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SVAZEK 25 (1980) A P LI KACE M ATE M A T i KY ČÍSLO 6 

ESTIMATES OF RELIABILITY 
FOR THE NORMAL DISTRIBUTION 

JAN HURT 

(Received November 1, 1978) 

1. INTRODUCTION 

Let X be a normally N(/i, o2) distributed random variable, both /i and o2 unknown. 
Let c be a fixed real number. The probability 

(1) P(X > c) = Q ^ ' 

where <P denotes the N(0, 1) distribution function, is to be estimated from a random 
sample Xl9 ..., Xn from the parent population N(/i, o2). 

Four different estimators will be studied: the minimum variance unbiased estimator 
Rl9 the maximum likelihood estimator R2, the Bayes estimator R3 corresponding 
to a logarithmic a priori distribution, and the naive estimator R4 given by the fre­
quency of the event {X > c). 

Denoting as usual 

x - - . £ * . , s2 = -L- L(x.-x) 2 , 
n t=i n — 1 f=i 

we introduce the following statistics: 

T= e-=ilt U1=VRT> [ / 2 =C_ jL_ ) r , U3 
n — 1 \n — 1/ V \ n + 1 

The minimum variance unbiased estimator Rt of (1) was found by Kolmogorov 
[4]; it may be expressed as 

(2) R. = ! - f ( i - « 2 r 4 , / 2 d « if - 1 < t / . < i . 
B(i, i(n - 2)) J c, 

= 1 if Ui g - 1 , 

= 0 if Ui 1 1 . 
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The maximum likelihood estimator R2 is obtained by utilizing the invariance prin­

ciple of the maximum likelihood estimates, which results in 

(3) R2 = <P{-U2). 

Suppose now that \i and a2 are random variables; denoting h = G~2, assume 

that the a priori distribution of (/i, h) is given by the improper density function 

g([x, h) = - , — oo < u" < co , h > 0 . 
h 

Then the density of the a posteriori distribution is 

1 g(џ.h\x1,...,Xа)-Jfy- 2r(i(n~\)) 

x S"-1 feW^expt- -[n(n - x2) + S2]} , 

where S2 = (n — 1) s2. The Bayes estimator of (1), obtained as the expectation 

of $(^J(h) (/i — c)) with respect to the above a posteriori distribution, is 

/•oo 

(4) R3 = wn.x{u)du 
JU3 

where wn_1 denotes the density function of Student's t on n — 1 degrees of freedom. 

Let Z. be the indicator of the event [Xt > c}, i.e., 

Zt = 1 if X£ > c , 

= 0 otherwise. 

Then the naive estimator of (1) is 

(5) K, = - E Z . . 
n 

For further purposes, it is useful to express the estimates JRl9 R2, R3 in an alternative 
form. After an appropriate transformation and some calculations we can write 

(6) Rt = F,(T) , i = 1, 2, 3 . 

Here 

(7) ^ ( z J - ^ ł - B . Г(l-fc1.
2)(""4)/2ď 

if - ( n - 1)/V(n) < z < (n - 1)/V(n). 

= 1 if z < - ( n - l ) / V ( n ) , 

= 0 if z ž (n - 1)/V(n) 

433 



where 

i V(«) 
, kд = 

B[h K» - 2)] n - T (n - l) 2 ' 

(8) E2(Z) -= * - k2 r<p(/c2o dt 

where <p is the N(0, 1) density function and k2 = >J(nj(n — 1)); 

(9) E3(z) = i - B 3 f ( l + f c 3 r 2 r n / 2 d t ) 

where 

B 3 = 
£[i i(» - O] V V(" - ! ) ( » + -V («-!)(« + 1) 

Although the F/s and other symbols introduced depend on n as well, we have 
suppressed the subscript n in our notation. 

2. ASYMPTOTIC PROPERTIES OF THE ESTIMATES 

Let us denote 

e = c - ^ . 

a 

We first prove the asymptotic normality of the investigated estimates. 

Theorem 1. We have 

V(n) (Rt - 0 ( - 0 ) ) —> N(0, cp2(0) (1 + 02/2)), i -= 1, 2, 3 , 

V (n) (*4 - <f>(-0)) A N(0, <F(0) (1 - 0(0))) . 

Proof. Without loss of generality we may suppose that |0| < (n — i)j^/(n) so 
that all the functions Fh i = 1, 2, 3 admit continuous derivatives ft in some neigh­
bourhood of 0, where 

(10) / , ( z ) = - B . ( l - / c . z 2 ) " - 4 ' / 2 , 

(11) fi{z)= -k2<p(k2z), 

(12) / 3(z) = - B 3 ( l + k3z
2)-'2 . 
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Notice that the f 's depend on n again, although not indicated by a subscript, and that 

(13) lim/,<z) = cp(z) 
n~* oo 

for i = I, 2, 3 and all z. Let us write 

(14) V ( n ) ( r - 0) = - y(n)(n -X) + do j(n) (1 - s2ja2)(l + s/a)"1] . 
s 

p 
The limiting distribution of yj(n) (1 - s2\o2) is N(0,2); further, Qo(\ 4- s/cr)"""1 > 

P 
> iOa, hence by [(x), 2c. 4] in [5] 

OJ V(n) (1 - s2/<r2) (1 + s/o-)-1 - ^ N(0, i02o-2). 

L P 
Obviously, ^/(/i) (/L — X)—* N(0, cr2), and s _ 1 — > or"1; hence 

(i5) V ( " ) ( T - 0 ) ^ M M + i02). 
Finally, for i = 1, 3 we have 

yj(n) [Ft(0) - &(~0)]-+0 as n -> oo . 

Taking into account (13), (15), and utilizing (6a. 2.5) in [5] we obtain the assertion 
of the theorem for i — V 3. The assertion for R2 is an immediate consequence 
of (6a. 2.1) in [5] and the case of # 4 is trivial. Q.E.D. 

R e m a r k 1. From the above theorem it follows that the estimates R2 and P3 

are (weakly) asymptotically efficient, i.e. the variances of their asymptotic distribution 
are the same as the variance of the asymptotic distribution of the minimum variance 
unbiased estimate. Later we shall see that R2 and K3 are asymptotically efficient 
in the usual sense. 

The estimate K4 is not weakly asymptotically efficient as follows from the inequality 

(i6) msLtm <!, 
v ' *0)(i - *(»)) 
valid for all 0. The inequality (16) may be verified by standard calculus. We omit 
the proof here. 

Let us denote 

pk(z) - \ x k <p(x) dx, k - 0, 1, 2 , . . . . Í 
Note that the estimated probability (1) is 

(17) tf>(_0) = i _ p o ( f l ) . 
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In the sequel, we will use the formulas 

(18) P2(z)= P0(z)- zcp(z), 

(19) P4(z) = 3P0(z) - 3z cp(z) - z3 cp(z) 

which may be deduced by integrating by parts. 

Theorem 2. For the expected values, variances, and expected squared errors 
of the estimates Ru R2, R3, we have 

ER, = <P(-O), 

ER2 = (p(-O) + — 6cp(6) (02 - 3) + 0(n~2), 
An 

ER3 = <P(-9) + ~6cp(6)(02 + 1) + 0(n~2), 
2n 

va rR i = - cp2(0)(\ + ic?2) + -]~cp2(6)(4 + 02 - 26>4 + 06) + 0 ( r T 5 / 2 ) , 
n %n2 

va rR 2 = - cp2(e)(i + irJ2) + - 1 - <p2(6) (16 - 176>2 -10c94 + 3c?6) + 0 ( r T 5 / 2 ) , 
n 8rr 

va rP 3 = % 2 ( t ? ) ( l + it?2) + — cp2(6)(-4 - 1902 - 26T4 + 506) + 0(n~5/2), 
n 8n2 

E(P! - <P(-6))2 = v a r R ! , 

E(P2 - <2>(-6>))2 = - cp2(e)(l +i02) + J - ^ 2 ( 0 ) ( 3 2 -25c?2 - 266?4 + 
n 16n2 

+ 7t?6)+ 0 ( n ~ 5 / 2 ) , 

E(P3 - <1>(-6>))2 = - cp2(e)(\ + ic?2) + - i - c p 2 ( c / ) ( - 8 - 34c?2 + 4t?4 + 
n 16n2 

+ 1406) + 0(n~512). 

Proof . We make use of Theorem 1 in [3] where we put q = 3. First we present 
the expansions of moments and covariances needed in the mentioned theorem: 

(20) £ ( T - c?) = — 6 + 0(n~2) 
An 

E(T- 0)2 = 1(1 + it?2) + 0(n~2) 
n 
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cov [(T - 0), (T- 6)] = i ( l + \02) + - (2 + f B2) + 0(n~3) 
n n 

c o v [ ( T - 6), ( T - 0)2] = - i ( | 0 + 2fl3) + 0 ( n " 3 ) 
n 

cov [(T - 9), (T - 0)3] = — (3 + 302 + | 0 4 ) + 0(n~3) . 
n2 

All the higher moments and covariances are 0(n~2) and 0(n~3), respectively. 

Because of the boundedness of both E; and their derivatives such higher terms may 

be omitted. Thus in our case Theorem 1 from [3] takes the form 

(21) ER; = Ft(9) + ftf) E(T -9) + if[(9) E(T - B)2 + 0(n~2), 

(22) var R; = [ft(B)f cov [(T - 8), (T - 6)] + 

+ fi(e)f'i(9)^y[(T-0),(T-6)2] + 

+ ifi(0)f"i(6) cov [(T - 0), (T - 0)3] + 

+ i [ / ; ( 0 ) ] 2 c o v [ ( T - 0 ) 2 , ( T - 9)2] + 0(n~s'2). 

Formulas (21) and (22) together with (20) imply that in the expansion of ERt Ft 

appears up to 0(n~2), f and f[ up to 0(n~l) and in that of var Rt [ f (^) ] 2 appears 

u p t o O ( n - 2 ) , f . ( c 9 ) f ; ( ^ f ( ^ ) f ; ^ ) , a n d [ f ; ( f , ) ] 2 u p t o O ( n - 1 ) . S i n c e f ( c ) ) = - ^ ) + 

+ 0(f t - 1 ) and fi(6) = 9(p(6) + O(ft-1), only the leading term in (21) actually 

depends on i whereas the other terms coincide for i = 2, 3. Similarly, in the expansion 

(22) only the leading term actually depends on i whereas the other terms coincide 

for all i. With S.T. and C T . standing for specific and common terms respectively, 

we have 

S. T. ERi = Fi(6) 

C T. ERi = sum of remaining terms in (21) 

S. T. var R, = [/ ;(0)] 2 cov [(T - 0), (T - 0)] 

C T. var R( = sum of remaining terms in (22). 

Now 

(23) ERІ = S. T. ERt + C T. ERІ 

(24) VaГ IV; = S. T. var R; + C T. var R 

We have 

(25) C. T. ER; = — ð ę( )( 2 - 1) + 0(n~2) 
An 
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Using (18) and (19), we obtain after some algebra 

S. T. ER2 = i - Po(0) 9 <p(0) + O (n~2) 
2n 

Let us note that 

(26) B3=(2n)-^{l-^)+0(n-2) 

Then we calculate 

S. T. FR3 = i - Po(0) +^-9 <p(0) (02 + 3) + 0(n~2). 
An 

This, together with (25) gives the expressions in the theorem. Analogously we conti­
nue with the variance. The common terms of var Rt are 

(27) C T. var Rt = ~ cp2(9) ( - 1 - 4<92 - f <94 + %96) + 0(n~5/2) . 
n2 

The S. T. var Rx may be directly calculated utilizing the formula 

(28) Bx = (27i)~1/2 U - —\ + 0(n" 2 ) . 

Thus 

S. T. var Rx = - cp2(9) (l + id2) + -?- <p2(0) (f + f 62 + i<94 + ±96) + 0(n~5 / 2) 
n n2 

which together with (27) gives the desired formula. Further, 

S. T. var R2 = I <p2(t?) (1 + i02) + ~ <p2(9) (3 + ̂ 92 - i<94) + 0(n~ 5 / 2 ) 
n n 

and using (26) again, 

S. T. var R3 = - cp2(9) (1 + i92) + 1 (?2(0) (* + ^ 0 2 + i<94 + it?6) + 0 ( n ' 5 / 2 ) , 

From the last expressions and (27) the assertion immediately follows. The formulas 
for expected squared errors may be obtain by substituting the expansions ERt and 
var Rt into the formula 

E(Rt - $(-9))2 = [ERt - <P(-9)Y + var Rt. Q.E.D. 

R e m a r k 2. Theorem 2 implies that the estimates R2, R3 are asymptotically 
efficient. 
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3. D E F I C I E N C Y 

To study the asymptotic behaviour of asymptotically efficient estimates more 

in details we use the concept of deficiency, see [1] or [2]. Let us denote the asymptotic 
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Fig. 1. Densities of Rx. 
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Fig. 2. Densities of R2. 
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deficiency of Rt with respect to Rj by dtj, i, j -= 1, 2, 3. This means, roughly speaking, 
that to attain the same value of the expected squared errors of Rt and Rj we need dtJ 

additional observations for the calculation Rt. 

Theorem 3. Put x(0) = (1 +if)~1. Then 

J 2 1 = _L K(0) (24 - 2162 - 2294 + 506), 
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<lзi = ľ i x(0) ( - 1 6 - 3602 + 804 + 120 6), 

d32 = -V*(0)(-40 - 902 + 3004 + 706) 

hold. 

Proof . The proof follows immediately from the formulas for E(Rt — <P( — 9))2 

given in Theorem 2. Q.E.D. 
Some numerical values of dtj for various values 9 are given in Table 1. 

TABLE 1 

Deficiencies 

0 0 0 0-5 10 1-5 2 0 2-5 30 

. û21 1-50 0-89 -0-83 - 2 - 6 8 -2-42 3-28 18-68 

dзi - 1 0 0 -1-35 -1-33 2-36 15-33 45-47 102-91 

d32 -2-50 -2-24 -0-50 504 17-75 42-20 84-23 

4. MONTE CARLO STUDY 

In order to gain an idea about the distribution of Rt, R2 and R3 for small n some 

simulations were done. Necessary computations were made on the high-speed 

computer ICL 4 —72 at the University Regional Computer Centre in Prague. 

As a generator of random standard normal deviates the standard software generator 

based on the sum of 12 uniform random numbers was used. The latter were produced 

by a multiplicative congruential method. The integrals in (7) and (9) were calculated 

numerically using the Gaussian twelve-point formula. All calculations were pro­

grammed in FORTRAN IV with double precesion arithmetic. 

The value of 9 was chosen to be 1-514102 corresponding to the estimated reliability 

<P( — 9) = 0-065. Since the distribution of the estimates in question depends on the 

parameters \x and o2 only through 9, we put \i = 0 and o2 = 1 for simplicity, so that 

c = 1-514102. Monte Carlo values for the statistics JR1 ? R2, R3 were obtained for 

n = 4, 12, and 30 for which the numbers of samples were N = 50 000, 20 000, and 

10 000, respectively. The range [0, 1] was divided into 1000 equal intervals and the 

frequencies of the values of Rt in these intervals were registered. From this the empiric­

al densities of Ru R2 and R3 were obtained. Their plots are in Figures 1, 2 and 3, 

respectively. The distribution of Kx is of mixed continuous-discrete type. The relative 

frequency of the zero value is represented by the area of the rectangle. The broken 

vertical line indicates the estimated value 0-065. Monte Carlo means, variances, 

and mean squared errors are given in Table 2. 
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Table 2 

Monte Carlo means, variances, and mean squared errors (MSE) 

n Mean Variance MSE 

4 0-065058 0010387 0-010387 

* 1 12 0064850 0002936 0002936 
30 0065335 0001134 0001134 

4 0-060223 0006288 0006311 

*2 12 0063036 0002400 0002404 
30 0064220 0001063 0001064 

4 0-130822 0008516 0012849 

*3 12 0090008 0002827 0003452 
30 0075394 0-001132 0001240 

5. CONCLUSIONS 

The estimates JR2 and R3 are biased, in general. Maximum likelihood estimate R2 

is "almost" unbiased (up to the order 0(n~2)) for 9 = 0 and 9 = ±-N/(3). Bayes 
estimate R3 possesses a similar property for 9 = 0 only. It follows from Theorem 2 
that R2 is, up to the order 0(n~2), positively biased for 9 > ^/(3) or — ^(3) < 9 < 0 
ane negatively biased for 9 < — ̂ (3) or 0 < 9 < ^(3)- The estimate R3 is positively 
biased for 9 > 0 and negatively biased for 9 < 0. Numerical calculations show 
and Monte Carlo experiments confirm that the bias of R3 is rather large for the most 
frequently used values of 9 even for large n, and for smaller n the bias makes the 
estimate R3 practically inapplicable. For n = 4 and 9 = 1-514102 the bias exceeds 
100 per cent. The bias of JR2 in comparison with that of JR3 is not so drastic. 

Numerical analysis of deficiencies shows that R2 is superior to Kx for 9 approxim­
ately from the interval (1, 2). For increasing 9 R2 becomes worse, however. Bayes 
estimate R3 is better than Rx for 9 close to zero, for larger 9 it is much worse than Rt. 
Similar conclusions remain valid for the comparison of R3 with JR2. 

It follows from the above that the best results may be expected when using 
the minimum variance unbiased estimate Rt. In the worst for Rt case about three 
observations are lost. On the other hand, for a wide range of 9 values the use of Rt 

is without any risk. A little more complicated computation which requires tables of 
B — distribution or a computer might be of some disadvantage. If it is necessary 
to avoid complicated calculations it is possible to use simple JR2. Its use is somewhat 
risky, however, particularly if there is no imagination of potential values of 9. The 
Bayes estimate is not generally recommendable. 
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S o u h r n 

ODHADY SPOLEHLIVOSTI V NORMÁLNÍM ROZDĚLENÍ 

JAN HURT 

Jsou studovány čtyři odhady funkce spolehlivosti normálního rozdělení s nezná­
mými parametry, a to nejlepší nevychýlený, maximálně věrohodný, bayesovský a 
neparametrický. Je dokázána jejich asymptotická normalita a odvozeny asympto­
tické rozvoje středních hodnot a středních čtvercových odchylek (SČE). Pomocí roz­
vojů SČE jsou odhady porovnány z hlediska deficience. Nejlepší výsledky dává nejlepší 
nevychýlený odhad. Na závěr je uvedena rozsáhlá studie Monte Carlo, ve které jsou 
studovány vlastnosti odhadů pro malé výběry. 
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