrobky
jsou klasifikovany do m tfid podie velikosti odchylek od predepsané stiedni hodnoty.
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